Chapter 20 : New Herpes Simplex Virus Replication Targets

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

New Herpes Simplex Virus Replication Targets, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815493/9781555814397_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815493/9781555814397_Chap20-2.gif


The human alphaherpesviruses include human herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV). HSV-1 and HSV-2 are responsible for primary and recurrent herpetic lesions of the mouth and genital tract, as well as more serious and potentially life-threatening infections of the eye and central nervous system. This chapter discusses alternative targets for antiherpesviral therapy. The roles of various viral glycoproteins in the attachment and penetration steps at the outset of the infection cycle are only now being identified; however, as with human immunodeficiency virus (HIV), the processes of attachment, receptor recognition, and penetration are likely be excellent targets for the development of antiviral therapy. Several reports have described a class of agents that inhibit the adsorption of the virus to host cells. Viral genes are classified as immediate early, early, or late and are transcribed from both strands of the viral genome by cellular RNA Pol II. The authors have proposed that recombination-dependent DNA replication plays an important role in viral DNA replication. Procapsids formed in the nucleus are competent to undergo encapsidation of the viral genome accompanied by a major conformational change in its structure from a sphere to a more angular shape.

Citation: Weller S. 2009. New Herpes Simplex Virus Replication Targets, p 347-361. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Domain structure of UL9. The N-terminal helicase domain contains seven motifs shared in superfamily 2 helicases (horizontal lines). The putative PEST sequence (residues 265 to 282) is shown. The DNA binding C-terminal domain is shown in diagonal lines. The nuclear localization signal has been mapped to residues 817 to 851. The region of UL9 that interacts with DNA is indicated by cross-hatching.

Citation: Weller S. 2009. New Herpes Simplex Virus Replication Targets, p 347-361. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

The HSV-1 helicase/primase consists of three viral genes, UL5, UL8, and UL52. The UL5 gene is shown with seven black boxes depicting each of the motifs shared within superfamily 1 members. The UL52 gene is shown with the conserved catalytic primase site and the putative Zn binding region. UL8 is a 751-amino-acid protein.

Citation: Weller S. 2009. New Herpes Simplex Virus Replication Targets, p 347-361. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Model for HSV DNA replication. An HSV-1 replication fork would be expected to contain the H/P complex (UL5/ UL52/UL8) at the fork: UL5 would be expected to unwind duplex DNA ahead of the fork, and UL52 would be expected to lay down RNA primers, which could then be extended by the two-subunit DNA Pol (UL30/UL42). The HSV-1 Pol would also be expected to carry out leading strand synthesis. ICP8 (UL29, ssb) would be expected to bind to single-stranded DNA generated during HSV DNA synthesis.

Citation: Weller S. 2009. New Herpes Simplex Virus Replication Targets, p 347-361. In LaFemina, Ph. D. R (ed), Antiviral Research. ASM Press, Washington, DC. doi: 10.1128/9781555815493.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adelman, K.,, B. Salmon, and, J. D. Baines. 2001. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc. Natl. Acad. Sci. USA 98: 30863091.
2. Akanitapichat, P., and, K. F. Bastow. 2002. The antiviral agent 5-chloro-1, 3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus. Antivir. Res. 53: 113126.
3. Akanitapichat, P.,, C. T. Lowden, and, K. F. Bastow. 2000. 1, 3-Dihydroxyacridone derivatives as inhibitors of herpes virus replication. Antivir. Res. 45: 123134.
4. Albin, R.,, R. Chase,, C. Risano,, M. Lieberman,, E. Ferrari,, A. Skelton,, P. Buontempo,, S. Cox,, J. DeMartino,, J. Wright-Minogue,, G. Jirau-Lucca,, J. Kelly,, A. Afonso,, A. D. Kwong,, E. J. Rozhon, and, J. F. O’Connell. 1997. SCH 43478 and analogs: in vitro activity and in vivo efficacy of novel agents for herpesvirus type 2. Antivir. Res. 35: 139146.
5. Artemenko, A. G.,, E. N. Muratov,, V. E. Kuz’min,, N. A. Kovdienko,, A. I. Hromov,, V. A. Makarov,, O. B. Riabova,, P. Wutzler, and, M. Schmidtke. 2007. Identification of individual structural fragments of N, N’-(bis-5-nitropyrimidyl)dispirotripiperazine derivatives for cytotoxicity and antiherpetic activity allows the prediction of new highly active compounds. J. Antimicrob. Chemother. 60: 6877.
6. Baines, J., and, S. K. Weller. 2004. Cleavage and packaging of herpes simplex virus 1 DNA, p. 1–16. In C. Catalano (ed.), Viral Genome Packaging. Kluwer Academic/Plenum, New York, NY.
7. Bastide, L.,, P. E. Boehmer,, G. Villani, and, B. Lebleu. 1999. Inhibition of a DNA-helicase by peptide nucleic acids. Nucleic Acids Res. 27: 551554.
