Chapter 1 : The Archaea: an Invitation to Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Archaea: an Invitation to Evolution , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap01-2.gif


The discovery of the archaebacteria was serendipitous, but not unexpected. In the late 1960s, the author had begun assembling the program for inferring (organismal) genealogical relationships through rRNA sequence comparisons, as the structure of the universal phylogenetic tree was yet to be determined. Molecular evolution had been on the scene for the better part of a decade, and a universal framework within which to study evolution from the molecules on up was needed. The objective in establishing the phylogenetic program, however, was not to refine bacterial taxonomy per se, but to restore an evolutionary perspective/spirit to biology. This time the focus would be on the evolution of the cell itself, in particular, the evolution of its translation mechanism. The walls of the would-be archaeabacteria were not the most important clue, however, for they would turn out to be nonhomologous among themselves. Not only were the phenotypically diverged cousins of the methanogens beginning to show up, but so were the traits common to all archaebacteria. Though reluctant at first, microbiology did eventually come around to accepting the archaea. Molecular reductionism is now spent as a conceptual force and has settled into being a most useful body of technology. Microbial biology in the meanwhile has undergone a conceptual and methodological revolution of its own, freeing itself from its self-inflicted intellectual confinement. The future of biology lies in microbial ecology. Molecular biology is moving in an evolutionary direction-compelled by its own technology.

Citation: Woese C. 2007. The Archaea: an Invitation to Evolution , p 1-13. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Balch, W. E., and, R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane-sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781791.
2. Breed, R. S.,, E. G. D. Murray, and, N. R. Smith (ed.). 1957. Bergey’s Manual of Determinative Bacteriology, 7th ed. Williams & Wilkins, Baltimore, Md.
3. Brock, T. D.,, K. M. Brock., R. T. Belly and, R. L. Weiss. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84: 5468.
4. Cammarano, P.,, A. Teichner., P. Londei., M. Acca., B. Nicolaus., J. L. Sanz. and, R. Amils. 1985. Insensitivity of archaebacterial ribosomes to protein synthesis inhibitors. Evolutionary implications. EMBO J. 4: 811816.
5. Cohn, F. 1875. Üntersuchungenüber Bacterien II. Beitr. Biol. Pflanz 3: 141208.
6. Crick, F. H. C. 1958. The biological replication of macro-molecules. Symp. Soc. Exp. Biol. 12: 138163.
7. Darland, G.,, T. D. Brock., W. Samsonoff. and, S. F. Conti. 1970. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170: 14161418.
8. De Rosa, M.,, A. Gambacorta., G. Millonig. and, J. D. Bu’Lock. 1974. Convergent characters of extremely thermo-philic acidophilic bacteria. Experientia 30: 866868.
9. Fox, G. E.,, L. J. Magrum., W. Balch., R. S. Wolfe. and, C. R. Woese. 1977. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl. Acad. Sci. USA 74: 45374541.
10. Fox, G. E.,, K. R. Pechman. and, C. R. Woese. 1977. Comparative cataloging of 16S ribosomal RNA: molecular approach to procaryotic systematics. Int. J. Syst. Bacteriol. 27: 4457.
11. Fox, G. E.,, E. Stackebrandt., R. B. Hespell., J. Gibson., J. Maniloff., T. A. Dyer., R. S. Wolfe., W. E. Balch., R. Tanner., L. J. Magrum., L. B. Zablen., R. Blakemore., R. Gupta., L. Bonen,, B. J. Lewis., D. A. Stahl., K. R. Luehrsen., K. N. Chen. and, D. R. Woese. 1980. The phylogeny of prokaryotes. Science 209: 457463.
12. Gupta, R. 1984. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem. 259: 94619471.
13. Jones. D., and, P. H. Sneath. 1970. Genetic transfer and bacterial taxonomy. Bacteriol. Rev. 34: 4081.
14. Judson, H. F. 1996. The Eighth Day of Creation: Makers of the Revolution in Biology. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
15. Kandler, O., and, Hippe, H. 1977. Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch. Microbiol. 113: 5760.
16. Kates, M. 1972. Ether-linked lipids in extremely halophilic bacteria, p. 351–398. In F. Snyder (ed.), Ether Lipids, Chemistry and Biology. Academic Press, New York, N.Y.
17. Kluyver, A. J. 1931. The Chemical Activities of Microorganisms. University Press, London, United Kingdom.
18. Kluyver, A. J., and, H. J. L. Donker. 1926. Die Einheit in der Biochemie. Chem. Zell. Gew. 13: 134190.
19. Lamour, V.,, S. Quevillon., S. Diriong., V. C. N’Guyen,, M. Lipinski. and, M. Mirande. 1994. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc. Natl. Acad. Sci. USA 91: 86708674.
20. Langworthy, T. A.,, M. E. Smith. and, W. R. Mayberry. 1972. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius. J. Bacteriol. 112: 11931200.
