Chapter 12 : Central Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Central Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap12-2.gif


The pathways of central metabolism are at the heart of an organism’s total metabolic capacity, and their wide conservation suggests they were an early evolutionary invention. Consistent with this view are common themes that are found spanning the , , and , although variations are observed that reflect not only phylogeny but also particular lifestyles and requirements. The principal aim of this chapter is to describe the central metabolic pathways of the and to identify the unique or unusual features of archaeal metabolism. This chapter talks about the conversion of sugars to pyruvate, and the metabolic fate of pyruvate, either to organic end products or to CO by complete oxidation via the citric acid cycle. Growth on acetate is discussed as this may involve an additional cyclic pathway, the glyoxylate cycle. The catabolism of amino acids is included; while these do feed into the citric acid cycle, catabolism of branched-chain amino acids in particular deserves a special mention as it is in these reactions that the presence of a family of multienzyme complexes was discovered, which were until recently thought to be absent from all archaea. species exhibit considerable metabolic diversity and versatility and are commonly considered to be opportunistic heterotrophs, capable of utilizing a wide range of carbohydrate energy sources. Central metabolism represents one of the most fundamental aspects of the biochemistry of the cell and is commonly perceived as invariant and sacrosanct.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Labeling of pyruvate during glucose catabolism. The characteristic labeling pattern of pyruvate resulting from glucose catabo-lism by the Embden-Meyerhof and Entner-Doudoroff pathways.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Pathways of glucose metabolism. The classical Embden-Meyerhof and Entner-Doudoroff pathways of bacteria and eucarya are shown in bold with each step shown connected by large full arrows, while the alternative pathways of selected archaeal genera are displayed with various small arrows (see key). Unless specified, the cofactor usage is as shown for the classical pathways. Enzymes are denoted by numbers: 1 = glucokinase, 2 = phosphoglucose isomerase, 3 = phosphofructokinase, 4 = fructose-1,6-bisphosphate aldolase, 5 = triose-phosphate isomerase, 6 = glyceraldehyde-3-phosphate dehydrogenase, 7 = phosphoglycerate kinase, 8 = phosphoglycerate mutase, 9 = enolase, 10 = pyruvate kinase, 11 = glyceraldehyde-3-phosphate ferredoxin oxidoreductase, 12 = nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, 13 = glucose-6-phosphate dehydrogenase, 14 = 6-phosphogluconate dehydratase, 15 = KDPG aldolase, 16 = glucose dehydrogenase, 17 = gluconate dehydratase, 18 = KDG kinase, 19 = KDG aldolase, 20 = glyceraldehyde dehydrogenase, 21 = glycerate kinase. In species it is not yet clear whether the conversion of glyceraldehyde to glycerate is catalyzed by glyceraldehyde dehydrogenase ( ) or glyceraldehyde oxidoreductase; see text for details. The reactions involved in the conversion of glucose, or other C6 sugars, to C3 intermediates make up the upper pathway, whereas the lower pathway refers to the conversion of C3 intermediates to pyruvate.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Gluconeogenesis. The reactions of the gluconeogenic pathway. Enzymes are denoted by numbers: 1 = phospho-enolpyruvate synthase, 2 = enolase, 3 = phosphoglycerate mutase, 4 = phosphoglycerate kinase, 5 = glyceraldehyde-3-phosphate dehydrogenase, 6 = triose-phosphate isomerase, 7 = fructose-1,6-bisphosphate aldolase, 8 = fructose-1,6-bisphosphatase, 9 = phos-phoglucose isomerase.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Pyruvate ferredoxin oxidoreductase. Schematic representation of the four-subunit (αβγδ) pyruvate ferredoxin oxidoreductase and the proposed pathway of electron flow (adapted from reference ). Ferredoxin (Fd) is the electron acceptor. CoA, coenzyme A; TPP, thiamine pyrophosphate; [4Fe-4S], iron sulfur cluster.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

The oxidative citric acid cycle and the glyoxylate cycle. The reactions of the citric acid cycle are denoted by solid arrows, and the reactions unique to the glyoxylate cycle are shown with dotted lines. Enzymes are denoted by numbers: 1 = citrate synthase, 2 = aconitase, 3 = isocitrate dehydrogenase, 4 = 2-oxoglutarate dehydrogenase complex (aerobic bacteria and eucarya), 5 = 2-oxoglutarate ferredoxin oxidoreductase (archaea), 6 = succinate thiokinase, 7 = succinate dehydrogenase, 8 = fumarase, 9 = malate dehydrogenase, 10 = isocitrate lyase, 11 = malate synthase.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

The reductive citric acid cycle. Enzymes are denoted by numbers: 1 = malate dehydrogenase, 2 = fumarase, 3 = fumarate reductase, 4 = succinate thiokinase, 5 = 2-oxoglutarate ferredoxin oxidoreductase, 6 = isocitrate dehydrogenase, 7 = aconitase, 8 = ATP citrate lyase.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

General mechanism of the 2-oxoacid dehydrogenase multienzyme complexes. The 2-oxoacid dehydrogenase complexes of bacteria and eucarya comprise enzymes E1 (2-oxoacid decarboxylase), E2 (dihydrolipoyl acyltransferase), and E3 (dihydrolipoamide dehydrogenase). B, histidine base; Lip, enzyme-bound lipoic acid, showing the structure of the dithiolane ring; SUS, protein disulfide bond; TPPH, thiamine pyrophosphate.

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Gene clusters encoding the components of a putative archaeal 2-oxoacid dehydrogenase complex. The arrangement and intergene distances (bp) of the ORFs constituting the E1α, E1β, E2, and E3 genes of the proposed archaeal 2-oxoacid dehydrogenase are shown. The proposed direction of transcription (left to right, as drawn) is the same for all the genes. See text for details of the (— 1) frameshift in the E2 gene of

Citation: Danson M, Lamble H, Hough D. 2007. Central Metabolism, p 260-287. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmed, H.,, T. J. G. Ettema,, B. Tjaden,, A. C. M. Geerling,, J. van der Oost, and, B. Siebers. 2005. The semi-phosphory-lative Entner-Doudoroff pathway in hyperthermophilic archaea—a re-evaluation. Biochem. J. 390: 529540.
2. Aitken, D. M., and, A. D. Brown. 1969. Citrate and glyoxy-late cycles in the halophil, Halobacterium salinarium. Biochim. Biophys. Acta 177: 351354.
3. Altekar, W., and, V. Rangaswamy. 1990. Indication of a modified EMP pathway for fructose breakdown in a halophilic ar-chaebacterium. FEMS Microbiol. Lett. 69: 139144.
4. Altekar, W., and, V. Rangaswamy. 1992. Degradation of endogenous fructose during catabolism of sucrose and mannitol in halophilic archaebacteria. Arch. Microbiol. 158: 356363.
5. Andreesen, J. R., and, G. Gottschalk. 1969. Occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum. Arch. Mikrobiol. 69: 160170.
6. Angelov, A.,, O. Futterer,, O. Valerius,, G. H. Braus, and, W. Liebl. 2005. Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J. 272: 10541062.
7. Aravind, L.,, R. L. Tatusov,, Y. I. Wolf,, D. R. Walker, and, E. V. Koonin. 1998. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14: 442444.
8. Baliga, N. S.,, R. Bonneau,, M. T. Facciotti,, M. Pan,, G. Glusman,, E. W. Deutsch,, P. Shannon,, Y. Chiu,, R. S. Weng,, R. R. Gan,, P. Hung,, S. V. Date,, E. Marcotte,, L. Hood, and, W. V. Ng. 2004. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead sea. Genome Res. 14: 22212234.
9. Baliga, N. S.,, M. Pan,, Y. A. Goo,, E. C. Yi,, D. R. Goodlett,, K. Dimitrov,, P. Shannon,, R. Aebersold,, W. V. Ng, and, L. Hood. 2002. Coordinate regulation of energy transduction modules in Halobacterium sp analyzed by a global systems approach. Proc. Natl. Acad. Sci. USA 99: 1491314918
10. Blaut, M. 1994. Metabolism in methanogens. Antonie van Leeuwenhoek 66: 187208.
11. Bonete, M-J.,, C. Pire,, F. I. Llorca, and, M. L. Camacho. 1996. Glucose dehydrogenase from the halophilic archaeon Haloferax meditarranei: Enzyme purification, characterisation and N-terminal sequence. FEBS Lett. 383: 227229.
12. Bräsen, C, and, P. Schönheit. 2004. Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyper-thermophilic crenarchaeon Pyrobaculum aerophilum. Arch. Microbiol. 182: 277287.
13. Bräsen, C, and, P. Schönheit. 2004. Regulation of acetate and acetyl-CoA converting enzymes during growth on acetate and/or glucose in the halophilic archaeon Haloarcula marismortui. FEMS Microbiol. Lett. 241: 2126.
14. Brunner, N. A.,, H. Brinkmann,, B. Siebers, and, R. Hensel. 1998. NAD +-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. J. Biol. Chem. 273: 61496156.
15. Brunner, N. A.,, B. Siebers, and, R. Hensel. 2001. Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5: 101109.
16. Buchanan, C. L.,, H. Connaris,, M. J. Danson,, C. D. Reeve, and, D. W. Hough. 1999. An extremely thermostable aldolase from Sulfolobus sol-fataricus with specificity for non-phos-phorylated substrates. Biochem. J. 343: 563570.
17. Budgen, N., and, M. J. Danson. 1985. Metabolism of glucose via a modified Entner-Doudoroff pathway in the thermoaci-dophilic archaebacterium Thermoplasma acidophilum. FEBS Lett. 196: 207210.
18. Bult, C. J.,, O. White,, G. J. Olsen,, L. X. Zhou,, R. D. Fleischmann,, G. G. Sutton,, J. A. Blake,, L. M. FitzGerald,, R. A. Clayton,, J. D. Gocayne,, A. R. Kerlavage,, B. A. Dougherty,, J. F. Tomb,, M. D. Adams,, C. I. Reich,, R. Overbeek,, E. F. Kirkness,, K. G. Weinstock,, J. M. Merrick,, A. Glodek,, J. L. Scott,, N. S. M. Geoghagen,, J. F. Weidman,, J. L. Fuhrmann,, D. Nguyen,, T. R. Utterback,, J. M. Kelley,, J. D. Peterson,, P. W. Sadow,, M. C. Hanna,, M. D. Cotton,, K. M. Roberts,, M. A. Hurst,, B. P. Kaine,, M. Borodovsky,, H-P. Klenk,, C. M. Fraser,, H. O. Smith,, C. R. Woese, and, J. C. Venter. (1996) Complete genome sequence of the methanogenic Archaeon, Methanococcus jannaschii. Science 273: 10581073.
19. Cardona, S.,, F. Remonsellez,, N. Guiliani, and, C. A. Jerez. 2001. The glycogen-bound polyphosphate kinase from Sulfolobus acidocaldarius is actually glycogen synthase. Appl. Environ. Microbiol. 67: 47734780.
20. Chassagnole, C,, N. Noisommit-Rizzi,, J. W. Schmid,, K. Mauch, and, M. Reuss. 2002. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79: 5373.
21. Cobucci-Ponzano, B.,, M. Rossi, and, M. Moracci. 2005. Re-coding in Archaea. Mol. Microbiol. 55: 339348.
22. Cohen, G N.,, V. Barbe,, D. Flament,, M. Galperin,, R. Heilig,, O. Lecompte,, O. Poch,, D. Prieur,, J. Querellou,, R. Ripp,, J-C. Thierry,, J. van der Oost,, J. Weissenbach,, Y. Zivanovic, and, P. Forterre. 2003. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol. Microbiol. 47: 14951512.
23. Conway, T 1992. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 9: 127.
24. Cooper, R. A. 1978. Intermediary metabolism of monosac-charides by Bacteria, Int. Rev. Biochem. 16: 3773.
25. Daniel, R. M., and, M. J. Danson. 1995. Did primitive microorganisms use nonhem iron proteins in place of NAD/P? J. Mol. Evol. 40: 559563.
26. Danson, M. J. 1989. Central metabolism of the archaebacteria: an overview. Can. J. Microbiol. 35: 5864.
27. Danson, M. J. 1993. Central metabolism of the Archaea, p. 124. In M. Kates,, D. Kushner, and, A. T. Matheson (ed.), New Comp. Biochemistry [The Biochemistry of Archaea], vol 26. Elsevier/North Holland Biomedical Press, Amsterdam.
28. Danson, M. J.,, S. C. Black,, D. L. Woodland, and, P. A. Wood. 1985. Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS Lett. 179: 120124.
29. Danson, M. J.,, R. Eisenthal,, S. Hall,, S. R. Kessell, and, D. L. Williams. 1984. Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem. J. 218: 811818.
30. Danson, M. J., and, D. W. Hough. 1992. The enzymology of archaebacterial pathways of central metabolism. Biochem. Soc. Symp. 58: 721.
31. Danson, M. J.,, D. J. Morgan,, A. C. Jeffries,, D. W. Hough, and, M. L. Dyall-Smith. 2004. Multienzyme complexes in the Archaea: predictions from genome sequences, p. 177191. In A. Ventosa (ed.), Halophilic Microorganisms. Springer-Verlag, Berlin, Germany.
32. Darland, G.,, T. D. Brock,, W. Samsonoff, and, S. F. Conti. 1970. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170: 14161418.
33. De Ley, J., and, M. Doudoroff. 1957. The metabolism of D-galactose in Pseudomonas saccharophila. J. Biol. Chem. 227: 745757.
34. De Montigny, C., and, J. Sygusch. 1996. Functional characterization of an extreme thermophilic class II fructose-1,6-bis-phosphate aldolase. Eur. J. Biochem. 241: 243248.
35. DeRisi, J. L.,, V. R. Iyer, and, P. O. Brown. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680686.
36. De Rosa, M.,, A. Gambaccorta,, B. Nicolaus,, P. Giardina,, E. Poerio, and, V. Buonocore. 1984. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus sol-fataricus. Biochem. J. 224: 407414.
37. Dhar, N. M., and, W. Altekar. 1986. Distribution of class I and class II fructose biphosphate aldolases in halophilic archaebacteria. FEMS Microbiol. Lett. 35: 177181.
38. Dörr, C.,, M. Zaparty,, B. Tjaden,, H. Brinkmann, and, B. Siebers. 2003. The hexokinase of the hyperthermophile Thermoproteus tenax. J. Biol. Chem. 278: 1874418753.
39. Elshafei, A. M., and, O. M. Abdel-Fatah. 2001. Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger. Enzyme Microb. Technol. 29: 7683.
40. Elzainy, T. A.,, M. M. Hassan, and, A. M. Allam. 1973. New pathway for non-phosphorylated degradation of gluconate by Aspergillus niger. J. Bacteriol. 114: 457459.
41. Entner, N., and, M. Doudoroff. 1952. Glucose and gluconic acid oxidation by Pseudomonas saccharophila. J. Biol. Chem. 196: 853862.
42. Ettema, T. J. G.,, K. S. Makarova,, G. L. Jellema,, H. J. Gierman,, E. V. Koonin,, M. A. Huynen,, W. M. de Vos, and, J. van der Oost. 2004. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J. Bacteriol. 186: 77547762.
43. Evans, J. N. S.,, D. P. Raleigh,, C. J. Tolman, and, M. F. Roberts. 1986. 13C NMR spectroscopy of Methanobacterium thermoautotrophicum. J. Biol. Chem. 261: 1632316331.
44. Evans, J. N. S.,, C. J. Tolman,, S. Kanodia, and, M. F. Roberts. 1985. 2,3-Cyclopyrophosphoglycerate in methanogens: evidence by 13C NMR spectroscopy for a role in carbohydrate metabolism. Biochemistry 24: 56935698.
45. Fiala, G., and, K. O. Stetter. 1986. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145: 5661.
46. Finn, M. W., and, F. R. Tabita. 2003. Synthesis of catalyti-cally active form III ribulose 1,5-bisphosphate carboxyl-ase/oxygenase in archaea. J. Bacteriol. 185: 30493059.
47. Finn, M. W., and, F. R. Tabita. 2004. Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea. J. Bacteriol. 186: 63606366.
48. Fothergill-Gilmore, L. A., and, P. A. Michels. 1993. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59: 105235.
49. Fuhrer, T.,, E. Fischer, and, U. Sauer. 2005. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187: 15811590.
50. Fukuda, E., and, T. Wakagi. 2002. Substrate recognition by 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus sp. strain 7. Biochim. Biophys. Acta 1597: 7480.
51. Fukuda, W.,, T. Fukui,, H. Atomi, and, T. Imanaka. 2004. First characterization of an archaeal GTP-dependent phospho-enolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 186: 46204627.
52. Fukuda, W.,, Y. S. Ismail,, T. Fukui,, H. Atomi, and, T. Imanaka. 2005. Characterisation of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Archaea 1: 293301.
53. Fukui, T.,, H. Atomi,, T. Kanai,, R. Matsumi,, S. Fujiwara, and, T. Imanaka. 2005. Complete genome sequence of the hyper-thermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res. 15: 352363.
54. Futterer, O.,, A. Angelov,, H. Liesegang,, G. Gottschalk,, C. Schleper,, B. Schepers,, C. Dock,, G. Antranikian, and, W. Liebl. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. USA 101: 90919096.
55. Glasemacher, J.,, A.-K. Bock,, R. Schmid, and, P. Schönheit. 1997. Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furio-sus. Eur. J. Biochem. 244: 561567.
56. Graham, D. E.,, H. Xu, and, R. H. White. 2002. A divergent archaeal member of the alkaline phosphatase binuclear metalloenzyme superfamily has phosphoglycerate mutase activity. FEBS Lett. 517: 190194.
57. Grogan, D. W. 1989. Phentotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J. Bacteriol. 171: 67106719.
58. Hansen, T.,, M. Oehlmann, and, P. Schönheit. 2001. Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183: 34283435.
59. Hansen, T.,, B. Reichstein,, R. Schmid, and, P. Schönheit. 2002. The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J. Bacteriol. 184: 59555965.
60. Hansen, T., and, P. Schönheit. 2004. ADP-dependent 6-phos-phofructokinase, an extremely thermophilic, non-allosteric enzyme from the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Extremophiles 8: 2935.
61. Hansen, T.,, D. Wendorff, and, P. Schönheit. 2001. Bifunc-tional phosphoglucose/phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily. J. Biol. Chem. 279: 22622272.
62. Hartmann, R.,, H-D. Sickinger, and, D. Oesterhelt. 1980. Anaerobic growth of Halobacteria. Proc. Natl. Acad. Sci. USA 77: 38213825.
63. Heath, C,, A. C. Jeffries,, D. W. Hough, and, M. J. Danson. 2004. Discovery of the catalytic function of a putative 2-oxoacid dehydrogenase multienzyme complex in the thermophilic archaeon Thermoplasma acidophilum. FEBS Lett. 577: 523527.
64. Holden, H. M.,, I. Rayment, and, J. B. Thoden. 2003. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 278: 4388543888.
65. Holmes, M. L., and, M. L. Dyall-Smith. 2000. Sequence and expression of a halobacterial β-galactosidase gene. Mol. Microbiol. 36: 114122.
66. Hiigler, M.,, H. Huber,, K. O. Stetter, and, G. Fuchs. 2003. Au-totrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch. Microbiol. 179: 160173.
67. Huynen, M. A.,, T. Dandekar, and, P. Bork. 1999. Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol. 7: 281291.
68. Izard, X,, A. Ævarsson,, M. D. Allen,, A. H. Westphal,, R. N. Perham,, A. de Kok, and, W. G. J. Hoi. 1999. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 96: 12401245.
69. Jansen, K.,, E. Stupperich, and, G. Fuchs. 1982. Carbohydrate synthesis from acetyl CoA in the autotroph Methanobacterium thermoautotrophicum. Arch. Microbiol. 132: 355364.
70. Johnsen, U.,, T. Hansen, and, P. Schönheit. 2003. Comparative analysis of pyruvate kinases from the hyperthermophilic archaea Archaeoglobus fulgidus, Aeropyrum pernix, and Pyrobaculum aerophilum and the hyperthermophilic bacterium Thermotoga maritima. J. Biol. Chem. 278: 2541725427.
71. Johnsen, U., and, P. Schönheit. 2004. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marimortui. J. Bacteriol. 186: 61986207.
72. Johnsen, U.,, M. Selig,, K. B. Xavier,, H. Santos, and, P. Schönheit. 2001. Different glycolytic pathways for glucose and fructose in the halophilic archaeonn Halococcus saccharolyticus. Arch. Microbiol. 175: 5261.
73. Jolley, K. A.,, D. G. Maddocks,, S. L. Gyles,, Z. Mullan,, S-L. Tang,, M. L. Dyall-Smith,, D. W. Hough, and, M. J. Danson. 2000. 2-Oxoacid dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and protein structural predictions. Microbiology 146: 10611069.
74. Jolley, K. A.,, E. Rapaport,, D. W. Hough,, M. J. Danson,, W. G. Woods, and, M. L. Dyall-Smith. 1996. Dihydrolipoamide dehydrogenase from the halophilic Archaeon, Haloferax volcanii: homologous over-expression of the cloned gene. J. Bacteriol. 178: 30443048.
75. Jones, W. J.,, J. A. Leigh,, F. Mayer,, C. R. Woese, and, R. S. Wolfe. 1983. Methanococcus jannaschii sp.nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136: 254261.
76. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhock J. Microbiol. 49: 209224.
77. Karadzic, I. M., and, J. A. Maupin-Furlow. 2005. Improvement of two-dimensional gel electrophoresis proteome maps of the haloarchaeon Haloferax volcanii. Proteomics 5: 354359.
78. Kardinahl, S.,, C. L. Schmidt,, T. Hansen,, S. Anemüller,, A. Pe-tersen, and, G. Schäfer. 1999. The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme—an aldehyde oxidoreductase. Eur. J. Biochem. 260: 540548.
79. Kawarabayasi, Y.,, M. Sawada,, H. Horikawa,, Y. Haikawa,, Y. Hino,, S. Yamamoto,, M. Sekine,, S. Baba,, H. Kosugi,, A. Hosoyama,, Y. Nagai,, M. Sakai,, K. Ogura,, R. Otsuka,, H. Nakazawa,, M. Takamiya,, Y. Ohfuku,, T. Funahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, T. Yoshizawa,, Y. Nakamura,, F. T. Robb,, K. Horikoshi,, Y. Masuchi,, H. Shizuya, and, H. Kikuchi. 1998. Complete sequence and gene organization of the genome of a hyperthermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5: 5576.
80. Kawarabayasi, Y.,, Y. Hino,, H. Horikawa,, S. Yamazaki,, Y. Haikawa,, K. Jin-No,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, H. Nakazawa,, M. Takamiya,, S. Masuda,, T. Fu-nahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, K. Kubota,, Y. Nakamura,, N. Nomura,, Y. Sako, and, H. Kikuchi. 1999. Complete genome sequence of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83101.
81. Kawashima, T.,, N. Amano,, H. Koike,, S. Makino,, S. Higuchi,, Y. Kawishima-Ohya,, K. Watanabe,, M. Yamazaki,, K. Keiichi,, T. Kawamoto,, T. Nunoshiba,, Y. Yamamoto,, H. Aramaki,, K. Makino, and, M. Suzuki. 2000. Archaeal adaption to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc. Natl. Acad. Sci. USA 97: 1425714262.
82. Kay, J., and, P. D. J. Weitzman (ed.). 1987. Krebs’ citric acid cycle—half a century and still turning. Biochem. Soc. Symp. 54: 1195.
83. Kengen, S. W. M.,, F. A. M. de Bok,, N-D. van Loo,, C. Dijkema,, A. J. M. Stams, and, W. M. de Vos. 1994. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J. Biol. Chem. 269: 1753717541.
84. Kengen, S. W. M., and, A. J. M. Stams. 1994. Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161: 168175.
85. Kengen, S. W. M.,, J. E. Tuininga,, F. A. M. de Bok,, A. J. M. Stams, and, W. M. de Vos. 1995. Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270: 3045330457.
86. Kersters, K., and, J. De Ley. 1968. The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie van Leeu-wenhoek 34: 393408.
87. Khodursky, A. B.,, B. J. Peter,, N. R. Cozzarelli,, D. Botstein,, P. O. Brown, and, C. Janofsky. 2000. DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 1217012175.
88. Kim, S., and, S. B. Lee. 2005. Identification and characterisation of Sulfolobus sol-fataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. Biochem. J. 387: 271280.
89. Klenk, H. P.,, R. A. Clayton,, J. F. Tomb,, O. White,, K. E. Nelson,, K. A. Ketchum,, R. J. Dodson,, M. Gwinn,, E. K. Hickey,, J. D. Peterson,, D. L. Richardson,, A. R. Kerlavage,, D. E. Graham,, N. C. Kyrpides,, R. D. Fleischmann,, J. Quackenbush,, N. H. Lee,, G. G. Sutton,, S. Gill,, E. F. Kirkness,, B. A. Dougherty,, K. McKenney,, M. D. Adams,, B. Loftus,, S. Peterson,, C. I. Reich,, L. K. McNeil,, J. H. Badger,, A. Glodek,, L. X. Zhou,, R. Overbeek,, J. D. Gocayne,, J. F. Weidman,, L. McDonald,, T. Utterback,, M. D. Cotton,, T. Spriggs,, P. Artiach,, B. P. Kaine,, S. M. Sykes,, P. W. Sadow,, K. P. DAndrea,, C. Bowman,, C. Fujii,, S. A. Garland,, T. M. Mason,, G. J. Olsen,, C. M. Fraser,, H. O. Smith,, C. R. Woese, and, J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364370.
90. Kletzin, A., and, M. W. W. Adams. 1996. Molecular and phy-logenetic characterization of pyruvate and 2- ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga mar-itima. J. Bacteriol. 178: 248257.
91. Kobayashi, T.,, S. Higuchi,, K. Kimura,, T. Kudo, and, K. Hori-koshi. 1995. Properties of glutamate-dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J. Biochem. 118: 587592.
92. Koga, S.,, I. Yoshioka,, H. Sakuraba,, M. Takahashi,, S. Sakasegawa,, S. Shimizu, and, T. Ohshima. 2000. Biochemical characterisation, cloning, and sequencing of ADP-depen-dent (AMP-forming) glucokinase from two hyperthermophilic Archaea, Pyrococcus furiosus and Thermococcus litoralis. J. Biochem. 128: 10791085.
93. König, H.,, E. Nusser, and, K. O. Stetter. 1985. Glycogen in Methanolobus and Methanococcus. FEMS Microbiol. Lett. 28: 265269.
94. König, H.,, R. Skorto,, W. Zillig, and, W-D. Reiter. 1982. Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermo-coccus. Arch. Microbiol. 132: 297303.
95. Kunow, J.,, D. Linder, and, R. K. Thauer. 1995. Pyruvate:ferre-doxin oxidoreductase from the sulfate-reducing Archaeo-globus fulgidus: molecular composition, catalytic properties, and sequence alignments. Arch. Microbiol. 163: 2128.
96. Labes, A., and, P. Schönheit. 2001. Sugar utilisation in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO 2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming). Arch. Microbiol. 176: 329338.
97. Labes, A., and, P. Schönheit. 2003. ADP-dependent glucoki-nase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Arch. Microbiol. 180: 6975.
98. Lamble, H. J.,, N. I. Heyer,, S. D. Bull,, D. W. Hough, and, M. J. Danson. 2003. Metabolic pathway promiscuity in the archaeon Sulfolobus sol-fataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J. Biol. Chem. 278: 3406634072.
99. Lamble, H. J.,, C. C. Milburn,, G. L. Taylor,, D. W. Hough, and, M. J. Danson. 2004. Gluconate dehydratase from the promiscuous Entner-Doudoroff pathway in Sulfolobus sol-fataricus. FEBS Lett. 576: 133136.
100. Maeder, D. L.,, R. B. Weiss,, D. M. Dunn,, J. L. Cherry,, J. M. González,, J. DiRuggiero, and, F. T. Robb. 1999. Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152: 12991305.
101. Mai, X., and, M. W. W. Adams. 1996. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178: 58975903.
102. Makarova, K. S., and, E. V. Koonin. 2003. Filling a gap in the central metabolism of archaea: prediction of a novel aconitase by comparative-genomic analysis. FEMS Microbiol. Lett. 227: 1723.
103. Musfeldt, M., and, P. Schönheit. 2002. Novel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii. J. Bacteriol. 184: 636644.
104. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, L. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S. Pratt,, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, O. White,, S. L. Salzberg,, H. O. Smith,, J. C. Venter, and, C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323329.
105. Ng, W. V.,, S. P. Kennedy,, G. G. Mahairas,, B. Berquist,, M. Pan,, H. D. Shukla,, S. R. Lasky,, N. S. Baliga,, V. Thorsson,, J. Sbrogna,, S. Swartzell,, D. Weir,, J. Hall,, T. A. Dahl,, R. Welti,, Y. A. Goo,, B. Leithauser,, K. Keller,, R. Cruz,, M. J. Danson,, D. W. Hough,, D. G. Maddocks,, P. E. Jablonski,, M. P. Krebs,, C. M. Angevine,, H. Dale,, T. A. Isenbarger,, R. F. Peck,, M. Pohlschroder,, J. L. Spudich,, K. H. Jung,, M. Alam,, T. Freitas,, S. B. Hou,, C. J. Daniels,, P. P. Dennis,, A. D. Omer,, H. Ebhardt,, T. M. Lowe,, R. Liang,, M. Riley,, L. Hood, and, S. DasSarma. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97: 1217612181.
106. Nishizawa, Y.,, T. Yabuki,, E. Fukuda, and, T. Wakagi. 2005. Gene expression and characterization of two 2-oxoacid:ferre-doxin oxidoreductases from Aeropyrum pernix K1. FEBS Lett. 579: 23192322.
107. Oren, A., and, P. Gurevich. 1995. Isocitrate lyase activity in halophilic archaea. FEMS Microbiol. Lett. 130: 9195.
108. Oren, A., and, L. Mana. 2003. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol. Lett. 223: 8387.
109. Papin, J. A.,, N. D. Price,, S. J. Wiback,, D. A. Fell, and, B. O. Palsson. 2003. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28: 250258.
110. Payton, M. A., and, B. A. Haddock. 1985. Aerobic metabolism of glucose, p. 337356. In A. T. Bull and, H. Dalton (ed.), Comprehensive Biotechnology, vol. 1. Pergamon Press, Oxford.
111. Perham, R. N. 2000. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69: 9611004.
112. Perham, R. N.,, D. D. Jones,, H. J. Chauhan, and, M. J. Howard. 2002. Substrate channelling in 2-oxo acid dehydrogenase multienzyme complexes. Biochem. Soc. Trans. 30: 4751.
113. Plaga, W.,, F. Lottspeich, and, D. Oesterhelt. 1992. Improved purification, crystallization and primary structure of pyru-vate: ferredoxin oxidoreductase from Halobacterium halobium. Eur. J. Biochem. 205: 391397.
114. Pratt, K. J.,, C. Carles,, T. J. Carne,, M. J. Danson, and, K. J. Stevenson. 1989. Detection of bacterial lipoic acid: a modified gas chromatographic-mass spectrometric procedure. Biochem. J. 258: 749754.
115. Racker, E. 1948. Enzymatic formation and breakdown of pentose phosphate. Fed. Proc. 7: 180.
116. Racker, E. 1951. Enzymatic synthesis and breakdown of de-oxyribose phosphate. J. Biol. Chem. 196: 347365.
117. Rashid, N.,, H. Imanaka,, T. Kanai,, T. Fukui,, H. Atomi, and, T. Imanaka. 2002. A novel candidate for the true fructose-1,6-bisphosphatase in archaea. J. Biol. Chem. 277: 3064930655.
118. Ravot, G.,, B. Ollivier,, M. L. Fardeau,, B. K. Patel,, K. T. Andrews,, M. Magot, and, J. L. Garcia. 1996. L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62: 26572659.
119. Rawal, N.,, S. M. Kelkar, and, W. Altekar. 1988. Alternative routes of carbohydrate metabolism in halophilic archaebacteria. Ind. J. Biochem. Biophys. 25: 674686.
120. Ray, W. K.,, S. M. Keith,, A. M. DeSantis,, J. P. Hunt,, T. J. Larson,, R. F. Helm, and, P. J. Kennelly. 2005. A phosphohexo-mutase from the archaeaon Sulfolobus sol-fataricus is covalently modified by phosphorylation on serine. J. Bacteriol. 187: 42704275.
121. Robb, F. T.,, D. L. Maeder,, J. R. Brown,, J. DiRuggiero,, M. D. Stump,, R. K. Yeh,, R. B. Weiss, and, D. M. Dunn. 2001. Ge-nomic sequence of hyperthermophile Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 330: 134157.
122. Romano, A. H., and, T. Conway. 1996. Evolution of carbohydrate metabolic pathways. Res. Microbiol. 147: 448455.
123. Ronimus, R. S.,, Y. Kawarabayasi,, H. Kikuchi, and, H. W. Morgan. 2001. Cloning, expression and characterisation of a family B ATP-dependent phosphofructokinase activity from the hyperthermophilic crenarchaeon Aeropyrum pernix. FEMS Microbiol. Lett. 202: 8590.
124. Ronimus, R. S.,, J. Koning, and, H. W. Morgan. 1999. Purification and characterisation of an ADP-dependent phospho-fructokinase from Thermococcus zilligii. Extremophiles 3: 121129.
125. Ronimus, R. S., and, H. W. Morgan. 2001. The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles 5: 357373.
126. Ronimus, R. S., and, H. W. Morgan. 2002. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1: 199221.
127. Rudolph, B.,, T. Hansen, and, P. Schönheit. 2004. Glucose-6-phosphate isomerase from the hyperthermophilic archaeon Methanococcus jannaschii: characterization of the first archaeal member of the phosphoglucose isomerase superfamily. Arch. Microbiol. 181: 8287.
128. Ruepp, A., and, J. Soppa. 1996. Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. J. Bacteriol. 178: 49424947.
129. Ruepp, A.,, W. Graml,, M-L. Santos-Martinez,, K. K. Koretke,, C. Volker,, H. W. Mewes,, D. Frishman,, S. Stocker,, A. N. Lupas, and, W. Baumeister. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407: 508513.
130. Sakuraba, H.,, I. Yoshioka,, S. Koga,, M. Takahashi,, Y. Kita-hama,, T. Satomura,, R. Kawakami, and, T. Ohshima. 2002. ADP-Dependent glucokinase/phosphofructokinase, a novel bi-functional enzyme from the hyperthermophilic archaeon Methanococcus jannaschi. J. Biol. Chem. 277: 1249512498.
131. Schäfer, G. 1996. Bioenergetics of the archaebacterium Sulfolobus. Biochim. Biophys. Acta 1277: 163200.
132. Schäfer, S.,, C. Barkowski, and, G. Fuchs. 1986. Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus-neutrophilus. Arch. Microbiol. 146: 301308.
133. Schäfer, T., and, P. Schönheit. 1993. Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus fu-riosus: involvement of reactions of the Embden-Meyerhof pathway. Arch. Microbiol. 159: 354363.
134. Schäfer, T.,, M. Selig, and, P. Schönheit. 1993. Acetyl-CoA synthetase (ADP-forming) in archaea, a novel enzyme involved in acetate and ATP synthesis. Arch. Microbiol. 159: 7283.
135. Schäfer, T.,, K. B. Xavier,, H. Santos, and, P. Schönheit. 1994. Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel gly-colytic pathway based on 13C labelling data and enzyme activities. FEMS Microbiol. Lett. 121: 107114.
136. Schönheit, P., and, T. Schäfer. 1995. Metabolism of hyper-thermophiles. World J. Microbiol. Biotechnol. 11: 2657.
137. Schramm, A.,, B. Siebers,, B. Tjaden,, H. Brinkmann, and, R. Hensel. 2000. Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J. Bacteriol. 182: 20012009.
138. Schurig, H.,, N. Beaucamp,, R. Ostendorp,, R. Jaenicke,, E. Adler, and, J. R. Knowles. 1995. Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J. 14: 442451.
139. Schut, G. J.,, S. D. Brehm,, S. Datta, and, M. W. W. Adams. 2003. Whole-genome DNA microarray analysis of a hyper-thermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J. Bacteriol. 185: 39353947.
140. Schut, G. J.,, A. L. Menon, and, M. W. W. Adams. 2001. 2-Keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol. 331: 144158.
141. Segerer, A.,, T. A. Langworthy, and, K. O. Stetter. 1988. Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. System. Appl. Microbiol. 10: 161171.
142. Selig, M.,, K. B. Xavier,, H. Santos, and, P. Schönheit. 1997. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch. Microbiol. 167: 217232.
143. Serrano, J. A.,, M. Camacho, and, M. J. Bonete. 1998. Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii. FEBS Lett. 434: 1316.
144. Severina, L. O., and, N. V. Pimenov. 1988. Glucose metabolism in extreme halophic archaebacteria. Microbiology 57: 152156.
145. Severina, L. O., and, N. V. Pimenov. 1988. Glucose metabolism in extreme Halococcus morrhuae. Microbiology 57: 718722.
146. She, Q.,, R. K. Singh,, F. Confalonieri,, Y. Zivanovic,, G. Allard,, M. J. Awayez,, C. C. Y. Chan-Weiher,, I. G. Clausen,, B. A. Curtis,, A. De Moors,, G. Erauso,, C. Fletcher,, P. M. K. Gordon,, I. Heikamp-de Jong,, A. C. Jeffries,, C. J. Kozera,, N. Medina,, X. Peng,, H. P. Thi-Ngoc,, P. Redder,, M. E. Schenk,, C. Theriault,, N. Tolstrup,, R. L. Charlebois,, W. F. Doolittle,, M. Duguet,, T. Gaasterland,, R. A. Garrett,, M. A. Ragan,, C. W. Sensen, and, J. Van der Oost. 2001. The complete genome of the crenarchaeon Sulfolobus sol-fataricus P2. Proc. Natl. Acad. Sci. USA 98: 78357840.
147. Siebers, B.,, H. Brinkman,, C. Dörr,, B. Tjaden,, H. Lilie,, J. van der Oost, and, C. H. Verhees. 2001. Archaeal fructose-1,6-bis-phosphate aldolases constitute a new family of archaeal type class I aldolase. J. Biol. Chem. 276: 2871028718.
148. Siebers, B.,, H-P. Klenk, and, R. Hensel. 1998. PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J. Bacteriol. 180: 21372143.
149. Siebers, B.,, B. Tjaden,, K. Michalke,, C. Dörr,, H. Ahmed,, M. Zaparty,, P. Gordon,, C. W. Sensen,, A. Zibat,, H-P. Klenk,, S. C. Schuster, and, R. Hensel. 2004. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J. Bacteriol. 186: 21792194.
150. Smith, D. R,, L. A. Doucette-Stamm,, C. Deloughery,, H. Lee,, J. