Chapter 6 : Microbial Biogeography: Patterns in Microbial Diversity across Space and Time

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap06-2.gif


Microbes inhabit a wide range of habitats, from hot springs to the deep subsurface, and it is highly improbable that one will be able to observe similar biogeographical patterns across the full range of possible microbial habitats. This chapter primarily focuses on selected topics that are particularly relevant to researchers studying uncultivated microbes in natural environments in order to illustrate what one do, or do not, currently know about their biogeography. However, it is important to recognize that the "unknown unknowns" and "known unknowns" in microbial biogeography currently outnumber the "known knowns." For this reason, the chapter highlights key topics where the gaps in one's knowledge of microbial biogeography are particularly apparent. A few research topics that may be ripe avenues for future research are also highlighted in this chapter. Although the field of biogeography principally focuses on the spatial distribution of organisms, the temporal aspects of microbial biogeography may be particularly important. The entire chapter emphasizes on how studies in microbial biogeography are more difficult to conduct than comparable studies of plant or animal biogeography, largely due to the problems associated with surveying microbial communities. The study of microbial biogeography will help one to move beyond anecdotal studies and observations to build a predictive understanding of microbial diversity and the factors influencing this diversity across space and time.

Citation: Fierer N. 2008. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, p 95-115. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Hypothetical dispersal capabilities of microbes that differ in population densities and stress tolerances. (A) High population density, stress tolerant; (B) high population density, stress intolerant; (C) low population density, stress tolerant; (D) low population density, stress intolerant. Across larger spatial scales, microbial dispersal rates should be directly related to population densities in the source population and the ability to withstand biotic and abiotic stresses associated with dispersal. Figure based on .

Citation: Fierer N. 2008. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, p 95-115. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Comparison of rarefaction curves (A) and rank-abundance curves (B) for bacterial, archaeal, and fungal clone libraries targeting the small-subunit (16S, 18S) rRNA gene. Libraries constructed from a single desert soil sample collected in Joshua Tree, CA. OTUs are defined at the ≤97% sequence similarity level. For the rank-abundance curve (B), only the 50 most abundant OTUs are shown. All three rarefaction curves fail to asymptote, indicating that we have not surveyed the full extent of taxonomic richness in the sample. The differences in the slopes of the rarefaction curves (A) are a result of differences in community evenness (evident in B), not necessarily differences in overall richness. Data are from .

Citation: Fierer N. 2008. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, p 95-115. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Comparison of rarefaction curves from bacterial communities found in different environments. All data are from bacterial clone libraries targeting the 16S rRNA gene with OTUs defined at the ≥97% sequence similarity. Data are from for the beetle gut-associated bacteria, for the soda lake sediment, for the Antarctic soil, and for the stream sediment. The total number of clones () in each library is indicated in the legend.

Citation: Fierer N. 2008. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, p 95-115. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Hypothetical changes in the total number of unique microbial taxa identified from surveys of different spatial scales. The gray line represents the predictions of Fenchel and Finlay ( ); the black line represents the competing hypothesis that there is minimal overlap in species assemblages across habitats. The dashed line and the question mark indicate the high degree of uncertainty.

Citation: Fierer N. 2008. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, p 95-115. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

A comparison of published taxon-area relationships (TARs) from contiguous habitats (arctic diatoms and salt-marsh bacteria) and noncontiguous (island) habitats (treehole bacteria and ectomycorrhizal fungi). The TAR for arctic diatoms is from and represents the number of diatom species in Arctic sediments versus area (m). The TAR for treehole bacteria is from and represents bacterial genetic diversity (determined by DGGE fingerprinting) versus the volume (ml) of water-filled treeholes. The TAR for salt-marsh bacteria is from and represents the number of bacterial OTUs in a salt marsh (99% sequence similarity) versus area (cm). The TAR for ectomycorrhizal fungi is from and represents the number of ectomycorrhizal fungal species in “tree islands” of a given area (m).

