Chapter 12 : Resistant Starch as a Prebiotic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Resistant Starch as a Prebiotic, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap12-2.gif


Optimizing the large-bowel microbiota in terms of function and products has the potential to improve public and personal health. Prebiotics and probiotics have attracted considerable attention for their potential in this regard. This is despite the fact that there is abundant evidence that the composition of the gut microbiota and its metabolic activities are responsive to changes in diet. There are also technical difficulties of incorporating probiotic microorganisms into foods and maintaining their shelf stability. Recognition of these two obstacles has prompted interest in the concept of prebiotics, which recognizes that dietary factors, especially macronutrients, are prime determinants of the community structure and fermentation profile of the large bowel ecosystem. An understanding of the biology of dietary starches, their digestion in the upper gut, and their interaction with the microbiota of the large bowel is essential in ascertaining the full prebiotic potential of resistant starch (RS). The classification of RS into groups RS through RS and the widely diverse types that are consumed in foods show that it is very difficult to link consumption directly to prebiotic action. One of the obstacles to progress is the lack of an internationally accepted and validated analytical method for RS in human foods. The methodological limitations of culture techniques for enumerating bacteria are well documented. Quantitative molecular techniques (such as fluorescence in situ hybridization), being more specific, sensitive, and precise, allow more subtle changes in the microbiota to be detected.

Citation: Bird A, Topping D. 2008. Resistant Starch as a Prebiotic, p 159-173. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Scanning electron micrographs of starch particles in commercially processed foods. (a) Commercial muesli containing multiple whole-grain cereals and other starch sources; (b) starch from commercial four-bean mix (canned). Bar, 10 µm.

Citation: Bird A, Topping D. 2008. Resistant Starch as a Prebiotic, p 159-173. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmed,, R.,, A. R. Bird,, Z. Li,, S. Rahman,, G. Mann,, W. Chanliaud,, P. Berbezy,, D. Topping, and, M. K. Morell. 2007. Bio-engineering cereal carbohydrates to improve human health. Cereal Foods World 52: 182187.
2. Ahmed, R.,, I. Segal, and, H. Hassan. 2000. Fermentation of dietary starch in humans. Am. J. Gastroenterol. 95: 10171020.
3. Anderson,, L. H.,, A. S. Levine, and, M. D. Levitt. 1981. Incomplete absorption of the carbohydrate in all purpose wheat flour. New Engl. J. Med. 304: 891892.
4. Annison, G., and, D. L. Topping. 1994. Nutritional role of resistant starch: chemical structure vs physiological function. Annu. Rev. Nutr. 14: 297320.
5. Asp, N.-G. 1992. Resistant starch. Eur. J. Clin. Nutr. 46(Suppl. 2): S1.
6. Baghurst,, P. A.,, K. I. Baghurst, and, S. J. Record. 1996. Dietary fibre, non-starch polysaccharides and resistant starch—a review. Food Aust. 48(Suppl.): S3S35.
7. Bajka,, B. H.,, D. L. Topping,, L. Cobiac, and, J. M. Clarke. 2006. Butyrylated starch is less susceptible to enzymic hydrolysis and increases large-bowel butyrate more than high-amylose maize starch in the rat. Br. J. Nutr. 96: 276282.
8. Barcelo,, A.,, J. Claustre,, F. Moro,, J. A. Chayvialle,, J. C. Cuber, and, P. Plaisancie. 2000. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46: 218224.
9. Bird,, A. R.,, I. L. Brown, and, D. L. Topping. 2000a. Starches, resistant starches, the gut microflora and human health. Curr. Issues Intest. Microbiol. 1: 2537.
10. Bird,, A. R.,, I. L. Brown, and, D. L. Topping. 2006. Low and high amylose maize starches acetylated by a commercial or a laboratory process both deliver acetate to the large bowel in rats. Food Hydrocolloids 20: 11351150.
