Chapter 28 : Phage Therapy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Phage Therapy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815462/9781555814038_Chap28-2.gif


Bacteriophages (phages) are viruses that infect bacterial hosts and depend on bacterial processes to produce viral proteins and viral particles. This chapter first discusses the phage life cycles, phage receptors, taxonomy, and its genomes. Next, it talks about the impact of phages on bacterial evolution. Early bacteriophage research was largely driven by the desire to use phages to combat bacterial diseases—phage therapy. Early phage therapy researchers used phages to cure shigellosis, cholera, and staphylococcal infections. The chapter presents the major concerns of phage therapy include efficacy, pharmacokinetics, and safety issues. Due to the explosive increase of antibiotic-resistant bacteria and the urgent need for new antimicrobial strategies, phage therapy research has experienced a renaissance. During the last decade, several ambitious in vivo phage therapy studies have been published, some of which are discussed in the chapter. The study of a phage P100 was conducted according to current guidelines that should accompany the application of phages in therapy. Based on the examples presented in the chapter, the use of bacteriophages to control bacterial infections is promising. The global increase of antibiotic-resistant organisms warrants the exploitation of alternative strategies to manage infectious diseases. The therapeutic use of bacteriophages, perhaps in combination with antibiotics or other treatments, may work. Clear-cut instructions and quality requirements for phage products should be made available.

Citation: Skurnik M, Kiljunen S, Pajunen M. 2008. Phage Therapy, p 373-389. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ackermann, H. W. 2001. Frequency of morphological phage descriptions in the year 2000. Brief review. Arch. Virol. 146: 843857.
2. Ackermann, H. W. 2003. Bacteriophage observations and evolution. Res. Microbiol. 154: 245251.
3. Ackermann, H. W., and, M. S. DuBow. 1987a. Natural groups of bacteriophages, p. 85100. In H. W. Ackermann, and M. S. DuBow (ed.), Viruses of Procaryotes. CRC Press, Inc, Boca Raton, FL.
4. Ackermann, H. W., and, M. S. DuBow. 1987b. Viruses of Procaryotes. CRC Press, Inc., Boca Raton, FL.
5. Allison, G. E., and, N. K. Verma. 2000. Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol. 8: 1723.
6. Archibald, A. R., and, H. E. Coapes. 1976. Bacteriophage SP50 as a marker for cell wall growth in Bacillus subtilis. J. Bacteriol. 125: 11951206.
7. Baxa, U.,, S. Steinbacher,, S. Miller,, A. Weintraub,, R. Huber,, and R. Seckler. 1996. Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys. J. 71: 20402048.
8. Bernhardt, T. G.,, I. N. Wang,, D. K. Struck,, and R. Young. 2001. A protein antibiotic in the phage Qβ: diversity in lysis targets. Scienc. 292: 23262329.
9. Bernhardt, T. G.,, I. N. Wang,, D. K. Struck,, and R. Young. 2002. Breaking free: “protein antibiotics” and phage lysis. Res. Microbiol. 153: 493501.
10. Biswas, B.,, S. Adhya,, P. Washart,, B. Paul,, A. N. Trostel,, B. Powell,, R. Carlton,, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204210.
11. Bonhivers, M.,, L. Plancon,, A. Ghazi,, P. Boulanger,, M. le Maire,, O. Lambert,, J. L. Rigaud,, and L. Letellier. 1998. FhuA, an Escherichia coli outer membrane protein with a dual function of transporter and channel which mediates the transport of phage DNA. Biochimie. 80: 363369.
12. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354: 484490.
13. Bradley, D. E. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 31: 230314.
14. Breitbart, M., and, F. Rohwer. 2005. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13: 278284.
15. Broxmeyer, L.,, D. Sosnowska,, E. Miltner,, O. Chacon,, D. Wagner,, J. McGarvey,, R. G. Barletta,, and L. E. Bermudez. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J. Infect. Dis. 186: 11551160.
16. Brüssow, H. 2005. Phage therapy: the Escherichia coli experience. Microbiolog. 151: 21332140.
17. Brüssow, H., C. Canchaya, and, W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560602.
18. Brüssow, H., and, F. Desiere. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39: 213222.
19. Bruttin, A., and, H. Brüssow. 2005. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob. Agents Chemother. 49: 28742878.