8. Bastow, K. F.,, M. Itoigawa,, H. Furukawa,, Y. Kashiwada,, I. D. Bori,, L. M. Ballas, and, K. H. Lee. 1994. Antiproliferative actions of 7-substituted 1, 3-dihydroxyacridones; possible involvement of DNA topoisomerase II and protein kinase C as biochemical targets. Bioorg. Med. Chem. 2: 14031411.
9. Baumeister, J.,, R. Fischer,, P. Eckenberg,, K. Henninger,, H. Ruebsamen-Waigmann, and, G. Kleymann. 2007. Superior efficacy of helicase-primase inhibitor BAY 57–1293 for herpes infection and latency in the guinea pig model of human genital herpes disease. Antivir. Chem. Chemother. 18: 3548.
10. Beard, P. M., and, J. D. Baines. 2004. The DNA cleavage and packaging protein encoded by the UL33 gene of herpes simplex virus 1 associates with capsids. Virology 324: 475482.
11. Betz, U. A.,, R. Fischer,, G. Kleymann,, M. Hendrix, and, H. Rubsamen-Waigmann. 2002. Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57–1293. Anti-microb. Agents Chemother. 46: 17661772.
12. Biron, K. K. 2006. Antiviral drugs for cytomegalovirus diseases. Antivir. Res. 71: 154163.
13. Biron, K. K.,, R. J. Harvey,, S. C. Chamberlain,, S. S. Good,, A. A. Smith III,, M. G. Davis,, C. L. Talarico,, W. H. Miller,, R. Ferris,, R. E. Dornsife,, S. C. Stanat,, J. C. Drach,, L. B. Townsend, and, G. W. Koszalka. 2002. Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole l-riboside with a unique mode of action. Antimicrob. Agents Chemother. 46: 23652372.
14. Biswas, S.,, L. Jennens, and, H. J. Field. 2007. The helicase primase inhibitor, BAY 57–1293 shows potent therapeutic antiviral activity superior to famciclovir in BALB/c mice infected with herpes simplex virus type 1. Antivir. Res. 75: 3035.
15. Blumel, J., and, B. Matz. 1995. Thermosensitive UL9 gene function is required for early stages of herpes simplex virus type 1 DNA synthesis. J. Gen. Virol. 76(Pt. 12): 31193124.
16. Bogner, E.,, K. Radsak, and, M. F. Stinski. 1998. The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J. Virol. 72:2259–2264.
17. Bogner, E.,, M. Reschke,, B. Reis,, T. Mockenhaupt, and, K. Radsak. 1993. Identification of the gene product encoded by ORF UL56 of the human cytomegalovirus genome. Virology 196: 290293.
18. Booy, F. P.,, B. L. Trus,, W. W. Newcomb,, J. C. Brown,, J. F. Conway, and, A. C. Steven. 1994. Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc. Natl. Acad. Sci. USA 91: 56525656.
19. Bresnahan, W. A.,, I. Boldogh,, P. Chi,, E. A. Thompson, and, T. Albrecht. 1997. Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication. Virology 231: 239247.
20. Buerger, I.,, J. Reefschlaeger,, W. Bender,, P. Eckenberg,, A. Popp,, O. Weber,, S. Graeper,, H. D. Klenk,, H. Ruebsamen-Waigmann, and, S. Hallenberger. 2001. A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J. Virol. 75: 90779086.
21. Burch, A. D., and, S. K. Weller. 2005. Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone Hsp90 for proper localization to the nucleus. J. Virol. 79: 1074010749.
22. Caposio, P.,, T. Musso,, A. Luganini,, H. Inoue,, M. Gariglio,, S. Landolfo, and, G. Gribaudo. 2007. Targeting the NF-kappaB pathway through pharmacological inhibition of IKK2 prevents human cytomegalovirus replication and virus-induced inflammatory response in infected endothelial cells. Antivir. Res. 73: 175184.
23. Carmichael, E. P., and, S. K. Weller. 1989. Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: isolation and characterization of an ICP6::lacZ insertion mutation. J. Virol. 63: 591599.
24. Carrington-Lawrence, S. D., and, S. K. Weller. 2003. Recruitment of polymerase to herpes simplex virus type 1 replication foci in cells expressing mutant primase (UL52) proteins. J. Virol. 77:4237–4247.
25. Carrozza, M. J., and, N. A. DeLuca. 1996. Interaction of the viral activator protein ICP4 with TFIID through TAF250. Mol. Cell. Biol. 16: 30853093.
26. Chen, P.,, H. Tsuge,, R. J. Almassy,, C. L. Gribskov,, S. Katoh,, D. L. Vanderpool,, S. A. Margosiak,, C. Pinko,, D. A. Matthews, and, C. C. Kan. 1996. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86: 835343.
27. Chen, Y.,, C. M. Livingston,, S. D. Carrington-Lawrence,, P. Bai, and, S. K. Weller. 2007. A mutation in the human herpes simplex virus type 1 UL52 zinc finger motif results in defective primase activity but can recruit viral polymerase and support viral replication efficiently. J. Virol. 81: 87428751.