11. Bird,, A. R.,, T. Hayakawa,, Y. Marsono,, J. M. Gooden,, I. R. Record,, R. L. Correll, and, D. L. Topping. 2000b. Coarse brown rice increases fecal and large bowel short-chain fatty acids and starch but lowers calcium in the large bowel of pigs. J. Nutr. 130: 17801787.
12. Bird,, A. R., and, D. L. Topping. 2001. Resistant starch, fermentation, and large bowel health, p. 147–158. In S. S. Cho and, M. L. Dreher (ed.), Handbook of Dietary Fiber. Marcel Dekker, New York, NY.
13. Bird,, A. R.,, M. Vuaran,, I. Brown,, and D. L. Topping. 2007. Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. Br. J. Nutr. 97: 134144.
14. Bird,, A. R.,, M. Vuaran,, R. Crittenden,, T. Hayakawa,, M. J. Playne,, I. L. Brown, and, D. L. Topping. A high amylose starch and a fructooligosaccharide promote fecal and colonic bifidobacteria numbers in pigs fed Bifidobacterium longum but only high amylose starch raises short chain fatty acids. Submitted for publication.
15. Birkett,, A. M,, G. P. Jones,, A. M. de Silva,, G. P. Young, and, J. G. Muir. 1997. Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur. J. Clin. Nutr. 51: 625632.
16. Birkett, A.,, J. Muir,, J. Phillips,, G. Jones, and, K. O’Dea. 1996. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am. J. Clin. Nutr. 63: 766772.
17. Bouhnik,, Y.,, L. Raskine,, G. Simoneau,, E. Vicaut,, C. Neut,, B. Flourie,, F. Brouns, and, F. R. Bornet. 2004. The capacity of nondigestible carbohydrates to stimulate fecal bifido-bacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J. Clin. Nutr. 80: 16581664.
18. Bovee-Oudenhoven,, I. M.,, S. J. Ten Bruggencate,, M. L. Lettink-Wissink, and, R. van der Meer. 2003. Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 52: 15721578.
19. Bratten,, J. R., and, M. P Jones. 2007. Small intestinal motility. Curr. Opin. Gastroenterol. 23: 127133.
20. Brigidi, P.,, E. Swennen,, B. Vitali,, M. Rossi, and, D. Matteuzzi. 2003. PCR detection of Bifidobacterium strains and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption. Int. J. Food Microbiol. 81: 203209.
21. Brown,, I. L. 2004. Applications and uses of resistant starch. J. AOAC Int. 87: 727732.
22. Brown,, I. L.,, K. J. McNaught, and, E. Moloney. 1995. Hi-maize™: new directions in starch technology and nutrition. Food Aust. 47: 272275.
23. Brown,, I. L.,, X. Wang,, D. L. Topping,, M. J. Playne, and, P. L. Conway. 1998. High amylose maize starch as a versatile prebiotic for use with probiotic bacteria. Food Aust. 50: 602609.
24. Brown,, I.,, M. Warhurst,, J. Arcot,, M. Playne,, R. J. Illman, and, D. L. Topping. 1997. Faecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amy-lose cornstarch than with a low amylose cornstarch. J. Nutr. 127: 18221827.
25. Brown,, I. L.,, M. Yotsuzuka,, A. Birkett, and, A. Henriksson. 2006. Prebiotics, synbiotics and resistant starch. J. Jpn. Assoc. Dietary Fiber Res. 10: 19.
26. Burkitt,, D. P. 1970. Relationship as a clue to causation. Lancet 2: 12371240.
27. Cassidy, A.,, S. A. Bingham, and, J. H. Cummings. 1994. Starch intake and colorectal-cancer risk—an international comparison. Br. J. Cancer 69: 937942.
28. Champ, M., A.-M. Langkilde,, F. Brouns,, B. Kettlitz, and, Y. L. Bail-Collet. 2003. Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling. Nutr. Res. Rev. 16: 143161.