20. Büchen-Osmond,, C. 2003. Taxonomy and classification of viruses, p. 12171226. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.
21. Bull, J. J.,, B. R. Levin,, T. DeRouin,, N. Walker,, and C. A. Bloch. 2002. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2:35.
22. Campbell, A. 2003. The future of bacteriophage biology. Nat. Rev. Gene. 4: 471477.
23. Canchaya, C.,, C. Proux,, G. Fournous,, A. Bruttin,, and H. Brüssow. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238276.
24. Capparelli, R.,, M. Parlato,, G. Borriello,, P. Salvatore,, and D. Iannelli. 2007. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother. 51: 27652773.
25. Carlton, R. M. 1999. Phage therapy: past history and future prospects. Arch. Immunol. Ther. Exp. 47: 267274.
26. Carlton, R. M.,, W. H. Noordman,, B. Biswas, E. D. de Meester,, and M. J. Loessner. 2005. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43: 301312.
27. Casjens, S., G. F. Hatfull, and, R. W. Hendrix. 1992. Evolution of dsDNA tailed bacteriophage genomes. Semin. Virol. 3: 383397.
28. Cheng, Q.,, D. Nelson,, S. Zhu, and, V. A. Fischetti. 2005. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Anti-microb. Agents Chemother. 49: 111117.
29. Chibani-Chennoufi,, S.,, J. Sidoti,, A. Bruttin,, E. Kutter,, S. Sarker,, and H. Brüssow. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob. Agents Chemother. 48: 25582569.
30. Chua, J. E.,, P. A. Manning,, and R. Morona. 1999. The Shigella flexneri bacteriophage Sf6 tailspike protein (TSP)/endorhamnosidase is related to the bacteriophage P22 TSP and has a motif common to exo- and endoglycanases, and C-5 epimerases. Microbiolog. 145: 16491659.
31. Clark, J. R., and, J. B. March. 2006. Bacteriophages and bio-technology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 24: 212218.
32. Comeau, A. M., and, H. M. Krisch. 2005. War is peace–dispatches from the bacterial and phage killing fields. Curr. Opin. Microbiol. 8: 488494.
33. Dabrowska, K.,, K. Switala-Jelen,, A. Opolski,, B. WeberDabrowska,, and A. Gorski. 2005. Bacteriophage penetration in vertebrates. J. Appl. Microbiol. 98: 713.
34. Damasko, C.,, A. Konietzny,, H. Kaspar,, B. Appel,, P. Dersch,, and E. Strauch. 2005. Studies of the efficacy of enterocoliticin, a phage-tail like bacteriocin, as antimicrobial agent against Yersinia enterocolitica serotype O3 in a cell culture system and in mice. J. Vet. Med. 52: 19.
35. Daw, M. A., and, F. R. Falkiner. 1996. Bacteriocins: nature, function and structure. Micro. 27: 467479.
36. Desiere, F.,, W. M. McShan,, D. van Sinderen, J. J. Ferretti,, and H. Brüssow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic Streptococci: evolutionary implications for prophage-host interactions. Virolog. 288: 325341.
37. Djurkovic, S., J. M. Loeffler, and, V. A. Fischetti. 2005. Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrob. Agents Chemother. 49: 12251228.
38. Dupont, K.,, T. Janzen,, F. K. Vogensen,, J. Josephsen,, and B. Stuer-Lauridsen. 2004. Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl. Environ. Microbiol. 70: 58255832.
39. Ehrlich, M., and, K. C. Ehrlich. 1981. A novel, highly modified, bacteriophage DNA in which thymine is partly replaced by a phosphoglucuronate moiety covalently bound to 5-(4,′5′ -dihydroxypentyl)uracil. J. Biol. Chem. 256: 99669972.
40. Endriss, F., and, V. Braun. 2004. Loop deletions indicate regions important for FhuA transport and receptor functions in Escherichia coli. J. Bacteriol. 186: 48184823.
41. Faruque, S. M.,, I. Bin Naser, K. Fujihara,, P. Diraphat,, N. Chowdhury,, M. Kamruzzaman,, F. Qadri,, S. Yamasaki,, A. N. Ghosh,, and J. J. Mekalanos. 2005. Genomic sequence and receptor for the Vibrio cholerae phage KSF-1Φ: evolutionary divergence among filamentous vibriophages mediating lateral gene transfer. J. Bacteriol. 187: 40954103.
