Chapter 1 : The Oral Microbial Ecosystem and Beyond

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Oral Microbial Ecosystem and Beyond, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap01-2.gif


The oral cavity environment is anatomically, physiologically, and microbiologically diverse. Oral microbial communities exist primarily as multispecies biofilms on the surfaces present in the oral cavity, although large numbers of organisms are also present in the fluid phase of the saliva. The microbial biofilm communities that develop in the oral cavity are clearly intrinsically driven by bacterial interactions, but they are also host driven. Factors such as age, immune status, hormone levels, salivary flow rate, smoking, and dental hygiene standards impact on oral microbial community formation and composition. Dietary factors and antibiotic usage both have major influences. Better understanding of population shifts and what causes them will inform future strategies that may include attempting to recolonize disease sites with more healthy communities. Despite the fact that most oral disease conditions are associated with oral bacteria, the communities that develop in the mouth do largely retain harmonious relationships with the host over long periods. The chapter talks about effect of diet on oral microbial communities. The antibiotic resistance gene pool within the oral microflora and the ability of oral bacteria to readily exchange genetic information within the close confines of biofilms reflect the potential for widespread transfer of antibiotic resistance genes across commensal, pathogenic, and food-borne bacteria.

Citation: Jenkinson H, Lamont R. 2009. The Oral Microbial Ecosystem and Beyond, p 3-17. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagrammatic representation of the incidence of major bacterial genera found in healthy dental plaque from the tooth surface and in subgingival plaque associated with periodontal disease. Subgingival plaque differs from tooth surface plaque in containing a greater variance of bacterial taxa and a higher proportion of gram-negative bacteria (gray shading). Data summarized and condensed from references and .

Citation: Jenkinson H, Lamont R. 2009. The Oral Microbial Ecosystem and Beyond, p 3-17. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic (not to scale) model of initial events leading to heterotypic biofilm community development on the supragingival tooth surface. (spheres) is a pioneer colonizer, and cells attach to the saliva-coated tooth surface. produces multiple adhesins, many of which have cognate salivary receptors; for simplicity, only SspA/B is shown. Initial localization of (rods) is mediated by FimA interaction with GAPDH on the streptococcal surface. Higher-affinity binding occurs through engagement of Mfa with SspA/B. This interaction initiates a signal transduction event that modulates the transcriptome. The resulting phenotypic adaptation of along with the production of signaling molecules such as AI-2, is necessary for the recruitment of additional cells from the planktonic phase and the initiation of community development. Note that this is only one developmental stage of the process that leads to a mature heterotypic biofilm.

Citation: Jenkinson H, Lamont R. 2009. The Oral Microbial Ecosystem and Beyond, p 3-17. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Adhesion and internalization of by cultured osteoblasts. Staphylococci adhere avidly in groups to osteoblasts growing on titanium surfaces (A). Cellular projections entrap the staphylococci, and individual bacterial cells within these groups induce membrane ruffling and become internalized (B). Arrows indicate internalized bacteria. Bars, 1 μm. Images provided by C. M. Moffatt and T. Sjöström.

Citation: Jenkinson H, Lamont R. 2009. The Oral Microbial Ecosystem and Beyond, p 3-17. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Factors influencing the transition from health-associated to disease-associated biofilms (top) and intervention strategies potentially able to induce a reverse transition (bottom). Increased incidence of antibiotic resistance within the oral microflora is promoted by genetic exchange within biofilms, with antibiotic usage driving the development and retention of less susceptible commensals and pathogens.