Citation: Fierer N. 2008. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time, p 95-115. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson, C. 2006. The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion, New York, NY.
2. Angly, F.,, B. Rodrigues-Brito,, D. Bangor,, P. McNairnie,, M. Breitbart,, P. Salamon,, B. Felts,, J. Nulton,, J. Mahaffy, and, F. Rohwer. 2005. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics 6: 41.
3. Azovsky, A. 2002. Size-dependent species-area relationships in benthos: is the world more diverse for microbes? Ecography 25: 273282.
4. Baas Becking, L. 1934. Geobiologie of inleiding tot de milieukunde. Van Stockum & Zoon, The Hague, The Netherlands.
5. Baker, B. J.,, and J. F. Banfield. 2003. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44: 139152.
6. Bell, T.,, D. Ager,, J. I. Song,, J. A. Newman,, I. P. Thompson,, A. K. Lilley, and, C. J. van der Gast. 2005. Larger islands house more bacterial taxa. Science 308: 18841884.
7. Breitbart, M.,, B. Felts,, S. Kelley,, J. M. Mahaffy,, J. Nulton,, P. Salamon, and, F. Rohwer. 2004a. Diversity and population structure of a near-shore marine-sediment viral community. Proc. R. Soc. London, Ser. B 271: 565574.
8. Breitbart, M.,, J. H. Miyake, and, F. Rohwer. 2004b. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236: 249256.
9. Breitbart, M.,, and F. Rohwer. 2005. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13: 278284.
10. Breitbart, M.,, P. Salamon,, B. Andresen,, J. M. Mahaffy,, A. M. Segall,, D. Mead,, F. Azam, and, F. Rohwer. 2002. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 99: 1425014255.
11. Buckley, D.,, and T. Schmidt. 2002. Exploring the biodiversity of soil—a microbial rain forest, p. 183–208. In J. Staley and, A. Reysenbach (ed.), Biodiversity of Microbial Life. John Wiley & Sons, New York, NY.
12. Buckley, H. L.,, T. E. Miller,, A. M. Ellison, and, N. J. Gotelli. 2003. Reverse latitudinal trends in species richness of pitcher-plant food webs. Ecol. Lett. 6: 825829.
13. Buckling, A.,, R., Kassen, G. Bell, and, P. B. Rainey. 2000. Disturbance and diversity in experimental microcosms. Nature 408: 961964.
14. Chesson, P. 1994. Multispecies competition in variable environments. Theoretical Population Biol. 45: 227276.
15. Chesson, P.,, and N. Huntly. 1989. Short-term instabilities and long-term community dynamics. Trends Ecol. Evol. 4: 293298.
16. Chesson, P. L.,, and R. R. Warner. 1981. Environmental variability promotes coexistence in lottery competitive-systems. American Naturalist 117: 923943.
17. Cho, J. C.,, and J. M. Tiedje. 2000. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66: 54485456.
18. Coleman, A. 2002. Microbial eukaryote species. Science 297: 337.
19. Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs—high diversity of trees and corals Is maintained only in a non-equilibrium state. Science 199: 13021310.
20. Crawford, J.,, J. Harris,, K. Ritz, and, I. Young. 2005. Towards an evolutionary ecology of life in soil. Trends Ecol. Evol. 20: 8187.
21. Crump, B. C.,, C. S. Hopkinson, M. L. Sogin, and J. E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl. Environ. Microbiol. 70: 14941505.
22. Curtis, T.,, and W. Sloan. 2005. Exploring microbial diversity—a vast below. Science 309: 13311333.
23. Curtis, T. P.,, W. T. Sloan, and, J. W. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99: 1049410499.
24. de Wit, R.,, and T. Bouvier. 2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8: 755758.
25. Diamond, J. 1988. Factors controlling species diversity: overview and synthesis. Annals Missouri Botanical Garden 75: 117129.
26. Dunbar, J.,, S. M. Barns,, L. O. Ticknor, and, C. R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68: 30353045.
27. Dykhuizen, D. E. 1998. Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73: 2533.
28. Edwards, R.,, and F. Rohwer. 2005. Viral metagenomics. Nat. Rev. Microbiol. 3: 504510.
29. Elena, S.,, and R. Lenski. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4: 457469.
30. Fenchel, T. 2003. Biogeography for bacteria. Science 301: 925926.
31. Fenchel, T. 1993. There are more small than large species? Oikos 68: 375378.
32. Fenchel, T.,, G. Esteban, and, B. Finlay. 1997. Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80: 220225.