28. Chen, Z.,, E. Knutson,, A. Kurosky, and, T. Albrecht. 2001. Degradation of p21cip1 in cells productively infected with human cytomegalovirus. J. Virol. 75: 36133625.
29. Coen, D. M., and, P. A. Schaffer. 2003. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2: 278288.
30. Cohen, G. H.,, M. Ponce de Leon,, H. Diggelmann,, W. C. Lawrence,, S. K. Vernon, and, R. J. Eisenberg. 1980. Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. J. Virol. 34: 521531.
31. Coller, K. E.,, J. I. Lee,, A. Ueda, and, G. A. Smith. 2007. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81: 1179011797.
32. Crumpacker, C. S., and, P. A. Schaffer. 2002. New anti-HSV therapeutics target the helicase-primase complex. Nat. Med. 8: 327328.
33. Crute, J. J.,, C. A. Grygon,, K. D. Hargrave,, B. Simoneau,, A. M. Faucher,, G. Bolger,, P. Kibler,, M. Liuzzi, and, M. G. Cordingley. 2002. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat. Med. 8: 386391.
34. de Bruyn Kops, A.,, S. L. Uprichard,, M. Chen, and, D. M. Knipe. 1998. Comparison of the intranuclear distributions of herpes simplex virus proteins involved in various viral functions. Virology 252: 162178.
35. DeLuca, N. A.,, A. M. McCarthy, and, P. A. Schaffer. 1985. Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56: 558570.
36. Dodson, A. W.,, T. J. Taylor,, D. M. Knipe, and, D. M. Coen. 2007. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology 366: 340348.
37. Duan, J.,, M. Liuzzi,, W. Paris,, F. Liard,, A. Browne,, N. Dansereau,, B. Simoneau,, A. M. Faucher, and, M. G. Cordingley. 2003. Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1. Antimicrob. Agents Chemother. 47: 17981804.
38. Dutia, B. M.,, M. C. Frame,, S. J. H. Subak,, W. N. Clark, and, H. S. Marsden. 1986. Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321: 439441.
39. Fauci, A. S., and, M. D. Challberg. 2005. Host-based antipoxvirus therapeutic strategies: turning the tables. J. Clin. Investig. 115: 231233.
40. Fischer, P. M., and, A. Gianella-Borradori. 2005. Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Expert Opin. Investig. Drugs 14: 457477.
41. Flynn, D. L.,, N. A. Abood, and, B. C. Holwerda. 1997. Recent advances in antiviral research: identification of inhibitors of the herpesvirus proteases. Curr. Opin. Chem. Biol. 1: 190196.
42. Flynn, D. L.,, D. P. Becker,, V. M. Dilworth,, M. K. Highkin,, P. J. Hippenmeyer,, K. A. Houseman,, L. M. Levine,, M. Li,, A. E. Moor-mann,, A. Rankin,, M. V. Toth,, C. I. Villamil,, A. J. Wittwer, and, B. C. Holwerda. 1997. The herpesvirus protease: mechanistic studies and discovery of inhibitors of the human cytomegalovirus protease. Drug Des. Discov. 15: 315.
43. Font, M.,, C. Sanmartin,, M. L. Alonso,, L. Gracia,, M. J. Losa,, B. Marquiegui,, I. Merino,, E. Nadal,, I. Ruiz,, A. Monge,, M. T. Bengoechea,, F. Cabodevilla,, S. Elena,, J. J. Martinez-Irujo,, L. Odriozola,, I. Penuelas,, E. Santiago,, F. Homa, and, M. W. Wa-then. 2000. New antiherpetic 1, 3-phenylene derivatives, inhibitors of the interaction of the HSV-1 origin binding protein (OBP) with DNA. Drug Des. Discov. 16: 295315.
44. Gershburg, E., and, J. S. Pagano. 2007. Conserved herpesvirus protein kinases. Biochim. Biophys. Acta 1784: 203212.
45. Goldstein, D. J., and, S. K. Weller. 1988. An ICP6::lacZ insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type 1 is required for virus growth and DNA synthesis. J. Virol. 62: 29702977.
46. Goldstein, D. J., and, S. K. Weller. 1988. Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166: 4151.
47. Goldstein, J. N., and, S. K. Weller. 1998a. The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology 244: 442457.
48. Goshima, F.,, D. Watanabe,, H. Takakuwa,, K. Wada,, T. Daikoku,, M. Yamada, and, Y. Nishiyama. 2000. Herpes simplex virus UL17 protein is associated with B capsids and colocalizes with ICP35 and VP5 in infected cells. Arch. Virol. 145: 417426.
49. Gu, B., and, N. DeLuca. 1994. Requirements for activation of the herpes simplex virus glycoprotein C promoter in vitro by the viral regulatory protein ICP4. J. Virol. 68: 79537965.
50. Haasnoot, J., and, B. Berkhout. 2006. RNA interference: its use as antiviral therapy. Handb. Exp. Pharmacol. 2006: 117150.
51. Haasnoot, J.,, E. M. Westerhout, and, B. Berkhout. 2007. RNA interference against viruses: strike and counterstrike. Nat. Biotechnol. 25: 14351443.