Citation: Jenkinson H, Lamont R. 2009. The Oral Microbial Ecosystem and Beyond, p 3-17. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aas, J. A.,, S. M. Barbuto,, T. Alpagot,, I. Olsen,, F. E. Dewhirst, and, B. J. Paster. 2007. Subgingival plaque microbiota in HIV positive patients. J. Clin. Periodontol. 34: 189195.
2. Aas, J. A.,, B. J. Paster,, L. N. Stokes,, I. Olsen, and, F. E. Dewhirst. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43: 57215732.
3. Adib, V.,, D. Spratt,, Y. L. Ng, and, K. Gulabivala. 2004. Cultivable microbial flora associated with persistent periapical disease and coronal leakage after root canal treatment: a preliminary study. Int. Endod. J. 37: 542551.
4. Becker, M. R.,, B. J. Paster,, E. J. Leys,, M. L. Moeschgerger,, S. G. Kenyon,, J. L. Galvin,, S. K. Boches,, F. E. Dewhirst, and, A. L. Griffen. 2002. Molecular analysis of bacterial species associated with childhood caries. J. Clin. Microbiol. 40: 10011009.
5. Blehert, D. S.,, R. J. Palmer, Jr.,, J. B. Xavier,, J. S. Almeida, and, P. E. Kolenbrander. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185: 48514860.
6. Caufield, P. W.,, A. P. Dasanayake,, Y. Li,, Y. Pan,, J. Hsu, and, J. M. Hardin. 2000. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect. Immun. 68: 40184023.
7. Chapple, I. L.,, M. R. Milward, and, T. Dietrich. 2007. The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations. J. Nutr. 137: 657664.
8. Chen, Y.-Y. M.,, K. A. Clancy, and, R. A. Burne. 1996. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect. Immun. 64: 585592.
9. Daep, C. A.,, D. M. James,, R. J. Lamont, and, D. R. Demuth. 2006. Structural characterization of peptide-mediated inhibition of Porphyromonas gingivalis biofilm formation. Infect. Immun. 74: 57565762.
10. Darveau, R. P.,, C. M. Belton,, R. A. Reife, and, R. J. Lamont. 1998. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun. 66: 16601665.
11. Demuth, D. R.,, D. C. Irvine,, J. W. Costerton,, G. S. Cook, and, R. J. Lamont. 2001. Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infect. Immun. 69: 57365741.
12. Diaz, P. I.,, N. I. Chalmers,, A. H. Rickard,, C. Kong,, C. L. Milburn,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72: 28372848.
13. Diaz-Torres, M. L.,, V. Aurelie,, N. Hunt,, R. McNab,, D. A. Spratt,, E. Allan,, P. Mullany, and, M. Wilson. 2006. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol. Lett. 258: 257262.
14. Dierksen, K. P.,, C. J. Moore,, M. Inglis,, P. A. Wescombe, and, J. R. Tagg. 2007. The effect of ingestion of milk supplemented with salivaricin A-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal populations on the tongue. FEMS Microbiol. Ecol. 59: 584591.
15. Du, L. D., and, P. E. Kolenbrander. 2000. Identification of saliva-regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. Infect. Immun. 68: 48344837.
16. Eckert, R.,, J. He,, D. K. Yarborough,, F. Qi,, M. H. Anderson, and, W. Shi. 2006. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob. Agents Chemother. 50: 36513657.
17. Fürst, M. M.,, G. E. Salvi,, N. P. Lang, and, G. R. Persson. 2007. Bacterial colonization immediately after installation on oral titanium implants. Clin. Oral Implants Res. 18: 501508.
18. Garcia, R. I.,, M. M. Henshaw, and, E. A. Krall. 2001. Relationship between periodontal disease and systemic health. Periodontol. 2000 25: 2136.
19. Grenier, D. 1992. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect. Immun. 60: 52985301.
20. Herzberg, M. C. 2001. Coagulation and thrombosis in cardiovascular disease: plausible contributions of infectious agents. Ann. Periodontol. 6: 1619.
21. Hirasawa, M.,, K. Takada, and, S. Otake. 2006. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 40: 265270.
22. Jacobsen, L.,, A. Wilcks,, K. Hammer,, G. Huys,, D. Gevers, and, S. R. Andersen. 2007. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol. Ecol. 59: 158166.
23. Jakubovics, N. S.,, S. W. Kerrigan,, A. H. Nobbs,, N. Strömberg,, C. J. van Dolleweerd,, D. M. Cox,, C. G. Kelly, and, H. F. Jenkinson. 2005. Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect. Immun. 73: 66296638.