33. Fierer, N.,, M. Breitbart,, J. Nulton,, P. Salamon,, C. Lozupone,, R. T. Jones,, M. Robeson,, R. Edwards,, B. Felts,, R. Knight,, F. Rohwer, and, R. B. Jackson. 2007a. Metagenomic and small-subunit RNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73: 70597066.
34. Fierer, N.,, and R. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103: 626631.
35. Fierer, N.,, J. L. Morse,, S. T. Berthrong,, E. S. Bernhardt,, and R. B. Jackson. 2007b. Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88: 21622173.
36. Finlay, B.,, and K. Clarke. 1999. Ubiquitous dispersal of microbial species. Nature 400: 828.
37. Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 10611063.
38. Floder, S.,, and U. Sommer. 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 11141119.
39. Foissner, W. 2006. Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45: 111136.
40. Ganderton, P.,, and P. Coker. 2005. Environmental Biogeography. Pearson Education, Essex, United Kingdom.
41. Gans, J.,, M. Wolinsky, and, J. Dunbar. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 13871390.
42. Green, J.,, and B. Bohannan. 2006. Spatial scaling of microbial biodiversity. Trends Ecol. Evol. 21: 501507.
43. Green, J.,, A. Holmes,, M. Westoby,, I. Oliver,, D. Briscoe,, M. Dangerfield,, M. Gillings, and, A. Beattie. 2004. Spatial scaling of microbial eukaryote diversity. Nature 432: 747750.
44. Guarner, F.,, and J.- R. Malagelada. 2003. Gut flora in health and disease. Lancet 361: 512519.
45. Hillebrand, H.,, and A. I. Azovsky. 2001. Body size determines the strength of the latitudinal diversity gradient. Ecography 24: 251256.
46. Hong, S. H.,, J. Bunge,, S. O. Jeon, and, S. S. Epstein. 2006. Predicting microbial species richness. Proc. Natl. Acad. Sci. USA 103: 117122.
47. Horner-Devine, M.,, M. Lage,, J. Hughes,, and B. Bohannan. 2004a. A taxa-area relationship for bacteria. Nature 432: 750753.
48. Horner-Devine, M. C.,, K. M. Carney, and, B. J. M. Bohannan. 2004b. An ecological perspective on bacterial biodiversity. Proc. R. Soc. London, Ser. B 271: 113122.
49. Horner-Devine, M. C.,, M. A. Leibold,, V. H. Smith,, and B. J. M. Bohannan. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecol. Lett. 6: 613622.
50. Howard, R.,, and A. Moore. 1991. A Complete Checklist of the Birds of the World. Academic Press, London, United Kingdom
51. Huang, W. E.,, K. Stoecker,, R. Griffiths,, L. Newbold,, H. Daims,, A. S. Whiteley, and, M. Wagner. 2007. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol 9: 18781889.
52. Hubbell, S. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.
53. Hughes, J. B.,, J. J. Hellmann,, T. H. Ricketts, and, B. J. M. Bohannan. 2001. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67: 43994406.
54. Hughes, R. 1986. Theories and models of species abundance. American Naturalist 128: 897899.
55. Jackson, C. R. 2003. Changes in community properties during microbial succession. Oikos 101: 444448.
56. Jackson, C. R.,, P. F. Churchill, and, E. E. Roden. 2001. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82: 555566.
57. Jenkins, D.,, C. Brescacin,, C. Duxbury,, J. Elliott,, J. Evans,, K. Grablow,, M. Hillegass,, B. Lyon,, G. Metzger,, M. Olandese,, D. Pepe,, G. Silvers,, H. Suresch,, T. Thompson,, C. Trexler,, G. Williams,, N. Williams, and, S. Williams. 2007. Does size matter for dispersal distance? Global Ecol. Biogeogr. 16 :415425.
58. Jones, A.,, and R. Harrison. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science Total Environ. 326: 151180.
59. Jones, R.,, and A. Martin. 2006. Testing for differentiation of microbial communities using phylogenetic methods: accounting for uncertainty of phylogenetic inference and character state mapping. Microb. Ecol. 52: 408417.
60. Kassen, R.,, A. Buckling,, G. Bell,, and P. B. Rainey. 2000. Diversity peaks at intermediate productivity in a laboratory microcosm. Nature 406: 508512.
61. Kassen, R.,, and P. Rainey. 2004. The ecology and genetics of microbial diversity. Annu. Rev. Microbiol. 58: 207231.
62. Kennedy, M. J.,, S. L. Reader,, and L. M. Swierczynski. 1994. Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140: 25132529.
63. Kieft, T.,, and T. Phelps. 1997. Life in the slow lane: activities of microorganisms in the subsurface. In P. Amy and, D. Haldeman (ed.), The Microbiology of the Terrestrial Deep Subsurface. CRC Press, Boca Raton, FL.