52. Hammarsten, O.,, X. Yao, and, P. Elias. 1996. Inhibition of topoisomerase II by ICRF-193 prevents efficient replication of herpes simplex virus type 1. J. Virol. 70: 45234529.
53. Herrera, F. J., and, S. J. Triezenberg. 2004. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J. Virol. 78: 96899696.
54. Holwerda, B. C. 1997. Herpesvirus proteases: targets for novel antiviral drugs. Antivir. Res. 35: 121.
55. Homa, F. L., and, J. C. Brown. 1997. Capsid assembly and DNA packaging in herpes simplex virus. Rev. Med. Virol. 7: 107122.
56. Jordan, R.,, L. Schang, and, P. A. Schaffer. 1999. Transactivation of herpes simplex virus type 1 immediate-early gene expression by virion-associated factors is blocked by an inhibitor of cyclin-dependent protein kinases. J. Virol. 73: 88438847.
57. Kamil, J. P., and, D. M. Coen. 2007. Human cytomegalovirus protein kinase UL97 forms a complex with the tegument phospho-protein pp65. J. Virol. 81: 1065910668.
58. Kleymann, G. 2005. Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin. Investig. Drugs 14: 135161.
59. Kleymann, G. 2004. Helicase primase: targeting the Achilles heel of herpes simplex viruses. Antivir. Chem. Chemother. 15: 135140.
60. Kleymann, G. 2003. New antiviral drugs that target herpesvirus helicase primase enzymes. Herpes 10: 4652.
61. Kleymann, G.,, R. Fischer,, U. A. Betz,, M. Hendrix,, W. Bender,, U. Schneider,, G. Handke,, P. Eckenberg,, G. Hewlett,, V. Pevzner,, J. Baumeister,, O. Weber,, K. Henninger,, J. Keldenich,, A. Jensen,, J. Kolb,, U. Bach,, A. Popp,, J. Maben,, I. Frappa,, D. Haebich,, O. Lockhoff, and, H. Rubsamen-Waigmann. 2002. New helicaseprimase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat. Med. 8: 392398.
62. Klupp, B. G.,, H. Granzow,, G. M. Keil, and, T. C. Mettenleiter. 2006. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J. Virol. 80: 62356246.
63. Komazin, G.,, L. B. Townsend, and, J. C. Drach. 2004. Role of a mutation in human cytomegalovirus gene UL104 in resistance to benzimidazole ribonucleosides. J. Virol. 78: 710715.
64. Kristie, T. M., and, P. A. Sharp. 1990. Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV alpha-trans-activator protein. Genes Dev. 4: 23832396.
65. Krosky, P. M.,, M. C. Baek, and, D. M. Coen. 2003. The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J. Virol. 77: 905914.
66. Krosky, P. M.,, M. C. Baek,, W. J. Jahng,, I. Barrera,, R. J. Harvey,, K. K. Biron,, D. M. Coen, and, P. B. Sethna. 2003. The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J. Virol. 77: 77207727.
67. Krosky, P. M.,, M. R. Underwood,, S. R. Turk,, K. W. Feng,, R. K. Jain,, R. G. Ptak,, A. C. Westerman,, K. K. Biron,, L. B. Townsend, and, J. C. Drach. 1998. Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J. Virol. 72: 47214728.
68. Kuddus, R. H., and, N. A. DeLuca. 2007. DNA-dependent oligomerization of herpes simplex virus type 1 regulatory protein ICP4. J. Virol. 81: 92309237.
69. Lalezari, J. P.,, J. A. Aberg,, L. H. Wang,, M. B. Wire,, R. Miner,, W. Snowden,, C. L. Talarico,, S. Shaw,, M. A. Jacobson, and, W. L. Drew. 2002. Phase I dose escalation trial evaluating the pharmacokinetics, anti-human cytomegalovirus (HCMV) activity, and safety of 1263W94 in human immunodeficiency virus-infected men with asymptomatic HCMV shedding. Antimicrob. Agents Chemother. 46: 29692976.
70. Lamberti, C., and, S. K. Weller. 1998. The herpes simplex virus type 1 cleavage-packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J. Virol. 72: 24632473.
71. Larsen, S. D.,, Z. Zhang,, B. A. DiPaolo,, P. R. Manninen,, D. C. Rohrer,, M. J. Hageman,, T. A. Hopkins,, M. L. Knechtel,, N. L. Oien,, B. D. Rush,, F. J. Schwende,, K. J. Stefanski,, J. L. Wieber,, K. F. Wilkinson,, K. M. Zamora,, M. W. Wathen, and, R. J. Brideau. 2007. 7-Oxo-4, 7-dihydrothieno[3, 2-b]pyridine-6-carboxamides: synthesis and biological activity of a new class of highly potent inhibitors of human cytomegalovirus DNA polymerase. Bioorg. Med. Chem. Lett. 17: 38403844.
72. Leach, N.,, S. L. Bjerke,, D. K. Christensen,, J. M. Bouchard,, F. Mou,, R. Park,, J. Baines,, T. Haraguchi, and, R. J. Roller. 2007. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J. Virol. 81: 1079210803.