24. Jenkinson, H. F., and, D. R. Demuth. 1997. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol. 23: 183190.
25. Jenkinson, H. F., and, R. J. Lamont. 1997. Streptococcal adhesion and colonization. Crit. Rev. Oral Biol. Med. 8: 175200.
26. Jenkinson, H. F., and, R. J. Lamont. 2005. Oral microbial communities in sickness and in health. Trends Microbiol. 13: 589595.
27. Joly, S.,, C. Maze,, P. B. McCray, Jr., and, J. M. Guthmiller. 2004. Human β-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J. Clin. Microbiol. 42: 10241029.
28. Kazor, C. E.,, P. M. Mitchell,, A. M. Lee,, L. N. Stokes,, W. J. Loesche,, F. E. Dewhirst, and, B. J. Paster. 2003. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 41: 558563.
29. Kelly, C. G.,, J. S. Younson,, B. Y. Hikmat,, S. M. Todryk,, M. Czisch,, P. I. Harris,, I. R. Flindall,, C. Newby,, A. I. Mallet,, J. K. Ma, and, T. Lehner. 1999. A synthetic peptide adhesion epitope as a novel antimicrobial agent. Nat. Biotechnol. 17: 4247.
30. Kolenbrander, P. E.,, R. J. Palmer, Jr.,, A. H. Rickard,, N. S. Jakubovics,, N. I. Chalmers, and, P. I. Diaz. 2006. Bacterial interactions and successions during plaque development. Periodontol. 2000 42: 4779.
31. Krüger, C.,, A. Hultberg,, C. van Dollenweerd,, H. Marcotte, and, L. Hammarström. 2005. Passive immunization by lactobacilli expressing single-chain antibodies against Streptococcus mutans. Mol. Biotechnol. 31: 221231.
32. Kuboniwa, M.,, G. D. Tribble,, C. E. James,, A. O. Kilic,, L. Tao,, M. C. Herzberg,, S. Shizukuishi, and, R. J. Lamont. 2006. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol. 60: 121139.
33. Lamont, R. J.,, A. El-Sabaeny,, Y. Park,, G. S. Cook,, J. W. Costerton, and, D. R. Demuth. 2002. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology 148: 16271636.
34. Lancaster, H.,, R. Bedi,, M. Wilson, and, P. Mullany. 2005. The maintenance in the oral cavity of children of tetracycline-resistant bacteria and the genes encoding such resistance. J. Antimicrob. Chemother. 56: 524531.
35. Ledder, R. G.,, P. Gilbert,, S. A. Huws,, L. Aarons,, M. P. Ashley,, P. S. Hull, and, A. J. McBain. 2007. Molecular analysis of the subgingival microbiota in health and disease. Appl. Environ. Microbiol. 73: 516523.
36. Loimaranta, V.,, N. S. Jakubovics,, J. Hytonen,, J. Finne,, H. F. Jenkinson, and, N. Strömberg. 2005. Fluid- or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect. Immun. 73: 22452252.
37. Love, R. M., and, H. F. Jenkinson. 2002. Invasion of dentinal tubules by oral bacteria. Crit. Rev. Oral Biol. Med. 13: 171183.
38. Malkoski, M.,, S. G. Dashper,, N. M. O’Brien-Simpson,, G. H. Talbo,, M. Macris,, K. J. Cross, and, E. C. Reynolds. 2001. Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob. Agents Chemother. 45: 23092315.
39. McDougald, D.,, S. A. Rice, and, S. Kjelleberg. 2007. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal. Bioanal. Chem. 387: 445453.
40. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook, and, R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185: 274284.
41. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson, and, W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 19721979.
42. Meurman, J. H. 2005. Probiotics: do they have a role in oral medicine and dentistry? Eur. J. Oral Sci. 113: 188196.
43. Nobbs, A. H.,, B. H. Shearer,, M. Drobni,, M. A. Jepson, and, H. F. Jenkinson. 2007. Adherence and internalization of Streptococcus gordonii by epithelial cells involves b1 integrin recognition by SspA and SspB (antigen I/II family) polypeptides. Cell. Microbiol. 9: 6583.
44. Nyfors, S.,, E. Könönen,, R. Syrjänen,, E. Komulainen, and, H. Jousimies-Somer. 2003. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J. Antimicrob. Chemother. 51: 107112.
45. O’Connor, E. B.,, O. O’Sullivan,, C. Stanton,, M. Danielsen,, P. J. Simpson,, M. J. Callanan,, R. P. Ross, and, C. Hill. 28 March 2007. pEOC01: a plasmid from Pediococcus acidilactici which encodes an identical streptomycin resistance ( aadE) gene to that found in Campylobacter jejuni. Plasmid March 27; [Epub ahead of print.] doi:10.1016/j.plasmid.2007.02.002.