42. Fischer, C. R.,, M. Yoichi,, H. Unno,, and Y. Tanji. 2004. The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. FEMS Micro-biol. Lett. 241: 171177.
43. Freifelder, D. 1983. Molecular Biology: a Comprehensive Introduction to Prokaryotes and Eukaryotes. Science Books Int., Boston, MA.
44. Gommers-Ampt, J. H., and, P. Borst. 1995. Hypermodified bases in DNA. FASEB J. 9: 10341042.
45. Grahn, A. M.,, J. Caldentey,, J. K. Bamford, and, D. H. Bam-ford. 1999. Stable packaging of phage PRD1 DNA requires adsorption protein P2, which binds to the IncP plasmid-encoded conjugative transfer complex. J. Bacteriol. 181: 66896696.
46. Gross, R. J.,, T. Cheasty, and, B. Rowe. 1977. Isolation of bacteriophages specific for the K1 polysaccharide antigen of Escherichia coli. J. Clin. Microbiol. 6: 548550.
47. Gupta, D. S.,, B. Jann,, G. Schmidt,, J. R. Golecki,, I. Orskov,, F. Orskov,, and K. Jann. 1982. Coliphage K5, specific for E. coli exhibiting the capsular K5 antigen. FEMS Microbiol. Lett. 14: 7578.
48. Hacker, J.,, G. Blum-Oehler,, I. Mühldorfer,, and H. Tschäpe. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Micro-biol. 23: 10891097.
49. Hagens, S.,, A. Habel,, U. Von Ahsen, A. Von Gabain,, and U. Bläsi. 2004. Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Anti-microb. Agents Chemother. 48: 38173822.
50. Hambly, E., and, C. A. Suttle. 2005. The viriosphere, diversity, and genetic exchange within phage communities. Curr. Opin. Microbiol. 8: 444450.
51. Harshey, R. M. 1988. Phage Mu, p. 193234. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, NY.
52. Heller, K. J. 1992. Molecular interaction between bacteriophage and the gram-negative cell envelope. Arch. Microbiol. 158: 235248.
53. Hemphill, H. E., and, H. R. Whiteley. 1975. Bacteriophages of Bacillus subtilis. Bacteriol. Rev. 39: 257315.
54. Hendrix, R. W. 2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61: 471480.
55. Hendrix, R. W. 2003. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506511.
56. Hendrix, R. W., G. F. Hatfull, and, M. C. Smith. 2003. Bacteriophages with tails: chasing their origins and evolution. Res. Microbiol. 154: 253257.
57. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504508.
58. Hendrix, R. W.,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg. 1983. Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
59. Hendrix, R. W.,, M. C. Smith,, R. N. Burns, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. US. 96: 21922197.
60. Hertwig, S.,, I. Klein,, R. Lurz,, E. Lanka,, and B. Appel. 2003. PY54, a linear plasmid prophage of Yersinia enterocolitica with covalently closed ends. Mol. Microbiol. 48: 9891003.
61. Hodgson, D. A. 2000. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol. Microbiol. 35: 312323.
62. Holland, S. J., C. Sanz, and, R. N. Perham. 2006. Identification and specificity of pilus adsorption proteins of filamentous bacteriophages infecting Pseudomonas aeruginosa. Virolog. 345: 540548.
63. Huang, L. H.,, C. M. Farnet,, K. C. Ehrlich,, and M. Ehrlich. 1982. Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic. Acids Res. 10: 15791591.
64. Huff, W. E.,, G. R. Huff,, N. C. Rath, J. M. Balog,, and A. M. Donoghue. 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci. 84: 655659.
65. Huff, W. E.,, G. R. Huff,, N. C. Rath, J. M. Balog,, and A. M. Donoghue. 2002a. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci. 81: 14861491.
66. Huff, W. E.,, G. R. Huff,, N. C. Rath, J. M. Balog,, and A. M. Donoghue. 2003a. Bacteriophage treatment of a severe Escherichia coli respiratory infection in broiler chickens. Avian Dis. 47: 13991405.