73. Lilley, C. E.,, C. T. Carson,, A. R. Muotri,, F. H. Gage, and, M. D. Weitzman. 2005. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc. Natl. Acad. Sci. USA 102: 58445849.
74. Liuzzi, M.,, R. Deziel,, N. Moss,, P. Beaulieu,, A. M. Bonneau,, C. Bousquet,, J. G. Chafouleas,, M. Garneau,, J. Jaramillo,, R. L. Krogsrud, et al. 1994. A potent peptidomimetic inhibitor of HSV ribo-nucleotide reductase with antiviral activity in vivo. Nature 372: 695698.
75. Liuzzi, M.,, P. Kibler,, C. Bousquet,, F. Harji,, G. Bolger,, M. Garneau,, N. Lapeyre,, R. S. McCollum,, A. M. Faucher,, B. Simoneau, and, M. G. Cordingley. 2004. Isolation and characterization of herpes simplex virus type 1 resistant to aminothiazolylphenyl-based inhibitors of the viral helicase-primase. Antivir. Res. 64: 161170.
76. Livingston, C. M.,, N. A. DeLuca,, D. E. Wilkenson, and, S. K. Weller. 2008. Oligomerization of ICP4 and rearrangement of heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J. Virol. 82: 63246336.
77. Malik, A. K., and, S. K. Weller. 1996. Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. J. Virol. 70: 78597866.
78. Marintcheva, B., and, S. K. Weller. 2001. A tale of two HSV-1 heli-cases: roles of phage and animal virus helicases in DNA replication and recombination. Prog. Nucleic Acid Res. Mol. Biol. 70: 77118.
79. Marintcheva, B., and, S. K. Weller. 2003. Helicase motif Ia is involved in single-strand DNA-binding and helicase activities of the herpes simplex virus type 1 origin-binding protein, UL9. J. Virol. 77: 24772488.
80. Marintcheva, B., and, S. K. Weller. 2001. Residues within the conserved helicase motifs of UL9, the origin-binding protein of herpes simplex virus-1, are essential for helicase activity but not for dimerization or origin binding activity. J. Biol. Chem. 276: 66056615.
81. Marschall, M.,, M. Stein-Gerlach,, M. Freitag,, R. Kupfer,, M. van den Bogaard, and, T. Stamminger. 2002. Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. J. Gen. Virol. 83: 10131023.
82. Marschall, M.,, M. Stein-Gerlach,, M. Freitag,, R. Kupfer,, M. van Den Bogaard, and, T. Stamminger. 2001. Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J. Gen. Virol. 82: 14391450.
83. Martinez, R.,, R. T. Sarisky,, P. C. Weber, and, S. K. Weller. 1996. Herpes simplex virus type-1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70: 20752085.
84. McNab, A. R.,, P. Desai,, S. Person,, L. L. Roof,, D. R. Thomsen,, W. W. Newcomb,, J. C. Brown, and, F. L. Homa. 1998. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J. Virol. 72: 10601070.
85. Mettenleiter, T. C.,, B. G. Klupp, and, H. Granzow. 2006. Herpes-virus assembly: a tale of two membranes. Curr. Opin. Microbiol. 9: 423429.
86. Morris, J. B.,, H. Hofemeister, and, P. O’Hare. 2007. Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J. Virol. 81:4429–4437.
87. Moss, N.,, P. Beaulieu,, J. S. Duceppe,, J. M. Ferland,, M. Garneau,, J. Gauthier,, E. Ghiro,, S. Goulet,, I. Guse,, J. Jaramillo,, M. Llinas-Brunet,, E. Malenfant,, R. Plante,, M. Poirier,, F. Soucy,, D. Wernic,, C. Yoakim, and, R. Deziel. 1996. Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase with improved in vivo antiviral activity. J. Med. Chem. 39: 41734180.
88. Moss, N.,, P. Beaulieu,, J. S. Duceppe,, J. M. Ferland,, J. Gauthier,, E. Ghiro,, S. Goulet,, L. Grenier,, M. Llinas-Brunet,, R. Plante, et al. 1995. Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase: a new class of antiviral agents. J. Med. Chem. 38: 36173623.
89. Mou, F.,, T. Forest, and, J. D. Baines. 2007. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphor-ylates and alters localization of lamin A/C in infected cells. J. Virol. 81: 64596470.
90. Mulamba, G. B.,, A. Hu,, R. F. Azad,, K. P. Anderson, and, D. M. Coen. 1998. Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen (ISIS 2922). Antimicrob. Agents Chemother. 42: 971973.
91. Newcomb, W. W., and, J. C. Brown. 2002. Inhibition of herpes simplex virus replication by WAY-150138: assembly of capsids depleted of the portal and terminase proteins involved in DNA encapsidation. J. Virol. 76: 1008410088.
92. Newcomb, W. W.,, F. L. Homa,, D. R. Thomsen,, F. P. Booy,, B. S. Trus,, A. C. Steven,, J. V. Spencer, and, J. C. Brown. 1996. Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol. 263: 432446.