46. Paster, B. J.,, S. K. Boches,, J. L. Galvin,, R. E. Ericson,, C. N. Lau,, V. A. Levanos,, A. Sahasrabudhe, and, F. E. Dewhirst. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 37703783.
47. Petersen, F. C.,, G. Fimland, and, A. A. Scheie. 2006. Purification and functional studies of a potent modified quorum-sensing peptide and two-peptide bacteriocin in Streptococcus mutans. Mol. Microbiol. 61: 13221334.
48. Qazi, S.,, B. Middleton,, S. H. Muharram,, A. Cockayne,, P. Hill,, P. O’Shea,, S. R. Chhabra,, M. Cámara, and, P. Williams. 2006. N- Acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect. Immum. 74: 910919.
49. Ramachandran, P.,, P. Boontheung,, Y. Xie,, M. Sondej,, D. T. Wong, and, J. A. Loo. 2006. Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res. 5: 14931503.
50. Rasmussen, T. B., and, M. Givskov. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology 152: 895904.
51. Ready, D.,, J. Pratten,, A. P. Roberts,, R. Bedi,, P. Mullany, and, M. Wilson. 2006. Potential role of Veillonella spp. as a reservoir of transferable tetracycline resistance in the oral cavity. Antimicrob. Agents Chemother. 50: 28662868.
52. Reynolds, E. C. 1987. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J. Dent. Res. 66: 11201127.
53. Rickard, A. H.,, R. J. Palmer, Jr.,, D. S. Blehert,, S. R. Campagna,, M. F. Semmelhack,, P. G. Egland,, B. L. Bassler, and, P. E. Kolenbrander. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60: 14461456.
54. Rosan, B., and, R. J. Lamont. 2000. Dental plaque formation. Microbes Infect. 2: 15991607.
55. Ruhl, S.,, A. L. Sandberg, and, J. O. Cisar. 2004. Salivary receptors for the proline-rich protein-binding and lectin-like adhesins of oral actinomyces and streptococci. J. Dent. Res. 83: 505510.
56. Sasaki, H.,, M. Matsumoto,, T. Tanaka,, M. Maeda,, M. Nakai,, S. Hamada, and, T. Ooshima. 2004. Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans. Caries Res. 38: 28.
57. Scannapieco, F. A. 2005. Systemic effects of periodontal diseases. Dent. Clin. N. Am. 49: 533550, vi.
58. Seo, E. S.,, D. Kim,, J. F. Robyt,, D. F. Day,, D. W. Kim, and, H. J. Park. 2004. Modified oligosaccharides as potential dental plaque control materials. Biotechnol. Prog. 5: 15501554.
59. Steinberg, D.,, M. Feldman,, I. Ofek, and, E. I. Weiss. 2005. Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm. Int. J. Antimicrob. Agents 25: 247251.
60. Stenudd, C.,, A. Nordlund,, M. Ryberg,, I. Johansson,, C. Kallestal, and, N. Strömberg. 2001. The association of bacterial adhesion with dental caries. J. Dent. Res. 80: 20052010.
61. Van der Ploeg, J. R. 2005. Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for the development of genetic competence. J. Bacteriol. 187: 39803989.
62. Wescombe, P. A.,, M. Upton,, K. P. Dierksen,, N. L. Ragland,, S. Sivabalan,, R. E. Wirawan,, M. A. Inglis,, C. J. Moore,, G. V. Walker,, C. N. Chilcott,, H. F. Jenkinson, and, J. R. Tagg. 2006. Production of the lanti-biotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microbiol. 72: 14591466.
63. Xie, H.,, G. S. Cook,, J. W. Costerton,, G. Bruce,, T. M. Rose, and, R. J. Lamont. 2000. Intergeneric communication in dental plaque biofilms. J. Bacteriol. 182: 70677069.
64. Xie, H.,, N. L. Rhodus,, R. J. Griffin,, J. V. Carlis, and, T. J. Griffin. 2005. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell. Proteomics 4: 18261830.
65. Xiong, X.,, P. Buekens,, W. D. Fraser,, J. Beck, and, S. Offenbacher. 2006. Periodontal disease and adverse pregnancy outcomes: a systematic review. BJOG 113: 135143.
66. Yoshida, A.,, T. Ansai,, T. Takehara, and, H. K. Kuramitsu. 2005. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71: 23722380.
67. Zhang, Y.,, Y. Lei,, A. Khammanivong, and, M. C. Herzberg. 2004. Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. Infect. Immun. 72: 34893494.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error