67. Huff, W. E.,, G. R. Huff,, N. C. Rath, J. M. Balog,, and A. M. Donoghue. 2003b. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection. Poult. Sci. 82: 11081112.
68. Huff, W. E.,, G. R. Huff,, N. C. Rath, J. M. Balog,, and A. M. Donoghue. 2004. Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult. Sci. 83: 19441947.
69. Huff, W. E.,, G. R. Huff,, N. C. Rath,, J. M. Balog,, H. Xie,, P. A. Moore, Jr.,, and A. M. Donoghue. 2002b. Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult. Sci. 81: 437441.
70. Jado, I.,, R. Lopez,, E. Garcia,, A. Fenoll,, J. Casal,, and P. Garcia. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother. 52: 967973.
71. Juhala, R. J.,, M. E. Ford,, R. L. Duda,, A. Youlton,, G. F. Hatfull,, and R. W. Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299: 2751.
72. Karaolis, D. K.,, S. Somara, D. R. Maneval,, Jr., J. A. Johnson,, and J. B. Kaper. 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Natur. 399: 375379.
73. Kasman, L. M.,, A. Kasman,, C. Westwater,, J. Dolan, M. G. Schmidt,, and J. S. Norris. 2002. Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol. 76: 55575564.
74. Kiljunen, S. 2006. Molecular biology, genetics and applications of yersiniophages. Ph.D. thesis. University of Turku, Turku, Finland.
75. Kiljunen, S.,, K. Hakala,, E. Pinta,, S. Huttunen,, P. Pluta,, A. Gador,, H. Lönnberg,, and M. Skurnik. 2005. Yersiniophage R1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology. 151: 40934102.
76. Killmann, H.,, G. Videnov,, G. Jung,, H. Schwarz,, and V. Braun. 1995. Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J. Bacteriol. 177: 694698.
77. Koebnik, R.,, K. P. Locher, and, P. Van Gelder. 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37: 239253.
78. Kwiatkowski, B.,, B. Boschek,, H. Thiele,, and S. Stirm. 1982. Endo- N-acetylneuraminidase associated with bacteriophage particles. J. Virol. 43: 697704.
79. Lawrence, J. G., G. F. Hatfull, and, R. W. Hendrix. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184: 48914905.
80. Lehman, I. R., and, E. A. Pratt. 1960. On the structure of the glucosylated hydroxymethylcytosine nucleotides of coli-phages T2, T4, and T6. J. Biol. Chem. 235: 32543259.
81. Levin, B. R., and, J. J. Bull. 2004. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2: 166173.
82. Lindberg, A. A. 1973. Bacteriophage receptors. Annu. Rev. Microbiol. 27: 205241.
83. Little, J. W. 2005. Lysogeny, prophage induction and lysogenic conversion. In M. K. Waldor,, D. I. Friedman,, and S. Adhya (ed.), Phages: Their Role in Bacterial Pathogenesis and Bio-technology. ASM Press, Washington, DC.
84. Lobocka, M. B.,, D. J. Rose,, G. Plunkett III,, M. Rusin,, A. Samojedny,, H. Lehnherr,, M. B. Yarmolinsky,, and F. R. Blattner. 2004. Genome of bacteriophage P1. J. Bacteriol. 186: 70327068.
85. Loeffler, J. M., S. Djurkovic, and, V. A. Fischetti. 2003. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect. Immun. 71: 61996204.
86. Loeffler, J. M., and, V. A. Fischetti. 2003. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 47: 375377.
87. Loeffler, J. M., D. Nelson, and, V. A. Fischetti. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Scienc. 294: 21702172.
88. Lubkowski, J.,, F. Hennecke,, A. Plückthun,, and A. Wlodawer. 1999. Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structur. 7: 711722.
89. Maniloff, J., and, H. W. Ackermann. 1998. Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch. Virol. 143: 20512063.
90. Mathews, C. K.,, E. Kutter,, G. Mosig, and, P. B. Berget. 1983. Bacteriophage T4. American Society for Microbiology, Washington, DC.
91. Matsuzaki, S.,, M. Rashel,, J. Uchiyama,, S. Sakurai,, T. Ujihara,, M. Kuroda,, M. Ikeuchi,, T. Tani,, M. Fujieda,, H. Wakiguchi,, and S. Imai. 2005. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Che-mother. 11: 211219.