93. Newcomb, W. W.,, F. L. Homa, and, J. C. Brown. 2005. Involvement of the portal at an early step in herpes simplex virus capsid assembly. J. Virol. 79: 1054010546.
94. Newcomb, W. W.,, F. L. Homa,, D. R. Thomsen,, B. L. Trus,, N. Cheng,, A. Steven,, F. Booy, and, J. C. Brown. 1999. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol. 73: 42394250.
95. Newcomb, W. W.,, F. L. Homa,, D. R. Thomsen,, Z. Ye, and, J. C. Brown. 1994. Cell-free assembly of the herpes simplex virus capsid. J. Virol. 68: 60596063.
96. Newcomb, W. W.,, R. M. Juhas,, D. R. Thomsen,, F. L. Homa,, A. D. Burch,, S. K. Weller, and, J. C. Brown. 2001. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol. 75: 1092310932.
97. Newcomb, W. W.,, D. R. Thomsen,, F. L. Homa, and, J. C. Brown. 2003. Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J. Virol. 77: 98629871.
98. Oien, N. L.,, R. J. Brideau,, T. A. Hopkins,, J. L. Wieber,, M. L. Knechtel,, J. A. Shelly,, R. A. Anstadt,, P. A. Wells,, R. A. Poorman,, A. Huang,, V. A. Vaillancourt,, T. L. Clayton,, J. A. Tucker, and, M. W. Wathen. 2002. Broad-spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpes-virus polymerase inhibitors. Antimicrob. Agents Chemother. 46: 724730.
99. Ojala, P. M.,, B. Sodeik,, M. W. Ebersold,, U. Kutay, and, A. Helenius. 2000. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol. Cell. Biol. 20: 49224931.
100. O’Regan, K. J.,, M. A. Murphy,, M. A. Bucks,, J. W. Wills, and, R. J. Courtney. 2007. Incorporation of the herpes simplex virus type 1 tegument protein VP22 into the virus particle is independent of interaction with VP16. Virology 369: 263280.
101. Park, R., and, J. D. Baines. 2006. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J. Virol. 80: 494504.
102. Perry, H. C.,, D. J. Hazuda, and, W. L. McClements. 1993. The DNA binding domain of herpes simplex virus type 1 origin binding protein is a transdominant inhibitor of virus replication. Virology 193: 7379.
103. Phelan, A.,, J. Dunlop,, A. H. Patel,, N. D. Stow, and, J. B. Clements. 1997. Nuclear sites of herpes simplex virus type 1 DNA replication and transcription colocalize at early times postinfection and are largely distinct from RNA processing factors. J. Virol. 71: 11241132.
104. Prichard, M. N.,, W. J. Britt,, S. L. Daily,, C. B. Hartline, and, E. R. Kern. 2005. Human cytomegalovirus UL97 kinase is required for the normal intranuclear distribution of pp65 and virion morphogenesis. J. Virol. 79: 1549415502.
105. Prichard, M. N.,, D. C. Quenelle,, D. J. Bidanset,, G. Komazin,, S. Chou,, J. C. Drach, and, E. R. Kern. 2006. Human cytomegalovirus UL27 is not required for viral replication in human tissue implanted in SCID mice. Virol. J. 3:18.
106. Pyles, R. B., and, R. L. Thompson. 1994. Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. J. Virol. 68: 49634972.
107. Reefschlaeger, J.,, W. Bender,, S. Hallenberger,, O. Weber,, P. Eckenberg,, S. Goldmann,, M. Haerter,, I. Buerger,, J. Trappe,, J. A. Herrington,, D. Haebich, and, H. Ruebsamen-Waigmann. 2001. Novel non-nucleoside inhibitors of cytomegaloviruses (BAY 38–4766): in vitro and in vivo antiviral activity and mechanism of action. J. Antimicrob. Chemother. 48: 757767.
108. Reuven, N. B.,, A. E. Staire,, R. S. Myers, and, S. K. Weller. 2003. The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J. Virol. 77: 74257433.
109. Reuven, N. B., and, S. K. Weller. 2005. Herpes simplex virus type 1 single-strand DNA binding protein ICP8 enhances the nuclease activity of the UL12 alkaline nuclease by increasing its processivity. J. Virol. 79: 93569358.
110. Reuven, N. B.,, S. Willcox,, J. D. Griffith, and, S. K. Weller. 2004. Catalysis of strand exchange by the HSV-1 UL12 and ICP8 proteins: potent ICP8 recombinase activity is revealed upon resection of dsDNA substrate by nuclease. J. Mol. Biol. 342: 5771.
111. Salmon, B., and, J. D. Baines. 1998. Herpes simplex virus DNA cleavage and packaging: association of multiple forms of U(L)15-encoded proteins with B capsids requires at least the U(L)6, U(L)17, and U(L)28 genes. J. Virol. 72: 30453050.
