Chapter 9 : Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815479/9781555814052_Chap09-2.gif


Food fermentation is one of humankind’s oldest methods of preservation. It is used to preserve, enhance, and add flavor to many different types of foods. In this chapter, the author examines the roles of microbes in fermentation and the general principles involved in fermentations, including how the primary fermentation organisms interact with the other microbes present in the fermentation and the roles these other microbes have in both product quality and safety. The types of substrate and fermented products can vary greatly, from fermented milk products that contain ethanol such as koumiss to the production of distilled beverages such as whiskey. A section focuses on beer and wine, two of today's most popular fermented products. The fermentation process in the case of cereals differs from the processes involved in vegetable, wine, and dairy fermentations in that it is conducted in order to create a more functional product, whereas the other fermentations are primarily conducted to increase the shelf life of the substrate. Interestingly, it was found that as with the bacterial populations, there were two separate phage-host populations, with phage from the heterolactic segment of the fermentation unable to infect bacteria from the succeeding homolactic fermentation.

Citation: Phister T. 2009. Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol, p 161-181. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

EMP glycolysis pathway. The pathway is used by homofermenting LAB in food fermentations. Lactate dehydrogenase reduces pyruvate to lactic acid. and other yeasts convert pyruvate to ethanol during fermentation. It is important to note that is a Crabtree-positive yeast and can conduct respiration in the presence of oxygen. However, when high levels of glucose are available it uses the EMP pathway to produce ethanol, even in the presence of oxygen. Adapted from reference with permission.

Citation: Phister T. 2009. Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol, p 161-181. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Phosphoketolase pathway. The pathway is used by hetero-fermenting LAB and produces ethanol, CO, and lactic and acetic acids in equamolar amounts. Certain LAB can be facultative heterofermentative bacteria and contain both the EMP pathway and the phosphoketolase pathway, while others lacking the aldolase of the EMP pathway are obligate heterofermentative bacteria. Used from reference with permission.

Citation: Phister T. 2009. Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol, p 161-181. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

The propionic acid pathway. Used from reference with permission.

Citation: Phister T. 2009. Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol, p 161-181. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alexandre, H.,, P. Costello,, F. Remize,, J. Guzzo, and, M. Guilloux-Benatier. 2004. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int. J. Food Microbiol. 93: 141154.
2. Bamforth, C. 2005. Food, Fermentation and Microorganisms. Blackwell Publishing, Ames, IA.
3. Bamforth, C., and, A. Barclay. 1993. Malting technology and the uses of malt, p. 297354. In A. MacGregor and, R. Bhatty (ed.), Barley: Chemistry, Technology. American Association of Cereal Chemists, St. Paul, MN.
4. Baratti, J. C., and, J. D. Bullock. 1986. Zymomonas mobilis: a bacterium for ethanol production. Biotechnol. Adv. 4: 95115.
5. Barnett, J.,, M. Delaney,, E. Jones,, A. Magson, and, B. Winch. 1972. The numbers of yeasts associated with wine grapes of Bordeaux. Arch. Mikrobiol. 83: 5255.
6. Barnett, J. A. 2000. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast 16: 755771.
7. Beelman, R.,, R. Keen,, M. Banner, and, S. King. 1982. Interactions between wine yeast and malolactic bacteria under wine conditions. Dev. Ind. Microbiol. 23: 107121.
8. ben Omar, N., and, F. Ampe. 2000. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl. Environ. Microbiol. 66: 36643673.
9. Berg, R. W.,, W. E. Sandine, and, A. W. Anderson. 1981. Identification of a growth stimulant for Lactobacillus sanfrancisco. Appl. Environ. Microbiol. 42: 786788.
10. Boddy, L., and, J. W. T. Wimpenny. 1992. Ecological concepts in food microbiology. J. Appl. Bacteriol. 73: 23S38S.
11. Bolvin, P., and, M. Malanda. 1997. Improvement of malt quality and safety by adding starter culture during the malting process. Tech. Q. Master Brew Assoc. Am. 34: 96101.
12. Boulton, R. B.,, V. L. Singleton,, L. F. Bisson, and, R. E. Kunkee. 1999. Principles and Practices of Winemaking. Springer, New York, NY.