29. Champ,, M. M. 2004. Physiological aspects of resistant starch and in vivo measurements. J. AOAC Int. 87: 749755.
30. Christian,, M. T.,, C. A. Edwards,, T. Preston,, L. Johnston,, R. Varley, and, L. T. Weaver. 2003. Starch fermentation by faecal bacteria of infants, toddlers and adults: importance for energy salvage. Eur. J. Clin. Nutr. 57: 14861491.
31. Clarke,, J. M.,, A. R. Bird,, D. L. Topping, and, L. Cobiac. 2007. Excretion of starch and esterified short chain fatty acids by ileostomists after the ingestion of acylated starches. Am. J. Clin. Nutr. 86: 11461151.
32. Cordain,, L.,, S. B. Eaton,, A. Sebastian,, N. Mann,, S. Lindeberg,, B. A. Watkins,, J. H. O’Keefe, and, J. Brand-Miller. 2005. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81: 341354.
33. Crittenden,, R.,, A. Laitila,, P. Forssell,, J. Mättö,, M. Saarela,, T. Mattila-Sandholm, and, P. Myllärinen. 2001. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl. Environ. Microbiol. 67: 34693475.
34. Cummings,, J. H., and, H. N. Englyst. 1987. Fermentation in the human large intestine and the available substrates. Am. J. Clin. Nutr. 45(5 Suppl.): 12431255.
35. Cummings,, J. H., and, H. N. Englyst. 1991. Measurement of starch fermentation in the human large intestine. Can. J. Physiol. Pharmacol. 69: 121129.
36. Cummings,, J. H., and, G. T. Macfarlane. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70: 443459.
37. Danjo,, K.,, S. Nakaji,, S. Fukuda,, T. Shimoyama,, J. Sakamoto, and, K. Sugawara. 2003. The resistant starch level of heat moisture-treated high amylose cornstarch is much lower when measured in the human terminal ileum than when estimated in vitro. J. Nutr. 133: 22182221.
38. Davie,, J. R. 2003. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133:2485S–2493S.
39. Duncan,, S. H.,, A. Belenguer,, G. Holtrop,, A. M. Johnstone,, H. J. Flint, and, G. E. Lobley. 2007a. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73: 10731078.
40. Duncan,, S. H.,, P. Louis, and, H. J. Flint. 2007b. Cultivable bacterial diversity from the human colon. Lett. Appl. Microbiol. 44: 343350.
41. Englyst,, H. N.,, S. M. Kingman,, G. J. Hudson, and, J. H. Cummings. 1996. Measurement of resistant starch in vitro and in vivo. Br. J. Nutr. 75: 749755.
42. Faulks,, R. M.,, D. J. Hart,, G. M. Brett,, J. R. Dainty, and, S. Southon. 2004. Kinetics of gastro-intestinal transit and carotenoid absorption and disposal in ileostomy volunteers fed spinach meals. Eur. J. Nutr. 43: 1522.
43. Finnie,, I. A.,, A. D. Dwarakanath,, B. A. Taylor, and, J. M. Rhodes. 1995. Colonic mucin synthesis is increased by sodium-butyrate. Gut 36: 9399.
44. Fujiwara, S.,, Y. Seto,, A. Kimura, and, H. Hashiba. 2001. Intestinal transit of an orally administered streptomycinrifampicin-resistant variant of Bifidobacterium longum SBT2928: its long-term survival and effect on the intestinal microflora and metabolism. J. Appl. Microbiol. 90: 4352.
45. Gibson,, G. R. 2004. Fibre and effects on probiotics (the prebiotic concept). Clin. Nutr. Suppl. 1: 2531.
46. Gibson,, G. R., and, M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 14011412.
47. Gibson,, G. R.,, H. M. Probert,, J. Van Loo,, R. A. Rastall, and, M. B. Roberfroid. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17: 259275.
48. Gidley,, M. J. 1992. Structural order in starch granules and its loss during gelatinisation, p. 87–92. In G. O. Phillips,, P. A. Williams, and, G. J. Wedlock (ed.), Gums and Stabilisers for the Food Industry. IRL Press, Oxford, United Kingdom.