112. Sanchez, V.,, A. K. McElroy,, J. Yen,, S. Tamrakar,, C. L. Clark,, R. A. Schwartz, and, D. H. Spector. 2004. Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122–123 and UL37 immediate-early transcripts and at later times for virus production. J. Virol. 78: 1121911232.
113. Sanchez, V., and, D. H. Spector. 2006. Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J. Virol. 80: 58865896.
114. Schang, L. M. 2002. Cyclin-dependent kinases as cellular targets for antiviral drugs. J. Antimicrob. Chemother. 50: 779792.
115. Schang, L. M. 2006. Herpes simplex viruses in antiviral drug discovery. Curr. Pharm. Des. 12: 13571370.
116. Schang, L. M.,, A. Rosenberg, and, P. A. Schaffer. 2000. Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the presence of viral early proteins. J. Virol. 74: 21072120.
117. Schang, L. M.,, A. Rosenberg, and, P. A. Schaffer. 1999. Transcription of herpes simplex virus immediate-early and early genes is inhibited by roscovitine, an inhibitor specific for cellular cyclin-dependent kinases. J. Virol. 73: 21612172.
118. Scheffczik, H.,, C. G. Savva,, A. Holzenburg,, L. Kolesnikova, and, E. Bogner. 2002. The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res. 30: 16951703.
119. Schildgen, O.,, S. Graper,, J. Blumel, and, B. Matz. 2005. Genome replication and progeny virion production of herpes simplex virus type 1 mutants with temperature-sensitive lesions in the origin-binding protein. J. Virol. 79: 72737278.
120. Schmidtke, M.,, O. Riabova,, H. M. Dahse,, A. Stelzner, and, V. Makarov. 2002. Synthesis, cytotoxicity and antiviral activity of N, N’-bis-5-nitropyrimidyl derivatives of dispirotripiperazine. Antivir. Res. 55: 117127.
121. Schnute, M. E.,, M. M. Cudahy,, R. J. Brideau,, F. L. Homa,, T. A. Hopkins,, M. L. Knechtel,, N. L. Oien,, T. W. Pitts,, R. A. Poor-man,, M. W. Wathen, and, J. L. Wieber. 2005. 4-Oxo-4, 7-dihydrothieno[2, 3-b]pyridines as non-nucleoside inhibitors of human cytomegalovirus and related herpesvirus polymerases. J. Med. Chem. 48: 57945804.
122. Scott, E. S., and, P. O’Hare. 2001. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 75: 88188830.
123. Shao, L.,, L. M. Rapp, and, S. K. Weller. 1993. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196: 146162.
124. Sheaffer, A. K.,, W. W. Newcomb,, M. Gao,, D. Yu,, S. K. Weller,, J. C. Brown, and, D. J. Tenney. 2001. Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J. Virol. 75: 687698.
125. Shieh, H. S.,, R. G. Kurumbail,, A. M. Stevens,, R. A. Stegeman,, E. J. Sturman,, J. Y. Pak,, A. J. Wittwer,, M. O. Palmier,, R. C. Wiegand,, B. C. Holwerda, and, W. C. Stallings. 1996. Three-dimensional structure of human cytomegalovirus protease. Nature 383: 279282.
126. Sodeik, B.,, M. W. Ebersold, and, A. Helenius. 1997. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136: 10071021.
127. Spear, P. G., and, R. Longnecker. 2003. Herpesvirus entry: an update. J. Virol. 77: 1017910185.
128. Spear, P. G.,, S. Manoj,, M. Yoon,, C. R. Jogger,, A. Zago, and, D. Myscofski. 2006. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 344: 1724.
129. Spector, F. C.,, L. Liang,, H. Giordano,, M. Sivaraja, and, M. G. Peterson. 1998. Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J. Virol. 72: 69796987.
130. Stow, N. D. 2001. Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J. Virol. 75: 1075510765.
131. Stow, N. D.,, O. Hammarsten,, M. I. Arbuckle, and, P. Elias. 1993. Inhibition of herpes simplex virus type 1 DNA replication by mutant forms of the origin-binding protein. Virology 196: 413418.
132. Tatman, J. D.,, V. G. Preston,, P. Nicholson,, R. M. Elliott, and, F. J. Rixon. 1994. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J. Gen. Virol. 75(Pt. 5): 11011113.
133. Thomsen, D. R.,, N. L. Oien,, T. A. Hopkins,, M. L. Knechtel,, R. J. Brideau,, M. W. Wathen, and, F. L. Homa. 2003. Amino acid changes within conserved region III of the herpes simplex virus and human cytomegalovirus DNA polymerases confer resistance to 4-oxo-dihydroquinolines, a novel class of herpesvirus antiviral agents. J. Virol. 77: 18681876.
134. Thurlow, J. K.,, F. J. Rixon,, M. Murphy,, P. Targett-Adams,, M. Hughes, and, V. G. Preston. 2005. The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J. Virol. 79: 150158.
135. Trus, B. L.,, F. P. Booy,, W. W. Newcomb,, J. C. Brown,, F. L. Homa,, D. R. Thomsen, and, A. C. Steven. 1996. The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J. Mol. Biol. 263: 447462.