13. Breidt, F., Jr.,, R. F. McFeeters, and, I. Díaz-Munĩz. 2007. Fermented vegetables, p. 783793. In M. P. Doyle and, L. R. Beuchat (ed.), Food Microbiology: Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
14. Cai, Y.,, H. Okada,, H. Mori, and, T. N. Y. Benno. 1999. Lactobacillus paralimentarius sp. nov. isolated from sourdough. Int. J. Syst. Bacteriol. 49: 14511455.
15. Camu, N.,, A. Gonzalez,, T. De Winter,, A. Van Schoor,, K. De Bruyne,, P. Vandamme,, J. S. Takrama,, S. K. Addo, and, L. De Vuyst. 2008. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 74: 8698.
16. Capucho, I., and, M. S. Romao. 1994. Effect of ethanol and fatty acids on malolactic activity of Leuconostoc oenos. Appl. Microbiol. Biotechnol. 42: 391395.
17. Carrete, R.,, M. Teresa Vidal,, A. Bordons, and, M. Constanti. 2002. Inhibitory effect of sulphur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol. Lett. 211: 155159.
18. Castoria, R.,, F. Curtis,, G. Lima,, S. Caputo,, S. Pacifico, and, V. DeCicco. 2001. Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biol. Technol. 22: 717.
19. Cavalieri, D.,, P. E. McGovern,, D. L. Hartl,, R. Mortimer, and, M. Polsinelli. 2003. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 57( Suppl. 1) : S226S232.
20. Centers for Disease Control. 1985. Listeriosis outbreak associated with Mexican-style cheese—California. MMWR Morb. Mortal. Wkly. Rep. 34: 357359.
21. Charoenchai, C.,, G. Fleet,, P. Henschke, and, B. Todd. 1997. Screening of non- Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust. J. Grape Wine Res. 3: 28.
22. Chen, H., and, G. R. Fink. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20: 11501161.
23. Cocolin, L., and, D. Ercolini (ed.). 2008. Molecular Techniques in the Microbial Ecology of Fermented Foods. Springer, New York, NY.
24. Comitini, F., and, M. Ciani. 2006. Survival of inoculated Saccharomyces cerevisiae strain on wine grapes during two vintages. Lett. Appl. Microbiol. 42: 248253.
25. Comitini, F.,, R. Ferretti,, F. Clementi,, I. Mannazzu, and, M. Ciani. 2005. Interactions between Saccharomyces cerevisiae and malolactic bacteria: preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. J. Appl. Microbiol. 99: 105111.
26. Coppola, S.,, G. Blaiotta, and, D. Ercolini. 2008. Dairy products, p. 3190. In L. Cocolin and, D. Ercolini (ed.), Molecular Techniques in the Microbial Ecology of Fermented Foods. Springer, New York, NY.
27. Corsetti, A.,, M. Gobbetti,, J. Rossi, and, P. Damiani. 1998. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50: 253256.
28. Corsetti, A.,, M. Gobbetti, and, E. Smacchi. 1996. Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13: 447456.
29. Corsetti, A., and, L. Settanni. 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40: 539558.
30. De Deken, R. H. 1966. The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44: 149156.
31. Delfini, C.,, M. Cersosimo,, V. Del Prete,, M. Strano,, G. Gaetano,, A. Pagliara, and, S. Ambro. 2004. Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts. J. Agric. Food Chem. 52: 18611866.
32. De Vin, F.,, P. Radstrom,, L. Herman, and, L. De Vuyst. 2005. Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. Appl. Environ. Microbiol. 71: 36593667.
33. De Vos, W. M. 1996. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 70: 223242.
34. De Vuyst, L., and, P. Neysens. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16: 4356.
35. Dicks, L. M. T.,, F. Dellaglio, and, M. D. Collins. 1995. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int. J. Syst. Bacteriol. 45: 395397.
36. Dobell, C. 1932. Antonie van Leeuwenhoek and His “Little Animals.” Staples Press, London, England.
37. Edwards, C. G., and, R. B. Beelman. 1987. Inhibition of the malolactic bacterium, Leuconostoc oenos (PSU-1), by decanoic acid and subsequent removal of the inhibition by yeast ghosts. Am. J. Enol. Vitic. 38: 239242.
38. Ehrmann, M. A.,, M. R. A. Müller, and, R. F. Vogel. 2003. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int. J. Syst. Evol. Microbiol. 53: 713.
39. Flannigan, B. 2003. The microbiota of barley and malt, p. 113180. In F. G. Priest and, I. Campbell (ed.), Brewing Microbiology, 3rd ed. Kluwer Academic/Plenum Publishers, New York, NY.
40. Fleet, G. H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86: 1122.
41. Fleet, G. H.,, C. Prakitchaiwattana,, A. I. Beh, and, G. Heard. 2002. The yeast ecology of wine grapes, p. 117. In M. Ciani (ed.), Bio-diversity and Biotechnology of Wine Yeast. Research Signpost, Kerala, India.
42. Fleet, G. H., and, G. Heard. 1993. Yeast-growth during fermentation, p. 2754. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
43. Fleming, H. P.,, R. F. McFeeters, and, E. G. Humphries. 1988. A fermentor for study of sauerkraut fermentation. Biotechnol. Bioeng. 31: 189197.
44. Foucaud, C., and, B. Poolman. 1992. Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J. Biol. Chem. 267: 2208722094.
45. Fred, E. B., and, W. H. Peterson. 1922. The production of pink sauerkraut by yeasts. J. Bacteriol. 7: 257269.
46. Fugelsang, K. C., and, C. G. Edwards. 2007. Wine Microbiology Practical Applications and Procedures, 2nd ed. Springer, New York, NY.
47. Ganga, M., and, C. Martinez. 2004. Effect of wine yeast monoculture practice on biodiversity of non- Saccharomyces yeasts. J. Appl. Microbiol. 96: 7683.
48. Ganzle, M. G.,, S. Hausle, and, W. P. Hammes. 1997. Wechselwirkungen zwischen Laktobazillen und Hefen. Getreide Mehl Brot 51: 209215.
49. Ganzle, M. G.,, N. Vermeulen, and, R. F. Vogel. 2007. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 24: 128138.
50. Gobbetti, M.,, A. Corsetti,, J. Rossi,, F. LaRosa, and, S. DeVincenzi. 1994. Identification and clustering of lactic acid bacteria and yeast from wheat sourdoughs of central Italy. Ital. J. Food Sci. 1: 8594.
51. Hammes, W. P.,, M. J. Brandt,, K. L. Francis,, J. Rosenheim,, M. F. H. Seitter, and, S. A. Vogelmann. 2005. Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 16: 411.
52. Hettinga, D. H., and, G. W. Reinbold. 1972. The propionic acid bacteria—a review. II. Metabolism. J. Milk Food Technol. 35: 358372.
53. Hogan, D. A. 2006. Quorum sensing: alcohols in a social situation. Curr. Biol. 16: R457R458.
54. Hogan, D. A. 2006. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot. Cell 5: 613619.
55. Hutkins, R. 2001. Metabolism of starter cultures, p. 207241. In E. H. Marth and, J. L. Steele (ed.), Applied Dairy Microbiology. Marcel Dekker, Inc., New York, NY.
56. Hutkins, R. 2006. Microbiology and Technology of Fermented Foods. Blackwell Publishing, Ames, IA.
57. Hutkins, R., and, H. A. Morris. 1987. Carbohydrate metabolism by Streptococcus thermophilus: a review. J. Food Prot. 50: 876884.
58. Jiang, H.,, I. Medintz,, B. Zhang, and, C. A. Michels. 2000. Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J. Bacteriol. 182: 647654.
59. Jiranek, V.,, P. Langridge, and, P. A. Henschke. 1995. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl. Environ. Microbiol. 61: 461467.
60. Johanningsmeier, S.,, R. F. McFeeters,, H. P. Fleming, and, R. L. Thompson. 2007. Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J. Food Sci. 72: M166M172.
61. Kline, L., and, T. T. Sugihara. 1971. Micro-organisms of the San Francisco sour dough bread process. II. Isolation and characterization of un-described bacterial species responsible for the souring activity. Appl. Microbiol. 21: 459465.
62. Konings, W. N. 2002. The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82: 327.
63. Kosikowski, F., and, V. V. Mistry. 1997. Cheese and Fermented Milk Foods, 3rd ed. F.V. Kosikowski Llc, Westport, CT.
64. Kunkee, R. E. 1967. Malolactic fermentation. Adv. Appl. Microbiol. 9: 235279.
65. Laitila, A.,, T. Sarlin,, E. Kotaviita,, T. Huttunen,, S. Home, and, A. Wilhelmson. 2007. Yeast isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J. Ind. Microbiol. Biotechnol. 34: 701713.
66. Laitila, A.,, H. Sweins,, A. Vilpola,, E. Kotaviita,, J. Olkku,, S. Home, and, A. Haikara. 2006. Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J. Agric. Food Chem. 54: 38403851.
67. Langsrud, T., and, G. W. Reinbold. 1973. Flavor development and microbiology of Swiss cheese—a review. II. Starters, manufacturing process and procedures. J. Milk Food Technol. 36: 531542.
68. Linderholm, A. L.,, C. L. Findleton,, G. Kumar,, Y. Hong, and, L. F. Bisson. 2008. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74: 14181427.
69. Longo, E.,, J. Cansado,, D. Agrelo, and, T. G. Villa. 1991. Effect of climatic conditions on yeast diversity in grape musts from northwest Spain. Am. J. Enol. Vitic. 42: 141144.
70. Lu, Z.,, F. Breidt,, V. Plengvidhya, and, H. P. Fleming. 2003. Bacteriophage ecology in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69: 31923202.
71. Machida, K., and, T. Tanaka. 1999. Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F0F1-ATPase in yeast. FEBS Lett. 462: 108112.
72. Machida, K.,, T. Tanaka,, Y. Yano,, S. Otani, and, M. Taniguchi. 1999. Farnesol-induced growth inhibition in Saccharomyces by a cell cycle mechanism. Microbiology 145: 293299.
73. Madigan, M. T., and, J. M. Martinko. 2006. Brock Biology of Microorganisms, 11th ed. Prentice Hall, Upper Saddle River, NJ.
74. Makarova, K.,, A. Slesarev,, Y. Wolf,, A. Sorokin,, B. Mirkin,, E. Koonin,, A. Pavlov,, N. Pavlova,, V. Karamychev,, N. Polouchine,, V. Shakhova,, I. Grigoriev,, Y. Lou,, D. Rohksar,, S. Lucas,, K. Huang,, D. M. Goodstein,, T. Hawkins,, V. Plengvidhya,, D. Welker,, J. Hughes,, Y. Goh,, A. Benson,, K. Baldwin,, J. H. Lee,, I. Diaz-Muniz,, B. Dosti,, V. Smeianov,, W. Wechter,, R. Barabote,, G. Lorca,, E. Altermann,, R. Barrangou,, B. Ganesan,, Y. Xie,, H. Rawsthorne,, D. Tamir,, C. Parker,, F. Breidt,, J. Broadbent,, R. Hutkins,, D. O’Sullivan,, J. Steele,, G. Unlu,, M. Saier,, T. Klaenhammer,, P. Richardson,, S. Kozyavkin,, B. Weimer, and, D. Mills. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 1561115616.
75. Martinez-Anaya, M. A. 1996. Enzymes and bread flavor. J. Agric. Food Chem. 44: 24692480.
76. Martini, A.,, M. Ciani, and, G. Scorzetti. 1996. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vitic. 47: 435440.
77. Masoud, W.,, L. B. Cesar,, L. Jespersen, and, M. Jakobsen. 2004. Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast 21: 549556.
78. McGovern, P. E.,, D. L. Glusker,, L. J. Exner, and, M. M. Voigt. 1996. Neolithic resinated wine. Nature 381: 480481.
79. McGovern, P. E.,, J. Zhang,, J. Tang,, Z. Zhang,, G. R. Hall,, R. A. Moreau,, A. Nunez,, E. D. Butrym,, M. P. Richards,, C. S. Wang,, G. Cheng,, Z. Zhao, and, C. Wang. 2004. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 101: 1759317598.
80. Merico, A.,, P. Sulo,, J. Piskur, and, C. Compagno. 2007. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J. 274: 976989.
81. Meroth, C. B.,, W. P. Hammes, and, C. Hertel. 2003. Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69: 74537461.
82. Montville, T. 1997. Principles which influence microbial growth, survival, and death in foods, p. 1329. In M. P. Doyle,, L. R. Beuchat, and, T. J. Montville (ed.), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington, DC.
83. Mortimer, R. 2000. Kloeckera apiculata controls the rates of natural fermentation. Rev. Vitic. Enol. 53: 6168.
84. Mortimer, R., and, M. Polsinelli. 1999. On the origins of wine yeast. Res. Microbiol. 150: 199204.
85. Müller, M. R. A.,, M. A. Ehrmann, and, R. F. Vogel. 2000. Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int. J. Syst. Bacteriol. 50: 21272133.
86. Nehme, N.,, F. Matieu, and, P. Taillandier. 4 March 2008. Quantitative study of interactions between Saccharomyces cerevisiae and Oenococcus oeni strains. J. Ind. Microbiol. Biotechnol. [Epub ahead of print.] doi:10.1007/s10295-008-0328-7.
87. Neubauer, H.,, E. Glaasker,, W. P. Hammes,, B. Poolman, and, W. N. Konings. 1994. Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco. J. Bacteriol. 176: 30073012.
88. Nickerson, K. W.,, A. L. Atkin, and, J. M. Hornby. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl. Environ. Microbiol. 72: 38053813.
89. Niku-Paavola, M. L.,, A. Laitila,, T. Mattila-Sandholm, and, A. Haikara. 1999. New types of antimicrobial compounds produced by Lacto-bacillus plantarum. J. Appl. Microbiol. 86: 2935.
90. Nisiotou, A. A., and, G.-J. E. Nychas. 2007. Yeast populations residing on healthy or Botrytis- infected grapes from a vineyard in Attica, Greece. Appl. Environ. Microbiol. 73: 27652768.
91. Nissen, P., and, N. Arneborg. 2003. Characterization of early deaths of non- Saccharomyces yeast in mixed cultures with Saccharomyces cerevisiae. Arch. Microbiol. 180: 257263.
92. Nout, M. R. J., and, F. M. Rombouts. 1992. Fermentative preservation of plant foods. J. Appl. Bacteriol. 73: 136S147S.
93. Osborne, J. P., and, C. G. Edwards. 2007. Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 118: 2734.
94. O’Sullivan, T. F.,, Y. Walsh,, A. O’Mahony,, G. Fitzgerald, and, D. V. Sideren. 1999. A comparative study of malthouse and brewhouse microflora. J. Inst. Brew. 105: 5561.
95. Parish, M., and, D. Carroll. 1985. Indigenous yeasts associated with Muscadine (Vitis rotundifolia) grapes and musts. Am. J. Enol. Vitic. 36: 165169.
96. Pederson, C. 1979. Microbiology of Food Fermentations, 2nd ed. AVI, Westport, CT.
97. Piskur, J.,, E. Rozpedowska,, S. Polakova,, A. Merico, and, C. Compagno. 2006. How did Saccharomyces evolve to become a good brewer? Trends Genet. 22: 183186.
98. Pizarro, F.,, F. A. Vargas, and, E. Agosin. 2007. A systems biology perspective of wine fermentations. Yeast 24: 977991.
99. Plengvidhya, V.,, F. Breidt, Jr.,, Z. Lu, and, H. P. Fleming. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl. Environ. Microbiol. 73: 76977702.
100. Prajapati, J., and, B. M. Nair. 2003. History of fermented foods, p. 127. In E. R. Farnworth (ed.), Handbook of Fermented Functional Foods. CRC Press, New York, NY.
101. Prakitchaiwattana, C.,, G. Fleet, and, G. Heard. 2004. Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res. 4: 865877.
102. Raspor, P.,, D. Milek,, J. Polanc,, S. Mozina, and, N. Cadez. 2006. Yeasts isolated from three varieties of grapes cultivated in different locations of Dolenjska vine-growing region, Slovenia. Int. J. Food Microbiol. 109: 97102.
103. Ribereau-Gayon, P.,, D. Dubourdieu,, B. Doneche, and, A. Lonvaud. 2006. Handbook of Enology: the Microbiology of Wine and Vinification. Wiley & Sons, Hoboken, NJ.
104. Ross, P.,, S. Morgan, and, C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79: 316.
105. Schmitt, M. J., and, J. Reiter. 2008. Viral induced yeast apoptosis. Biochim. Biophys. Acta 1783: 14131417.
106. Sprague, G. F., Jr., and, S. C. Winans. 2006. Eukaryotes learn how to count: quorum sensing by yeast. Genes Dev. 20: 10451049.
107. Stolz, P.,, W. P. Hammes, and, R. F. Vogel. 1996. Maltose-phosphorylase and hexokinase activity in lactobacilli from traditionally prepared sourdoughs. Adv. Food Sci. 18: 16.
108. Sugihara, T.,, L. Kline, and, M. McGready. 1970. Nature of San Francisco sour dough in French bread process. II. Microbial aspects. Baker’s Dig. 44: 5157.
109. Suihko, M. L., and, V. Makinen. 1984. Tolerance of acetate, propionate and sorbate by Saccharomyces cerevisiae and Torulopsis holmii. Food Microbiol. 1: 105110.
110. Tham, W. A., and, V. M. DanielssonTham. 1988. Listeria monocytogenes isolated from soft cheese. Vet. Rec. 122: 540.
111. Urso, R.,, K. Rantsiou,, P. Dolci,, L. Rolle,, G. Comi, and, L. Cocolin. 11 March 2008. Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods. FEMS Yeast Res. [Epub ahead of print.] doi:10.1111/j.1567-1364.2008.00364.x.
112. Vaughan, E. E.,, P. T. C. van den Bogaard,, P. Catzeddu,, O. P. Kuipers, and, W. M. de Vos. 2001. Activation of silent gal genes in the lacgal regulon of Streptococcus thermophilus. J. Bacteriol. 183: 11841194.
113. Viegas, C. A.,, M. F. Rosa,, I. Sa-Correia, and, J. M. Novais. 1989. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl. Environ. Microbiol. 55: 2128.
114. Vogel, R., and, M. Ehrmann. 2008. Sourdough fermentations, p. 119144. In L. Cocolin and, D. Ercolini (ed.), Molecular Techniques in Microbial Ecology of Fermented Foods. Springer, New York, NY.
115. Vogel, R. F.,, G. Böcker,, P. Stolz,, M. Ehrmann,, D. Fanta,, W. Ludwig,, B. Pot,, K. Kersters,, K. H. Schleifer, and, W. P. Hammes. 1994. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int. J. Syst. Bacteriol. 44: 223229.
116. Wibowo, D.,, R. Eschenbruch,, C. R. Davis,, G. H. Fleet, and, T. H. Lee. 1985. Occurrence and growth of lactic acid bacteria in wine: a review. Am. J. Enol. Vitic. 36: 302313.
117. Wiese, B. G.,, W. Strohmar,, F. A. Rainey, and, H. Diekmann. 1996. Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int. J. Syst. Bacteriol. 46: 449453.
118. Wolf-Hall, C. E. 2007. Mold and mycotoxin problems encountered during malting and brewing. Int. J. Food Microbiol. 119: 8994.
119. Yoon, S. S.,, R. Barrangou-Poueys,, F. Breidt, Jr.,, T. R. Klaenhammer, and, H. P. Fleming. 2002. Isolation and characterization of bacteriophages from fermenting sauerkraut. Appl. Environ. Microbiol. 68: 973976.


Generic image for table

Processor tools for controlling a fermentation

Citation: Phister T. 2009. Using Microbial Succession to the Processor’s Advantage: Food Fermentation and Biocontrol, p 161-181. In Jaykus L, Wang H, Schlesinger L (ed), Food-Borne Microbes. ASM Press, Washington, DC. doi: 10.1128/9781555815479.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error