64. Korona, R.,, C. Nakatsu,, L. Forney,, and R. Lenski. 1994. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc. Natl. Acad. Sci. USA 91: 90379041.
65. Kuske, C. R.,, L. O. Ticknor,, M. E. Miller,, J. M. Dunbar,, J. A. Davis,, S. M. Barns, and, J. Belnap. 2002. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl. Environ. Microbiol. 68: 18541863.
66. Kuypers, M. M. M.,, and B. B. Jørgensen. 2007. The future of single-cell environmental microbiology. Environ. Microbiol. 9: 67.
67. Lachance, M. 2004. Here and there or everywhere? Bioscience 54: 884.
68. Lawley, B.,, S. Ripley,, P. Bridge,, and P. Convey. 2004. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol. 70: 59635972.
69. Lenski, R.,, M. Rose,, S. Simpson,, and S. Tadler. 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. American Naturalist 138: 13151341.
70. Li, W. K. W. 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419: 154157.
71. Lighthart, B. 1997. The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol. Ecol. 23: 263274.
72. Lomolino, M.,, B. Riddle, and, J. Brown. 2006. Biogeography, 3rd ed. Sinauer Assoc., Sunderland, MA.
73. Lozupone, C.,, M. Hamady,, S. Kelley,, and R. Knight. 2007. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73: 15761585.
74. Lozupone, C.,, M. Hamady,, and R. Knight. 2006. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371.
75. Lozupone, C.,, and R. Knight. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71: 82288235.
76. Lozupone, C. A.,, and R. Knight. 2007. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104: 1143611440.
77. MacArthur, R.,, and E. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.
78. MacDonald, G. 2003. Biogeography: Space, Time, and Life. John Wiley & Sons, New York, NY.
79. Madelin, T. 1994. Fungal aerosols: a review. J. Aerosol Sci. 25: 14051412.
80. Madsen, E. 1998. Epistemology of environmental microbiology. Environ. Sci. Tech. 32: 429439.
81. Magurran, A. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, NJ.
82. Magurran, A. 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford, United Kingdom.
83. Martin, A. P. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68: 36733682.
84. Martiny, A. C.,, T. M. Jorgensen,, H. J. Albrechtsen,, E. Arvin,, and S. Molin. 2003. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl. Environ. Microbiol. 69: 68996907.
85. Martiny, J. B.,, B. J. M. Bohannan,, J. H. Brown,, R. K. Colwell,, J. A. Fuhrman,, J. L. Green,, M. C. Horner-Devine,, M. Kane,, J. A. Krumins,, C. R. Kuske,, P. J. Morin,, S. Naeem,, L. Ovreas,, A. L. Reysenbach,, V. H. Smith,, and J. T. Staley. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4: 102112.
86. May, R. 1988. How many species are there on Earth? Science 247: 14411449.
87. McArthur, J. V. 2006. Microbial Ecology: an Evolutionary Approach. Elsevier, Boston, MA.
88. Mittelbach, G. G.,, C. F. Steiner,, S. M. Scheiner,, K. L. Gross,, H. L. Reynolds,, R. B. Waide,, M. R. Willig,, S. I. Dodson,, and L. Gough. 2001. What is the observed relationship between species richness and productivity? Ecology 82: 23812396.
89. Morse, D. R.,, J. H. Lawton,, M. M. Dodson,, and M. H. Williamson. 1985. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314: 731733.
90. Nemergut, D. R.,, S. P. Anderson,, C. C. Cleveland,, A. P. Martin,, A. E. Miller,, A. Seimon, and, S. K. Schmidt. 2007. Microbial community succession in unvegetated, recently-deglaciated soils. Microbial Ecol. 53: 110122.
91. Noguez, A.,, H. Arita,, A. Escalante,, L. Forney,, F. Garcia-Oliva, and, V. Souza. 2005. Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecol. Biogeogr. 14: 241248.
92. O’Brien, H.,, J. Parrent,, J. Jackson,, J. Moncalvo, and, R. Vilgalys. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71: 55445550.
93. Oindo, B.,, A. Skidmore, and, H. Prins. 2001. Body size and abundance relationship: an index of diversity for herbivores. Biodiversity Conservation 10: 19231931.
94. Papke, R. T.,, N. B. Ramsing,, M. M. Bateson, and, D. M. Ward. 2003. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5: 650659.
95. Papke, R. T.,, and D. M. Ward. 2004. The importance of physical isolation to microbial diversification. FEMS Microbiol. Ecol. 48: 293303.
96. Peay, K.,, T. Bruns,, P. Kennedy,, S. Bergemann, and, M. Garbelotto. 2007. A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol. Lett. 10: 470480.
97. Prosser, J.,, B. Bohannan,, T. Curtis,, R. Ellis,, M. Firestone,, R. Freckleton,, J. Green,, L. Green,, K. Killham,, J. Lennon,, A. Osborn,, M. Solan,, C. van der Gast, and, J. Young. 2007. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5: 384392.
98. Rainey, P.,, A. Buckling,, R. Kassen, and, M. Travisano. 2000. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol. Evol. 15: 243247.
99. Ramette, A.,, and J. Tiedje. 2007a. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb. Ecol. 53: 197207.
100. Ramette, A.,, and J. Tiedje. 2007b. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc. Natl. Acad. Sci. USA 104: 27612766.
101. Rappole, J.,, and Z. Hubalek. 2006. Birds and influenza H5N1 virus movement to and within North America. Emerg. Infect. Dis. s 12: 14861492.
102. Reche, I.,, E. Pulido-Villena,, R. Morales-Baquero, and, E. Casamayor. 2005. Does ecosystem size determine aquatic bacterial richness? Ecology 86: 17151722.
103. Ritchie, M.,, and H. Olff. 1999. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400: 557560.
104. Rosenzweig, M. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge, United Kingdom.
105. Sano, E.,, S. Carlson,, L. Wegley,, and F. Rohwer. 2004. Movement of viruses between biomes. Appl. Environ. Microbiol. 70: 58425846.
106. Schloss, P. D.,, and J. Handelsman. 2006. Toward a census of bacteria in soil. PLoS Comput. l Biol. 2: e92.
107. Siemann, E.,, D. Tilman,, and J. Haarstad. 1996. Insect species diversity, abundance and body size relationships. Nature 380: 704706.
108. Teal, T. K.,, D. P. Lies,, B. J. Wold,, and D. K. Newman. 2006. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl. Environ. Microbiol. 72: 73247330.
109. Torsvik, V.,, L. øvreås, and, T. F. Thingstad. 2002. Prokaryotic diversity: magnitude, dynamics, and controlling factors. Science 296: 10641066.
110. Treves, D. S.,, B. Xia,, J. Zhou,, and J. M. Tiedje. 2003. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45: 2028.
111. Tringe, S.,, C. vonMering,, A. Kobayashi,, A. Salamov,, K. Chen,, H. Chang,, M. Podar,, J. Short,, E. Mathur,, J. Detter,, P. Bork,, P. Hugenholtz, and, E. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308: 554557.
112. van der Gast, C.,, A. Lilley,, D. Ager, and, I. Thompson. 2005. Island size and bacterial diversity in an archipelago of engineering machines. Environ. Microbiol. 7: 12201226.
113. Vasanthakumar, A.,, I. Delalibera,, J. Handelsman,, K. D. Klepzig,, P. D. Schloss, and, K. F. Raffa. 2006. Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environ. Entomol. 35: 17101717.
114. Walsh, D. A.,, R. T. Papke, and, W. F. Doolittle. 2005. Archaeal diversity along a soil salinity gradient prone to disturbance. Environ. Microbiol. 7: 16551666.
115. Wani, A. A.,, V. P. Surakasi,, J. Siddharth,, R. G. Raghavan,, M. S. Patole,, D. Ranade, and, Y. S. Shouche. 2006. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: an impact crater in a basalt area. Res. Microbiol. 157: 928937.
116. Ward, D.,, M. Ferris,, S. Nold, and, M. Bateson. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Molec. Biol. Rev. 62: 13531370.
117. Whitaker, R. J.,, D. W. Grogan, and, J. W. Taylor. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301: 976978.
118. Whitfield, J. 2005. Biogeography: Is everything everywhere? Science 310: 960961.
119. Whittaker, R. 1975. Communities and Ecosystems, 2nd ed. Macmillan, New York, NY.
120. Whittaker, R.,, M. Bush, and, K. Richards. 1989. Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecol. Monogr. 59: 59123.
121. Williamson, K. E.,, M. Radosevich, and, K. E. Wommack. 2005. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71: 31193125.
122. Wilson, E. O. 1999. The Diversity of Life. Penguin, London, United Kingdom.
123. Woodcock, S.,, T. P. Curtis,, I. M. Head,, M. Lunn, and, W. T. Sloan. 2006. Taxa-area relationships for microbes: the unsampled and the unseen. Ecol Lett. 9: 805812.
124. Zhou, J.,, B. Xia,, D. S. Treves,, L. Y. Wu,, T. L. Marsh,, R. V. O’Neill,, A. V. Palumbo, and, J. M. Tiedje. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68: 326334.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error