92. Matsuzaki, S.,, M. Yasuda,, H. Nishikawa,, M. Kuroda,, T. Ujihara,, T. Shuin,, Y. Shen,, Z. Jin,, S. Fujimoto,, M. D. Nasimuzzaman,, H. Wakiguchi,, S. Sugihara,, T. Sugiura,, S. Koda,, A. Muraoka,, and S. Imai. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ΦMR11. J. Infect. Dis. 187: 613624.
93. McKinstry, M.,, and R. Edgar. 2005. Use of phages in therapy and bacterial detection, p. 430440. In M. K. Waldor, D., I. Friedman,, and S. Adhya (ed.), Phages: Their Role in Bacterial Pathogenesis and Biotechnology. ASM Press, Washington, DC.
94. Merino, S., S. Camprubi, and, J. M. Tomas. 1990. Isolation and characterization of bacteriophage PM3 from Aeromonas hydrophila the bacterial receptor for which is the monopolar flagellum. FEMS Microbiol. Lett. 57: 277282.
95. Merril, C. R.,, B. Biswas,, R. Carlton,, N. C. Jensen,, G. J. Creed,, S. Zullo,, and S. Adhya. 1996. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. US. 93: 31883192.
96. Merril, C. R.,, D. Scholl, and, S. Adhya. 2006. Phage therapy, p. 725741. In R. Calendar (ed.), The Bacteriophages, 2nd ed. Oxford University Press, New York, NY.
97. Miller, J. F. 2003. Bacteriophage and the evolution of epidemic cholera. Infect. Immun. 71: 29812982.
98. Molineux, I. J. 1999. The T7 family of bacteriophages, p. 24952507. In T. E. Creighton (ed.), Encyclopedia of Molecular Biology. John Wiley and Co, New York, NY.
99. Morona, R., M. Klose, and, U. Henning. 1984. Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J. Bacteriol. 159: 570578.
100. Morona, R., C. Kramer, and, U. Henning. 1985. Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12. J. Bacteriol. 164: 539543.
101. Nakayama, K.,, S. Kanaya,, M. Ohnishi,, Y. Terawaki,, and T. Hayashi. 1999. The complete nucleotide sequence of ΦCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 399419.
102. Nelson, D. 2004. Phage taxonomy: we agree to disagree. J. Bacteriol. 186: 70297031.
103. Nesper, J.,, D. Kapfhammer,, K. E. Klose,, H. Merkert,, and J. Reidl. 2000. Characterization of Vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS 1004 insertions aborting O1 antigen biosynthesis. J. Bacteriol. 182: 50975104.
104. Newton, G. J.,, C. Daniels, L. L. Burrows,, A. M. Kropinski, A. J. Clarke,, and J. S. Lam. 2001. Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol. Microbiol. 39: 12371247.
105. Ochman, H., and, R. K. Selander. 1984. Standard reference strains of Escherichia coli from natural populations. J. Bacteriol. 157: 690693.
106. Olsen, R. H., J. S. Siak, and, R. H. Gray. 1974. Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J. Virol. 14: 689699.
107. Pajunen, M., S. Kiljunen, and, M. Skurnik. 2000. Bacteriophage ΦYeO3-12, specific for Yersinia enterocolitica sero-type O:3, is related to coliphages T3 and T7. J. Bacteriol. 182: 51145120.
108. Payne, R. J., and, V. A. Jansen. 2001. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol. 208: 3748.
109. Payne, R. J., and, V. A. Jansen. 2003. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinet. 42: 315325.
110. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs, Jr.,, R. W. Hendrix,, and G. F. Hatfull. 2003. Origins of highly mosaic mycobacteriophage genomes. Cel. 113: 171182.
111. Pelkonen, S., J. Pelkonen, and, J. Finne. 1989. Common cleavage pattern of polysialic acid by bacteriophage endosialidases of different properties and origins. J. Virol. 63: 44094416.
112. Plancon, L.,, C. Janmot,, M. le Maire, M. Desmadril,, M. Bon-hivers, L. Letellier,, and P. Boulanger. 2002. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J. Mol. Biol. 318: 557569.
113. Plunkett, G., III,, D. J. Rose,, T. J. Durfee, and, F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181: 17671778.
