Chapter 10 : New Cultivation Strategies for Terrestrial Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

New Cultivation Strategies for Terrestrial Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815509/9781555814069_Chap10-2.gif


Soils are populated by microbial cells from all three domains of life: , , and . Cultivation of soil bacteria that may display the characteristics of true soil K-strategists can now be carried out routinely, albeit with some effort, and future comparisons with the better-known r-strategists will reveal any underlying physiological and genetic bases for these ecological strategies in soil bacteria. This chapter reviews some of the factors that allow successful isolation of a wider phylogenetic representation of soil bacteria than has traditionally been thought to be possible. Addition of cAMP to media results in significant increase in the cultivation efficiency of marine and freshwater bacteria but did not have an effect on the overall culturability of soil bacteria. Microorganisms can interact in a positive, neutral, or negative manner, and denser inocula can increase the likelihood of these interactions, and so potentially increase or decrease culturability. Some soil bacteria isolated in liquid media grow as colonies on the surfaces of glass tubes in which they are cultured, and do not disperse into liquid culture, and soil myxobacteria often grow on the solid surfaces of culture vessels when grown in liquid culture. The size of the inoculum is an important consideration when attempting to isolate soil bacteria.

Citation: Janssen P. 2008. New Cultivation Strategies for Terrestrial Microorganisms, p 173-192. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aagot, N.,, O. Nybroe,, P. Nielsen, and, K. Johnsen. 2001. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media. Appl. Environ. Microbiol. 67: 52335239.
2. Aakra, Å,, M. Hesseløe, and, L. R. Bakken. 2000. Surface attachment of ammonia-oxidizing bacteria in soil. Microb. Ecol. 39: 222235.
3. Andrews, J. H.,, and R. F. Harris. 1986. r- and K- selection and microbial ecology. Adv. Microb. Ecol. 9: 99147.
4. Angle, J. S.,, S. P. McGrath, and, R. L. Chaney. 1991. New culture medium containing ionic concentrations of nutrients similar to that found in the soil solution. Appl. Environ. Microbiol. 57: 36743676.
5. Ashelford, K. E.,, M. J. Day, and, J. C. Fry. 2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69: 285289.
6. Bakken, L. R. 1997. Culturable and nonculturable bacteria in soil, p. 47–61. In J. D. van Elsas,, J. T. Trevors, and, E. M. H. Wellington (ed.), Modern Soil Microbiology. Marcel Dekker, New York, NY.
7. Bakken, L. R.,, and R. A. Olsen. 1989. DNA-content of soil bacteria of different cell size. Soil Biol. Biochem. 21: 789793.
8. Balestra, G. M.,, and I. J. Misaghi. 1997. Increasing the efficiency of the plate count method for estimating bacterial diversity. J. Microbiol. Methods 30: 111117.
9. Barer, M. R.,, and C. R. Harwood. 1999. Bacterial viability and culturability. Adv. Microb. Physiol. 41: 93137.
10. Bartscht, K.,, H. Cypionka, and, J. Overmann. 1999. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28: 249259.
11. Batchelor, S. E.,, M. Cooper,, S. R. Chhabra,, L. A. Glover,, G. S. Stewart,, P. Williams, and, J. I. Prosser. 1997. Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 63: 22812286.
12. Bloomfield, S. F.,, G. S. A. B. Stewart,, C. E. R. Dodd,, I. R. Booth, and, E. G. M. Power. 1998. The viable but non-culturable phenomenon explained? Microbiology 144: 13.
13. Bollmann, A.,, K. Lewis, and, S. S. Epstein. 2007. Growth of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73: 63866390.
14. Brehm-Stecher, B. F.,, and E. A. Johnson. 2004. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68: 538559.
15. Bremner, J. M.,, and L. A. Douglas. 1971. Use of plastic films for aeration in soil incubation experiments. Soil Biol. Biochem. 3: 289296.
16. Brookes, P. C.,, K. R. Tate, and, D. S. Jenkinson. 1983. The adenylate energy charge of the soil microbial biomass. Soil Biol. Biochem. 15: 916.
17. Bruns, A.,, H. Cypionka, and, J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68: 39783987.
18. Bruns, A.,, U. Nübel,, H. Cypionka, and, J. Overmann. 2003. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69: 19801989.
19. Bussmann, I.,, B. Philipp, and, B. Schink. 2001. Factors influencing the cultivability of lake water bacteria. J. Microbiol. Methods 47: 4150.
20. Button, D. K. 1985. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49: 270297.
21. Calcott, P.,, and T. Calvert. 1981. Characterization of 3′, 5′-cyclic AMP phosphodiesterase in Klebsiella aerogenes and its role in substrate-accelerated death. J. Gen. Microbiol. 122: 313321.
22. Calcott, P. H.,, and J. R. Postgate. 1972. On substrate-accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70: 115122.
23. Casida, L. E. 1962. On the isolation and growth of individual cells from soil. Can. J. Microbiol. 8: 115119.
24. Casida, L. E. 1968. Methods for the isolation and estimation of activity of soil bacteria, p. 97122. In T. R. G. Gray and, D. Parkinson (ed.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, United Kingdom.
25. Cavaletti, L.,, P. Monciardini,, R. Bamonte,, P. Schumann,, M. Rohde,, M. Sosio, and, S. Donadio. 2006. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl. Environ. Microbiol. 72: 43604369.
26. Cayley, S.,, M. T. Record, and, B. A. Lewis. 1989. Accumulation of 3-( N-morpholino)-propanesulfonate by osmotically stressed Escherichia coli K-12. J. Bacteriol. 171: 35973602.
27. Chin, K.-J.,, D. Hahn,, U. Hengstmann,, W. Liesack, and, P. H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65: 50425049.
28. Christensen, H.,, M. Hansen, and, J. Sørensen. 1999. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Eviron. Microbiol. 65: 17531761.
29. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, V. Zagorodnov,, K. Sandman, and, J. N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479485.
30. Conn, H. J. 1918. The microscopic study of bacteria and fungi in soil. N. Y. Agr. Exp. Sta. Tech. Bull. 64: 320.
31. Conn, H. J. 1927. The general soil flora. N. Y. Agr. Exp. Sta. Tech. Bull. 129: 310.
32. Contin, M.,, A. Todd, and, P. C. Brookes. 2001. The ATP concentration in the soil microbial biomass. Soil Biol. Biochem. 33: 701704.
33. Curtis, T. P.,, W. T. Sloan, and, J. C. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99: 1049410499.
34. Dabek-Szreniawska, M.,, and T. Hattori. 1981. Winogradsky’s salts solution as a diluting medium for plate count of oligotrophic bacteria in soil. J. Gen. Appl. Microbiol. 27: 517518.
35. Davis, K. E. R.,, S. J. Joseph, and, P. H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on the culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71: 826834.
36. Dawes, E. A. 1976. Endogenous metabolism and the survival of starved procaryotes. Symp. Soc. Gen. Microbiol. 26: 1953.
37. De Spiegeleer, P.,, J. Sermon,, A. Lietaert,, A. Aertsen, and, C. W. Michiels. 2004. Source of tryptone in growth medium affects oxidative stress resistance in Escherichia coli. J. Appl. Microbiol. 97: 124133.
38. Dykhuizen, D. E. 1998. Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73: 2533.
39. Egdell, J. W.,, W. A. Cuthbert,, C. A. Scarlett, and, S. B. Thomas. 1960. Some studies of the colony count technique for soil bacteria. J. Appl. Bacteriol. 23: 6986.
40. Eichorst, S. A.,, J. A. Breznak, and, T. M. Schmidt. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73: 27082717.
41. Eilers, H.,, J. Pernthaler,, J. Peplies,, F. O. Glöckner,, G. Gerdts, and, R. Amann. 2001. Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67: 51345142.
42. Ellingsøe, P.,, and K. Johnsen. 2002. Influence of soil sample sizes on the assessment of bacterial community structure. Soil Biol. Biochem. 34: 17011707.
43. Ellis, R. J.,, P. Morgan,, A. J. Weightman, and, J. C. Fry. 2003. Cultivation-dependent and - independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 32233230.
44. Ensign, S. A.,, F. J. Small,, J. R. Allen, and, M. K. Sluis. 1998. New roles for CO 2 in the microbial metabolism of aliphatic epoxides and ketones. Arch. Microbiol. 169: 179187.
45. Ferrari, B. C.,, S. J. Binnerup, and, M. Gillings. 2005. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71: 87148720.
46. Fischer, H. 1909. Bakteriologisch-chemishe Untersuchungen. Bakteriologischer Teil. Landw. Jahrb. 38: 355364.
47. Freeman, R.,, J. Dunn,, J. Magee, and, A. Barrett. 2002. The enhancement of isolation of mycobacteria from a rapid liquid culture system by broth culture supernate of Micrococcus luteus. J. Med. Microbiol. 51: 9293.
48. Fröhlich, J.,, and H. König. 2000. New techniques for the isolation of single prokaryotic cells. FEMS Microbiol. Rev. 24: 567572.
49. Furlong, M. A.,, D. R. Singleton,, D. C. Coleman, and, W. B. Whitman. 2002. Molecular and culturebased analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol 68: 12651279.
50. Gans, J.,, M. Wolinsky, and, J. Dunbar. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 13871390.
51. Good, N. E.,, and S. Izawa. 1972. Hydrogen ion buffers. Methods Enzymol. 24: 5368.
52. Gray, N. D.,, and I. M. Head. 2001. Linking genetic identity and function in communities of uncultured bacteria. Environ. Microbiol. 3: 481492.
53. Gray, T. R. G.,, P. Baxby,, I. R. Hill, and, M. Goodfellow. 1968. Direct observation of bacteria in soil, p. 171–197. In T. R. G. Gray and, D. Parkinson (ed.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, United Kingdom.
54. Grundmann, G. L.,, and F. Gourbière. 1999. A micro-sampling approach to improve the inventory of bacterial diversity in soil. Appl. Soil Ecol. 13: 123126.
55. Hahn, M. W.,, P. Stadler,, Q. L. Wu, and, M. Pöckl. 2004. The filtration-acclimatizationmethod for isolation of an important fraction of the not readily cultivable bacteria. J. Microbiol. Methods 57: 379390.
56. Harris, D.,, and E. A. Paul. 1994. Measurements of bacterial growth rates in soil. Appl. Soil Ecol. 1: 277290.
57. Hattori, T. 1976. Plate count of bacteria in soil on a diluted nutrient broth as a culture medium. Rep. Inst. Agric. Res. Tohoku Univ. 27: 2330.
58. Hattori, T. 1980. A note on the effect of different types of agar on plate count of oligotrophic bacteria in soil. J. Gen. Appl. Microbiol. 26: 373374.
59. Hattori, T.,, and R. Hattori. 1976. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit. Rev. Microbiol. 4: 423461.
60. Hattori, R.,, and T. Hattori. 1980. Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol. 26: 114.
61. Hill, I. R.,, and T. R. G. Gray. 1966. Magnetic stirring as a method of dispersing soil bacteria in diluents. Soil Biol. 5: 1214.
62. Hugenholtz, P.,, B. M. Goebel, and, N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 47654774.
63. Ishikuri, S.,, and T. Hattori. 1985. Formation of bacterial colonies in successive time intervals. Appl. Environ. Microbiol. 49: 870873.
64. James, N. 1958. Soil extract in soil microbiology. Can. J. Microbiol. 4: 363370.
65. James, N.,, and M. Sutherland. 1940. Effect of numbers of colonies per plate on the estimate of the bacterial population in soil. Can. J. Res. Section C 18: 347356.
66. Janssen, P. H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 17191728.
67. Janssen, P. H.,, P. S. Yates,, B. E. Grinton,, P. M. Taylor, and, M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 23912396.
68. Jensen, V. 1962. Studies on the microflora of Danish beech forest soils. I. The dilution plate count technique for the enumeration of bacteria and fungi in soil. Zentralbl. Bakteriol. Parasitenkd. Abt. 2 116: 1332.
69. Jensen, V. 1968. The plate count technique, p. 158–170. In T. R. G. Gray and, D. Parkinson (ed.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, United Kingdom.
70. Joseph, S. J.,, P. Hugenholtz,, P. Sangwan,, C. A. Osborne, and, P. H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69: 72107215.
71. Kaeberlein, T.,, K. Lewis, and, S. Epstein. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296: 11271129.
72. Katayama, A.,, K. Kai, and, K. Fujie. 1998. Extraction efficiency, size distribution, colony formation and [ 3H]-thymidine incorporation of bacteria directly extracted from soil. Soil Sci. Plant Nutr. 44: 245252.
73. Kell, D. B.,, A. S. Kaprelyants, and, A. Grafen. 1995. On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evolution 10: 126129.
74. Kieft, T. L. 2000. Size matters: dwarf cells in soil and subsurface terrestrial environments, p. 19–46. In R. R. Colwell and, D. J. Grimes (ed.), Non-culturable Microorganisms in the Environment. American Society for Microbiology, Washington, DC.
75. Knowles, C. J. 1977. Microbial metabolic regulation by adenine pools. Symp. Soc. Gen. Microbiol. 27: 241283.
76. Koch, R. 1881. Zur Untersuchung von pathogenen Organismen. Mitth. a. d. Kaiserl. Gesundheitsampte 1: 148.
77. Kolter, R.,, D. A. Siegele, and, A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47: 855874.
78. Kuznetsov, S. I.,, G. A. Dubinina, and, N. A. Lapteva. 1979. Biology of oligotrophic bacteria. Annu. Rev. Microbiol. 33: 377387.
79. Lazzarini, A.,, L. Cavaletti,, G. Toppo, and, F. Marinella. 2000. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78: 399405.
80. Leadbetter, J. R. 2003. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6: 274281.
81. Leininger, S.,, T. Urich,, M. Schloter,, L. Schwark,, J. Qi,, G. W. Nicol,, J. I. Prosser,, S. C. Schuster, and, C. Schleper. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806809.
82. Liles, M. R.,, B. F. Manske,, S. B. Bintrim,, J. Handelsman, and, R. M. Goodman. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69: 26842691.
83. Lindahl, A.,, Å. Frostegård,, L. Bakken, and, E. Bååth. 1997. Phospholipid fatty acid composition of size fractionated indigenous soil bacteria. Soil Biol. Biochem. 29: 15651569.
84. Lindahl, V. 1996. Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival. J. Microbiol. Methods 25: 279286.
85. Lochhead, A. G.,, and F. E. Chase. 1943. Qualitative studies of soil microorganisms: V. Nutritional requirements of the predominant bacterial flora. Soil Sci. 55: 185195.
86. Lochhead, A. G.,, and R. H. Thexton. 1952. Qualitative studies of soil bacteria. X: Bacteria requiring vitamin B 12 as growth factor. J. Bacteriol. 63: 219226.
87. Lueders, T.,, R. Kindler,, A. Miltner,, M. W. Friedrich, and, M. Kaestner. 2006. Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl. Environ. Microbiol. 72: 53425348.
88. MacDonald, R. M. 1980. Cytochemical demonstration of catabolism in soil micro-organisms. Soil Biol. Biochem. 12: 419424.
89. Marsh, P.,, and E. M. H. Wellington. 1994. Phage-host interactions in soil. FEMS Microbiol. Ecol. 15: 99108.
90. Mason, T. G.,, and G. Blunden. 1989. Quaternary ammonium and tertiary sulfonium compounds of algal origin as alleviators of osmotic stress. Bot. Mar. 32: 313316.
91. McCaig A. E.,, S. J. Grayston,, J. I. Prosser, and, L. A. Glover. 2001. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol. Ecol. 35: 3748.
92. Miller, M. B.,, and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165199.
93. Mitchell, J. G.,, R. Weller,, M. Beconi,, J. Sell, and, J. Holland. 1993. A practical optical trap for manipulating and isolating bacteria from complex microbial communities. Microb. Ecol. 25: 113119.
94. Mochizuki, M.,, and T. Hattori. 1986. Kinetics of microcolony formation of a soil oligotrophic bacterium, Agromonas sp. FEMS Microbiol. Ecol. 38: 5155.
95. Moir, A.,, and D. A. Smith. 1990. The genetics of bacterial spore germination. Annu. Rev. Microbiol. 44: 531553.
96. Monciardini, P.,, L. Cavaletti,, P. Schumann,, M. Rohde, and, S. Donadio. 2003. Conexibacter woesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int. J. Syst. Evol. Microbiol. 53: 569576.
97. Mukamolova, G. V.,, A. S. Kaprelyants, and, D. B. Kell. 1995. Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie van Leeuwenhoek 67: 289295.
98. Mukamolova, G. V.,, N. D. Yanopolskaya,, D. B. Kell, and, A. S. Kaprelyants. 1998a. On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek 73: 237243.
99. Mukamolova, G. V.,, A. S. Kaprelyants,, D. I. Young,, M. Young, and, D. B. Kell. 1998 b. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95: 89168921.
100. Mukamolova, G. V.,, A. S. Kaprelyants,, D. B. Kell, and, M. Young. 2003. Adoption of the transiently non-culturable state—a bacterial survival strategy? Adv. Microb. Physiol. 47: 65129.
101. Neidhardt, N. C.,, J. L. Ingraham, and, M. Schaechter. 1990. Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Inc., Sunderland, MA.
102. Novitsky, J. A. 1987. Microbial growth rates and bio-mass production in a marine sediment: evidence for a very active but mostly nongrowing community. Appl. Environ. Microbiol. 53: 23682372.
103. Ohta, H.,, and T. Hattori. 1980. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26: 99107.
104. Olsen, R. A.,, and L. R. Bakken. 1987. Viability of soil bacteria: optimization of plate-counting techniques and comparisons between total counts and plate counts within different size groups. Microb. Ecol. 13: 5974.
105. Overmann, J. 2006. Principles of enrichment, isolation, cultivation and preservation of prokaryotes, p. 80–136. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes, 3rd ed. Vol. 1: Symbiotic Associations, Biotechnology, Applied Microbiology. Springer, New York, NY.
106. Palumbo, A. V.,, C. Zhang,, S. Liu,, S. P. Scarborough,, S. M. Pfiffner, and, T. J. Phelps. 1996. Influence of media on measurement of bacterial populations in the subsurface. Appl. Biochem. Biotech. 57/58: 905914.
107. Parkinson, D.,, T. R. G. Gray,, J. Holding, and, H. M. Nagel-de-Boois. 1971. Heterotrophic microflora, p. 34–50. In J. Phillipson (ed.), Methods of Study in Quantitative Soil Ecology: Population, Production and Energy Flow. Blackwell Scientific Publications, Oxford, United Kingdom.
108. Petroni, G.,, S. Spring,, K.-H. Schleifer,, F. Verni, and, G. Rosati. 2000. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc. Natl. Acad. Sci. USA 97: 18131817.
109. Podar, M.,, C. B. Abulencia,, M. Walcher,, D. Hutchison,, K. Zengler,, J. A. Garcia,, T. Holland,, D. Cotton,, L. Hauser, and, M. Keller. 2007. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73: 32053214.
110. Postgate, J. R.,, and J. R. Hunter. 1964. Accelerated death of Aerobacter aerogenes starved in the presence of growth limiting substrates. J. Gen. Microbiol. 34: 459473.
111. Radajewski, S.,, P. Ineson,, N. R. Parekh, and, J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403: 646649.
112. Ramsay, A. J. 1984. Extraction of bacteria from soil: efficiency of shaking or ultrasonification as indicated by direct counts and autoradiography. Soil Biol. Biochem. 16: 475481.
113. Reichenbach, H.,, and M. Dworkin. 1981. Introduction to the gliding bacteria, p. 315–327. In M. P. Starr,, H. Stolp,, H. G. Trüper,, A. Balows, and, H. G. Schlegel (ed.), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, vol. 1. Springer-Verlag, Heidelberg, Germany.
114. Ripp, S.,, and R. V. Miller. 1997. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology 143: 20652070.
115. Rochelle, P. A.,, B. A. Cragg,, J. C. Fry,, R. J. Parkes, and, A. J. Weightman. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15: 215225.
116. Romig, W. R.,, and A. M. Brodetsky. 1961. Isolation and preliminary characterization of bacteriophages for Bacillus subtilis. J. Bacteriol. 82: 135141.
117. Rösch, C.,, A. Mergel, and, H. Bothe. 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol. 68: 38183829.
118. Russell, E. J. 1950. Soil Conditions and Plant Growth, 8th ed. Longmans, Green and Co., London, United Kingdom.
119. Sait, M.,, P. Hugenholtz, and, P. H. Janssen. 2002. Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4: 654666.
120. Sait, M.,, K. E. R. Davis, and, P. H. Janssen. 2006. Effect of pH on the isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 18521857.
121. Saito, A.,, H. Mitsui,, R. Hattori,, K. Minamisawa, and, T. Hattori. 1998. Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicum. FEMS Microbiol. Ecol. 25: 277286.
122. Sangwan, P.,, X. Chen,, P. Hugenholtz, and, P. H. Janssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70: 58755881.
123. Sangwan, P.,, S. Kovac,, K. E. R. Davis,, M. Sait, and, P. H. Janssen. 2005. Detection and cultivation of soil verrucomicrobia. Appl. Environ. Microbiol. 71: 84028410.
124. Šantrůčková, H.,, M. I. Bird,, D. Elhottová,, J. Novák,, T. Picek,, M. Šimek, and, R. Tykva. 2005. Heterotrophic fixation of CO 2 in soil. Microb. Ecol. 49: 218225.
125. Schloss, P. D.,, and J. Handelsman. 2006. Toward a census of bacteria in soil. PloS Comp. Biol. 2: e92.
126. Schoenborn, L.,, P. S. Yates,, B. E. Grinton,, P. Hugenholtz, and, P. H. Janssen. 2004. Liquid serial dilution is inferior to solid media for isolation of cultures representing the phylum level diversity of soil bacteria. Appl. Environ. Microbiol. 70: 43634366.
127. Schut, F. 1994. Ecophysiology of a Marine Ultramicrobacterium. Ph. D. thesis, University of Groningen, The Netherlands.
128. Sexstone, A. J.,, N. P. Revsbech,, T. P. Parkin, and, J. M. Tiedje. 1985. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Amer. J. 49: 645651.
129. Shleeva, M. O.,, K. Bagramyan,, M. V. Telkov,, G. V. Mukamolova,, M. Young,, D. B. Kell, and, A. S. Kaprelyants. 2002. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148: 15811591.
130. Simon, H. M.,, C. E. Jahn,, L. T. Bergerud,, M. K. Sliwinski,, P. J. Weimer,, D. K. Willis, and, R. M. Goodman. 2005. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl. Environ. Microbiol. 71: 47514760.
131. Simu, K.,, and Å. Hagström. 2004. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 70: 24452451.
132. Skinner, F. A.,, P. C. T. Jones, and, J. E. Mollison. 1952. A comparison of a direct- and a platecounting technique for the quantitative estimation of soil micro-organisms. J. Gen. Microbiol. 6: 261271.
133. Sørheim, R.,, V. L. Torsvik, and, J. Goksøyr. 1989. Phenotypic divergences between populations of soil bacteria isolated on different media. Microb. Ecol. 17: 181192.
134. Stevenson, B. S.,, S. A. Eichorst,, J. T. Wertz,, T. M. Schmidt, and, J. A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 47484755.
135. Streit, W. R.,, and R. A. Schmitz. 2004. Metagenomics—the key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492498.
136. Sun, Z.,, and Y. Zhang. 1999. Spent culture supernatant of Mycobacterium tuberculosis H37Ra improves viability of aged cultures of this strain and allows small inocula to initiate growth. J. Bacteriol. 181: 76267628.
137. Svenning, M. M.,, I. Wartiainen,, A. G. Hestnes and, S. J. Binnerup. 2003. Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol. Ecol. 44: 347354.
138. Taylor, C. B. 1951. Nature of the factor in soil-extract responsible for bacterial growth-stimulation. Nature 168: 115116.
139. Thornton, H. G. 1922. On the development of a standardized agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies. Ann. Appl. Biol. 9: 241274.
140. Torsvik, V.,, J. Goksøyr, and, F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782787.
141. Tringe, S. G.,, C. von Mering,, A. Kobayashi,, A. A. Salamov,, K. Chen,, H. W. Chang,, M. Podar,, J. M. Short,, E. J. Mathur,, J. C. Detter,, P. Bork,, P. Hugenholtz, and, E. M. Rubin. 2005. Comparative metagenomics of microbial communities. Science 308: 554557.
142. Vandekerkhove, T. T. M.,, A. Willems,, M. Gillis, and, A. Coomans. 2000. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int. J. Syst. Evol. Microbiol. 50: 21972205.
143. Wang, J.,, C. Jenkins,, R. I. Webb, and, J. A. Fuerst. 2002. Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl. Environ. Microbiol. 68: 417422.
144. Waterbury, J. B. 1991. The cyanobacteria—isolation, purification, and identification, p. 149–196. In M. P. Starr,, H. Stolp,, H. G. Trüper,, A. Balows, and, H. G. Schlegel (ed.), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, vol. 1. Springer-Verlag, Heidelberg, Germany.
145. Watve, M.,, V. Shejval,, C. Sonawane,, M. Rahalkar,, A. Matapurkar,, Y. Shouche,, M. Patole,, N. Phadnis,, A. Champhenkar,, K. Damle,, S. Karandikar,, V. Kshirsagar, and, M. Jog. 2000. The “K” selected oligophilic bacteria: a key to uncultured diversity? Curr. Sci. 78: 15351542.
146. Widdel, F. 1987. New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148: 286291.
147. Widdel, F.,, and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3352–3378. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K. H. Schleifer (ed.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., vol. 4. Springer-Verlag, New York, NY.
148. Winding, A.,, S. J. Binnerup, and, J. Sørensen. 1994: Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl. Environ. Microbiol. 60: 28692875.
149. Winogradsky, S. 1949. Microbiologie du Sol. Problèmes et Méthodes. Masson, Paris, France.
150. Zengler, K.,, G. Toledo,, M. Rappé,, J. Elkins,, E. J. Mathur,, J. M. Short, and, M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99: 1568115686.


Generic image for table

Amounts of carbon, nitrogen, phosphorus, and sulfur required for colony formation by bacteria on plates

Citation: Janssen P. 2008. New Cultivation Strategies for Terrestrial Microorganisms, p 173-192. In Zengler K (ed), Accessing Uncultivated Microorganisms. ASM Press, Washington, DC. doi: 10.1128/9781555815509.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error