49. Gork,, A. S.,, N. Usui,, E. Ceriati,, R. A. Drongowski,, M. D. Epstein,, A. G. Coran, and, C. M. Harmon. 1999. The effect of mucin on bacterial translocation in I-407 fetal and Caco-2 adult enterocyte cultured cell lines. Pediatr. Surg. Int. 15: 155159.
50. Guarner, F., and, J. R. Malagelada. 2003. Gut flora in health and disease. Lancet 361: 512519.
51. Hill,, M. J. 1995. Bacterial fermentation of complex carbohydrate in the human colon. Eur. J. Cancer Prev. 4: 353358.
52. Kishida, T.,, Y. Nakai, and, K. Ebihara. 2001. Hydroxypropyldistarch phosphate from tapioca starch reduces zinc and iron absorption, but not calcium and magnesium absorption, in rats. J. Nutr. 131: 294300.
53. Kleessen, B.,, L. Hartmann, and, M. Blaut. 2003. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br. J. Nutr. 89: 597606.
54. Kleessen,, B.,, G. Stoof,, J. Proll,, D. Schmiedl,, J. Noack, and, M. Blaut. 1997. Feeding resistant starch affects faecal and cecal microflora and short-chain fatty acids in rats. J. Anim. Sci. 75: 24532462.
55. Langlands,, S. J.,, M. J. Hopkins,, N. Coleman, and, J. H. Cummings. 2004. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53: 16101616.
56. Le Leu,, R. K.,, I. L. Brown,, Y. Hu,, A. R. Bird,, M. Jackson,, A. Esterman, and, G. P. Young. 2005. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J. Nutr. 135: 9961001.
57. Macfarlane, S., and, J. F. Dillon. 2007. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 102: 11871196.
58. Macfarlane,, G. T., and, A. J. McBain. 1999. The human colonic microbiota, p. 1–25. In G. R. Gibson and, M. B. Roberfroid (ed.), Colonic Microbiota, Nutrition and Health. Kluwer Academic Publishers, Dordrecht, The Netherlands.
59. Madrid, J., and, J. Arcot. 2000. Comparison of two in vitro analyses of resistant starch of some carbohydrate containing foods. Proc. Nutr. Soc. Aust. 24:208.
60. Mai, V., and, J. G. Morris. 2004. Colonic bacterial flora: changing understandings in the molecular age. J. Nutr. 134: 459464.
61. Mattila-Sandholm,, T.,, S. Blum,, J. K. Collins,, R. Crittenden,, W. de Vos,, C. Dunne,, R. Fondén,, B. Grenov,, E. Isolauri,, B. Kiely,, P. Marteau,, L. Morelli,, A. Ouwehand,, R. Reniero,, M. Saarela,, S. Salminen,, M. Saxelin,, E. Schiffrin,, F. Shanahan,, E. Vaughan, and, A. von Wright. 1999. Probiotics: towards demonstrating efficacy. Trends Food Sci. Technol. 10: 393399.
62. Mitchell,, B. L.,, M. J. Lawson,, M. Davies,, A. Kerr-Grant,, W. E., W. Roediger,, R. J. Illman, and, D. L. Topping. 1985. Volatile fatty acids in the human intestine: studies in surgical patients. Nutr. Res. 5: 10891092.
63. Morell,, M. K.,, B. Kosar-Hashemi,, M. Cmiel,, M. S. Samuel,, P. Chandler,, S. Rahman,, A. Buleon,, I. L. Batey, and, Z. Li. 2003. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J. 34: 173185.
64. Muir,, J. G.,, A. Birkett,, I. Brown,, G. Jones, and, K. O’Dea. 1995. Food processing and maize variety affects amounts of starch escaping digestion in the small intestine. Am. J. Clin. Nutr. 61: 8289.
65. O’Riordan, K.,, N. Muljadi, and, P. Conway. 2001. Characterization of factors affecting attachment of Bifidobacterium species to amylomaize starch granules. J. Appl. Microbiol. 90: 749754.