136. Trus, B. L.,, W. W. Newcomb,, N. Cheng,, G. Cardone,, L. Marekov,, F. L. Homa,, J. C. Brown, and, A. C. Steven. 2007. Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol. Cell 26: 479489.
137. Underwood, M. R.,, R. G. Ferris,, D. W. Selleseth,, M. G. Davis,, J. C. Drach,, L. B. Townsend,, K. K. Biron, and, F. L. Boyd. 2004. Mechanism of action of the ribopyranoside benzimidazole GW275175X against human cytomegalovirus. Antimicrob. Agents Chemother. 48: 16471651.
138. Underwood, M. R.,, R. J. Harvey,, S. C. Stanat,, M. L. Hemphill,, T. Miller,, J. C. Drach,, L. B. Townsend, and, K. K. Biron. 1998. Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J. Virol. 72: 717725.
139. van Zeijl, M.,, J. Fairhurst,, T. R. Jones,, S. K. Vernon,, J. Morin,, J. LaRocque,, B. Feld,, B. O’Hara,, J. D. Bloom, and, S. V. Johann. 2000. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene. J. Virol. 74: 90549061.
140. Visalli, R. J.,, J. Fairhurst,, S. Srinivas,, W. Hu,, B. Feld,, M. Di-Grandi,, K. Curran,, A. Ross,, J. D. Bloom,, M. van Zeijl,, T. R. Jones,, J. O’Connell, and, J. I. Cohen. 2003. Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication. J. Virol. 77: 23492358.
141. Walsh, D., and, I. Mohr. 2006. Assembly of an active translation initiation factor complex by a viral protein. Genes Dev. 20: 461472.
142. Watson, R. J., and, J. B. Clements. 1980. A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature 285: 329330.
143. Weller, S. K., and, D. M. Coen. 2006. Herpes simplex virus. In M. L. Depamphilis (ed.), DNA Replication and Human Disease. Cold Spring Harbor Press, Cold Spring Harbor, NY.
144. White, C. A.,, N. D. Stow,, A. H. Patel,, M. Hughes, and, V. G. Preston. 2003. Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. J. Virol. 77: 63516358.
145. Wilkinson, D. E., and, S. K. Weller. 2004. Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J. Virol. 78:4783–4796.
146. Wilkinson, D. E., and, S. K. Weller. 2003. The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life 55: 451458.
147. Williams, S. L.,, C. B. Hartline,, N. L. Kushner,, E. A. Harden,, D. J. Bidanset,, J. C. Drach,, L. B. Townsend,, M. R. Underwood,, K. K. Biron, and, E. R. Kern. 2003. In vitro activities of benzimidazole D- and L-ribonucleosides against herpesviruses. Anti-microb. Agents Chemother. 47: 21862192.
148. Wills, E.,, L. Scholtes, and, J. D. Baines. 2006. Herpes simplex virus 1 DNA packaging proteins encoded by UL6, UL15, UL17, UL28, and UL33 are located on the external surface of the viral capsid. J. Virol. 80: 1089410899.
149. Wolf, D. G.,, C. T. Courcelle,, M. N. Prichard, and, E. S. Mocarski. 2001. Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc. Natl. Acad. Sci. USA 98: 18951900.
150. Yang, K.,, F. Homa, and, J. D. Baines. 2007. Putative terminase subunits of herpes simplex virus 1 form a complex in the cytoplasm and interact with portal protein in the nucleus. J. Virol. 81: 64196433.
151. Yao, F., and, E. Eriksson. 1999. A novel anti-herpes simplex virus type 1-specific herpes simplex virus type 1 recombinant. Hum. Gene Ther. 10: 18111818.
152. Yao, F., and, E. Eriksson. 2002. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antivir. Res. 53: 127133.
153. Yu, D., and, S. K. Weller. 1998. Genetic analysis of the UL15 gene locus for the putative terminase of herpes simplex virus type 1. Virology 243: 3244.
154. Yu, D., and, S. K. Weller. 1998b. Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J. Virol. 72: 74287439.
155. Zhou, Z. H.,, J. He,, J. Jakana,, J. D. Tatman,, F. J. Rixon, and, W. Chiu. 1995. Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat. Struct. Biol. 2: 10261030.
156. Zhu, H.,, J. P. Cong,, D. Yu,, W. A. Bresnahan, and, T. E. Shenk. 2002. Inhibition of cyclooxygenase 2 blocks human cytomegalo-virus replication. Proc. Natl. Acad. Sci. USA 99: 39323937.
157. Zhu, L., and, S. K. Weller. 1988. UL5, a protein required for HSV DNA synthesis: genetic analysis, overexpression in Escherichia coli, and generation of polyclonal antibodies. Virology 166: 366378.
158. Zhu, L. A., and, S. K. Weller. 1992. The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J. Virol. 66: 469479.
159. Zhu, L. A., and, S. K. Weller. 1992. The UL5 gene of herpes simplex virus type 1: isolation of a lacZ insertion mutant and association of the UL5 gene product with other members of the heli-case-primase complex. J. Virol. 66: 458468.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error