114. Prangishvili, D., P. Forterre, and, R. A. Garrett. 2006. Viruses of the Archaea: a unifying view. Nat. Rev. Microbiol. 4: 837848.
115. Prehm, P.,, B. Jann,, K. Jann,, G. Schmidt,, and S. Stirm. 1976. On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia coli B. J. Mol. Biol. 101: 277281.
116. Proux, C.,, D. van Sinderen,, J. Suarez,, P. Garcia,, V. Ladero,, G. F. Fitzgerald,, F. Desiere,, and H. Brüssow. 2002. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J. Bacteriol. 184: 60266036.
117. Raimondo, L. M., N. P. Lundh, and, R. J. Martinez. 1968. Primary adsorption site of phage PBS1: the flagellum of Bacillus subtilis. J. Virol. 2: 256264.
118. Räisänen,, L.,, C. Draing,, M. Pfitzenmaier,, K. Schubert,, T. Jaakonsaari, S. von Aulock, T. Hartung,, and T. Alatossava. 2007. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and α-glucose substitution of poly (glycerophosphate) backbones. J. Bacteriol. 189: 41354140.
119. Räisänen, L.,, K. Schubert,, T. Jaakonsaari,, and T. Alatossava. 2004. Characterization of lipoteichoic acids as Lactobacillus delbrueckii phage receptor components. J. Bacteriol. 186: 55295532.
120. Randall-Hazelbauer, L., and, M. Schwartz. 1973. Isolation of the bacteriophage lambda receptor from Escherichia coli. J. Bacteriol. 116: 14361446.
121. Ravin, V.,, N. Ravin,, S. Casjens, M. E. Ford,, G. F. Hatfull,, and R. W. Hendrix. 2000. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol. Biol. 299: 5373.
122. Sakaguchi, Y.,, T. Hayashi,, K. Kurokawa,, K. Nakayama,, K. Oshima,, Y. Fujinaga,, M. Ohnishi,, E. Ohtsubo,, M. Hattori,, and K. Oguma. 2005. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc. Natl. Acad. Sci. US. 102: 1747217477.
123. Samuel, A. D.,, T. P. Pitta,, W. S. Ryu,, P. N. Danese,, E. C. Leung,, and H. C. Berg. 1999. Flagellar determinants of bacterial sensitivity to chi-phage. Proc. Natl. Acad. Sci. US. 96: 98639866.
124. Sander, M., and, H. Schmieger. 2001. Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl. Environ. Microbiol. 67: 14901493.
125. Sao-Jose, C., C. Baptista, and, M. A. Santos. 2004. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J. Bacteriol. 186: 83378346.
126. Scholl, D., S. Adhya, and, C. Merril. 2005. Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl. Environ. Microbiol. 71: 48724874.
127. Scholl, D.,, S. Rogers,, S. Adhya, and, C. R. Merril. 2001. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J. Virol. 75: 25092515.
128. Schuch, R., D. Nelson, and, V. A. Fischetti. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Natur. 418: 884889.
129. Schwarz, H.,, I. Riede,, I. Sonntag,, and U. Henning. 1983. Degrees of relatedness of T-even type E. coli phages using different or the same receptors and topology of serologically cross-reacting sites. EMBO J. 2: 375380.
130. Skurnik, M., and, E. Strauch. 2006. Phage therapy: facts and fiction. Int. J. Med. Microbiol. 296: 514.
131. Smith, H. W., and, M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Micro-biol. 128: 307318.
132. Smith, H. W., and, M. B. Huggins. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol. 129: 26592675.
133. Smith, H. W., M. B. Huggins, and, K. M. Shaw. 1987. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J. Gen. Microbiol. 133: 11111126.
134. Stone, R. 2002. Bacteriophage therapy. Stalin’s forgotten cure. Scienc. 298: 728731.
135. Strauch, E.,, H. Kaspar,, C. Schaudinn,, P. Dersch,, K. Madela,, C. Gewinner,, S. Hertwig,, J. Wecke,, and B. Appel. 2001. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl. Environ. Microbiol. 67: 56345642.
136. Sulakvelidze, A., Z. Alavidze, and, J. G. Morris, Jr. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45: 649659.
137. Summers, W. C. 1999. Felix d’Herelle and the Origins of Molecular Biology. Yale University Press, New Haven, CT.
138. Summers, W. C. 2001. Bacteriophage therapy. Annu. Rev. Microbiol. 55: 437451.
139. Swinton, D.,, S. Hattman,, P. F. Crain,, C. S. Cheng, D. L. Smith,, and J. A. McCloskey. 1983. Purification and characterization of the unusual deoxynucleoside, α-N-(9- β-D-2 -deoxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc. Natl. Acad. Sci. US. 80: 74007404.
140. Takahashi, I., and, J. Marmur. 1963. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Natur. 197: 794795.
141. Toth, I.,, H. Schmidt,, M. Dow,, A. Malik,, E. Oswald,, and B. Nagy. 2003. Transduction of porcine enteropathogenic Escherichia coli with a derivative of a Shiga toxin 2-encoding bacteriophage in a porcine ligated ileal loop system. Appl. Environ. Microb. 69: 72427247.
142. Valyasevi, R., W. E. Sandine, and, B. L. Geller. 1990. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 18821889.
143. Vander Byl, C., and, A. M. Kropinski. 2000. Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182: 64726481.
144. van Regenmortel, M. H., and, B. W. Mahy. 2004. Emerging issues in virus taxonomy. Emerg. Infect. Dis. 10: 813.
145. Vimr, E. R.,, R. D. McCoy,, H. F. Vollger, N. C. Wilkison,, and F. A. Troy. 1984. Use of prokaryotic-derived probes to identify poly (sialic acid) in neonatal neuronal membranes. Proc. Natl. Acad. Sci. US. 81: 19711975.
146. Wagner, P. L., and, M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70: 39853993.
147. Waldor, M. K., and, J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Scienc. 272: 19101914.
148. Wang, J., M. Hofnung, and, A. Charbit. 2000. The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. J. Bacteriol. 182: 508512.
149. Warren, R. A. 1980. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34: 137158.
150. Watanabe, R.,, T. Matsumoto,, G. Sano,, Y. Ishii,, K. Tateda,, Y. Sumiyama,, J. Uchiyama,, S. Sakurai,, S. Matsuzaki,, S. Imai,, and K. Yamaguchi. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 51: 446452.
151. Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127181.
152. Weinbauer, M. G., and, F. Rassoulzadegan. 2004. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6: 111.
153. Weitz, J. S., H. Hartman, and, S. A. Levin. 2005. Coevolutionary arms races between bacteria and bacteriophage. Proc. Natl. Acad. Sci. US. 102: 95359540.
154. Weld, R. J., C. Butts, and, J. A. Heinemann. 2004. Models of phage growth and their applicability to phage therapy. J. Theor. Biol. 227: 111.
155. Wendlinger, G.,, M. J. Loessner, and, S. Scherer. 1996. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology. 142: 985992.
156. Wilhelm, S. W., and, C. A. Suttle. 1999. Viruses and nutrient cycles in the sea. BioScienc. 49: 781788.
157. Woese, C. R. 2000. Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci. US. 97: 83928396.
158. Wommack, K. E., and, R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64: 69114.
159. Wright, A., M. McConnell, and, S. Kanegasaki. 1980. Lipopolysaccharide as a bacteriophage receptor. In L. L. Randall, and L. Philipson (ed.), Virus Receptors. Chapman and Hall, London, United Kingdom.
160. Wyatt, G. R., and, S. S. Cohen. 1953. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem. J. 55: 774782.
161. Yarmolinsky, M. R., and, N. A. Sternberg. 1988. Bacteriophage P1, p. 291438. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, NY.
162. Yokota, S., T. Hayashi, and, H. Matsumoto. 1994. Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, ΦCTX, of Pseudomonas aeruginosa. J. Bacteriol. 176: 52625269.


Generic image for table
Table 1

Examples of phage receptors

Citation: Skurnik M, Kiljunen S, Pajunen M. 2008. Phage Therapy, p 373-389. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch28
Generic image for table
Table 2

Classification of bacteriophages

Citation: Skurnik M, Kiljunen S, Pajunen M. 2008. Phage Therapy, p 373-389. In Versalovic J, Wilson M (ed), Therapeutic Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815462.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error