66. Rahman,, S.,, M. Morell,, D. Topping,, A. Bird,, Z. Li,, E. Dennis, and, J. Peacock. 2007. Low glycaemic response cereals for enhanced human health. Int. Diabetes Monit. 19: 2125.
67. Roberts,, J.,, G. P. Jones,, I. H. E. Rutihauser,, A. Birkett, and, C. Gibbons. 2004. Resistant starch in the Australian diet. Nutr. Diet 61: 98104.
68. Saavedra,, J. M. 2007. Use of probiotics in pediatrics: rationale, mechanisms of action, and practical aspects. Nutr. Clin. Pract. 22: 351365.
69. Santosa, S.,, E. Farnworth, and, P. J. Jones. 2006. Probiotics and their potential health claims. Nutr. Rev. 64: 265274.
70. Sanz,, M. L.,, G. L. Cote,, G. R. Gibson, and, R. A. Rastall. 2006. Influence of glycosidic linkages and molecular weight on the fermentation of maltose-based oligosaccharides by human gut bacteria. J. Agric. Food Chem. 27: 97799784.
71. Satokari,, R. M.,, E. E. Vaughan,, A. D. L. Akkermans,, M. Saarela, and, W. M. de Vos. 2001. Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst. Appl. Microbiol. 24: 227231.
72. Sazawal,, S.,, G. Hiremath,, U. Dhingra,, P. Malik,, S. Deb, and, R. E. Black. 2006. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect. Dis. 6: 374382.
73. Schatzkin,, A.,, T. Mouw,, Y. Park,, A. F. Subar,, V. Kipnis,, A. Hollenbeck,, M. F. Leitzmann, and, F. E. Thompson. 2007. Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study. Am. J. Clin. Nutr. 85: 13531360.
74. Sears,, C. L. 2005. A dynamic partnership: celebrating our gut flora. Anaerobe 11: 247251.
75. Segal, I. 2002. Physiological small bowel malabsorption of carbohydrates protects against large bowel diseases in Africans. J. Gastroenterol. Hepatol. 17: 249252.
76. Shimakawa, Y.,, S. Matsubara,, N. Yuki,, M. Ikeda, and, F. Ishikawa. 2003. Evaluation of Bifidobacterium breve strain Yakult-fermented soymilk as a probiotic food. Int. J. Food Microbiol. 81: 131136.
77. Smirnov, A.,, R. Perez,, E. Amit-Romach,, D. Sklan, and, Z. Uni. 2005. Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. J. Nutr. 135: 187192.
78. Stephen,, A. M. 1991. Starch and dietary fibre: their physiological and epidemiological interrelationship. Can. J. Physiol. Pharmacol. 69: 116120.
79. Sullivan, A., and, C. E. Nord. 2005. Probiotics and gastrointestinal diseases. J. Intern. Med. 257: 7892.
80. Tang,, M. C., and, L. Copeland. 2007. Investigation of starch retrogradation using atomic force microscopy. Carbohydr. Polym. 70: 17.
81. Ten Bruggencate,, S. J.,, I. M. Bovee-Oudenhoven,, M. L. Lettink-Wissink,, M. B. Katan, and, R. van der Meer. 2006. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J. Nutr. 136: 7074.
82. Ten Bruggencate,, S. J.,, I. M. Bovee-Oudenhoven,, M. L. Lettink-Wissink, and, R. van der Meer. 2005. Dietary fructooligosaccharides increase intestinal permeability in rats. J. Nutr. 135: 837842.
83. Toden, S.,, A. R. Bird,, D. L. Topping, and, M. A. Conlon. 2007. Differential effects of dietary whey, casein and soy on colonic DNA damage in rats. Br. J. Nutr. 97: 535543.
84. Toden, S.,, A. R. Bird,, D. L. Topping, and, M. A. Conlon. 2006. Resistant starch abolishes increased colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol. Ther. 5: 267272.
85. Topping,, D. L., and, P. Clifton. 2001. Short chain fatty acids and human colonic function—roles of resistant starch and non starch polysaccharides. Physiol. Rev. 81: 10311064.
86. Topping,, D. L.,, M. Fukushima, and, A. R. Bird. 2003a. Resistant starch as a prebiotic and synbiotic: state of the art. Proc. Nutr. Soc. 62: 171176.
87. Topping,, D. L.,, M. Warhurst,, R. J. Illman,, I. L. Brown,, M. J. Playne, and, A. R. Bird. 1997. A high amylose (amylomaize) starch and fructooligosaccharide increase faecal excretion of bifidobacteria in pigs fed live Bifidobacterium longum. Proc. Nutr. Soc. Aust. 21:134.
88. Topping,, D.,, A. Bird,, S. Toden,, M. Conlon,, M. Noakes,, R. King,, G. Mann,, Z. Li, and, M. Morell. 2007. Resistant starch as a contributor to the health benefits of whole grains, p. 219–227. In L. Marquart,, D. Jacobs,, G. McIntosh,, K. Poutanen, and, M. Reicks (ed.), Whole Grains and Health. Blackwell Publishers, Ames, IA.
89. Topping, D. L.,, M. K. Morell,, R. A. King,, L. Zhongyi,, A. R. Bird, and, M. Noakes. 2003b. Resistant starch and health—Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starch/Stärke 55: 539545.
90. Topping,, D. L., and, A. R. Bird. 1999. Food, nutrients and digestive health. Aust. J. Nutr. Diet. 56(Suppl.): S22S34.
91. Tuohy,, K. M.,, R. K. Finlay,, A. G. Wynne, and, G. R. Gibson. 2001. A human volunteer study on the prebiotic effects of HP-inulin—faecal bacteria enumerated using fluorescent in situ hybridisation (FISH). Anaerobe 7: 113118.
92. Vaughan,, E. E.,, M. C. de Vries,, E. G. Zoetendal,, K. Ben-Amor,, A. D. Akkermans, and, W. M. de Vos. 2002. The intestinal LABs. Antonie Leeuwenhoek 82: 341352.
93. von Wright,, A.,, T. Vilpponen-Salmela,, M. P. Llopis,, K. Collins,, B. Kiely,, F. Shanahan, and, C. Dunne. 2002. The survival and colonic adhesion of Bifidobacterium infantis in patients with ulcerative colitis. Int. Dairy J. 12: 197200.
94. Wang, X.,, I. L. Brown,, A. J. Evans, and, P. L. Conway. 1999a. The protective effects of high amylose maize (amylo-maize) starch granules on the survival of Bifidobacterium spp. in the mouse intestinal tract. J. Appl. Microbiol. 87: 631639.
95. Wang,, X.,, I. L. Brown,, D. Khaled,, M. C. Mahoney,, A. J. Evans, and, P. L Conway. 2002. Manipulation of colonic bacteria and volatile fatty acid production by dietary high amylose maize (amylomaize) starch granules. J. Appl. Microbiol. 93: 390397.
96. Wang, X.,, P. L. Conway,, I. L. Brown, and, A. J. Evans. 1999b. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Appl. Environ. Microbiol. 65: 48484854.
97. Wang, X., and, G. R. Gibson. 1993. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol. 75: 373380.
98. Williams,, E. A.,, J. M. Coxhead, and, J. C. Mathers. 2003. Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proc. Nutr. Soc. 62: 107115.
99. Zoetendal,, E. G.,, A. von Wright,, T. Vilpponen-Salmela,, K. Ben-Amor,, A. D. Akkermans, and, W. M. de Vos. 2002. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68: 34013407.


Generic image for table
Table 1

Potential substrates for the colonic microbiota of adults on a Western diet

Citation: Bird A, Topping D. 2008. Resistant Starch as a Prebiotic, p 159-173. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch12
Generic image for table
Table 2

Nutritional classification of RS

Citation: Bird A, Topping D. 2008. Resistant Starch as a Prebiotic, p 159-173. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error