21. Langworthy, T. A.,, M. E. Smith. and, W. R. Mayberry. 1974. A new class of lipopolysaccharide from Thermoplasma acidophilum. J. Bacteriol. 119: 106116.
22. Murray, R. G. E. 1974. A place for bacteria in the living world, p. 4–9. In R. E. Buchanan and, N. E. Gibbons (ed.), Bergey’s Manual of Determinative Bacteriology, 8th ed. Williams & Wilkins, Baltimore, Md.
23. Nagel, G. M., and, R. F. Doolittle. 1991. Evolution and related-ness in two aminoacyl-tRNA synthetase families. Proc. Natl. Acad. Sci. USA 88: 81218125.
24. Olsen, G. J.,, D. J. Lane., S. J. Giovannoni., N. R. Pace. and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337365.
25. Sanger, F.,, G. G. Brownlee. and, B. G. Barrell. 1965. A two-dimensional fractionation procedure for radioactive nucleotides. J. Mol. Biol. 13: 373398.
26. Sapp, J. 2005. The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol. Mol. Biol. Rev. 69: 292305.
27. Schroedinger, E. 1944. What is Life? Cambridge University Press, Cambridge, United Kingdom.
28. Schroedinger, E. 1954. Nature and the Greeks. Cambridge University Press, Cambridge, United Kingdom.
29. Stanier, R. Y. 1970. Organization and control in prokaryotic and eukaryotic cells, p. 39–54. In H. P. Charles and, B. C. J. G. Knight (ed.), The Society for General Microbiology, Symposium 20. Cambridge University Press, Cambridge, United Kingdom.
30. Stanier, R. Y.,, M. Doudoroff. and, E. A. Adelberg. 1957. The Microbial World. Prentice-Hall, Inc., Engelwood Cliffs, N.J.
31. Stanier, R. Y.,, M. Doudoroff. and, E. A. Adelberg. 1963. The Microbial World, 2nd ed., Prentice-Hall, Inc., Engelwood Cliffs, N.J.
32. Stanier, R. Y., and, C. B. van Niel. 1962. The concept of a bacterium. Archiv. Mikrobiol. 42: 1735.
33. Uchida, T.,, L. Bonen., H. W. Schaup., B. J. Lewis., L. Zablen. and, C. Woese. 1974. The use of ribonuclease U2 in RNA sequence determination. Some corrections in the catalog of oligomers produced by ribonuclease T1 digestion of Escherichia coli 16S ribosomal RNA. J. Mol. Evol. 3: 6377.
34. van Iterson, G., Jr.,, L. E. den Dooren de Jong, and, A. J. Kluyver. 1983. Martinus Beijerinck: His Life and Work. Science Tech Inc., Madison, Wisc.
35. van Niel, C. B. 1946. The classification and natural relationships of bacteria. Cold Spring Harbor Symp. Quant. Biol. 11: 285301.
36. van Niel, C. B. 1949. The “Delft school” and the rise of general microbiology. Bacteriol. Rev. 13: 161174.
37. Vishwanath, P.,, P. Favaretto., H. Hartman., S. C. Mohr. and, T. F. Smith. 2004. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes. Mol. Phylogenet. Evol. 33: 615625.
38. Woese, C. R. 1970. The genetic code in prokaryotes and eukaryotes. In H. P. Charles and, B. C. J. G. Knight (ed.), Organization and Control in Prokaryotic and Eukaryotic Cells, p. 39–54. The Society for General Microbiology, Symposium 20. Cambridge University Press, United Kingdom.
39. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221271.
40. Woese, C. R. 2004. A new biology for a new century. Microbiol. Mol. Biol. Rev. 68: 173186.
41. Woese, C. R., and, G. E. Fox. 1977. The concept of cellular evolution. J. Mol. Evol. 10: 16.
42. Woese, C. R., and, G. E. Fox. 1977. The phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 50885090.
43. Woese, C. R.,, O. Kandler. and, M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 45764579.
44. Woese, C. R., and, G. J. Olsen. 1986. Archaebacterial phylogeny: perspectives on the urkingdoms. Syst. Appl. Microbiol. 7: 161177.
45. Woese, C. R.,, M. L. Sogin., D. A. Stahl., B. J. Lewis. and, L. Bonen. 1976. A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli. J. Mol. Evol. 7: 197213.
46. Woese, C. R.,, M. L. Sogin. and, L. A. Sutton. 1974. Procaryote phylogeny. I. Concerning the relatedness of Aero-bacter aerogenes to Escherichia coli. J. Mol. Evol. 3: 293299.
47. Wolfe, R. S. 2001. The Archaea: a personal overview of the formative years. In M. Dworkin et al. (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.7, November 2, 2001. Springer-Verlag, New York, N.Y.
48. Zillig, W.,, K. O. Stetter. and, D. Janekovic. 1979. DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur. J. Biochem. 96: 597604.
49. Zuckerkandl, E., and, L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theoret. Biol. 8: 357366.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error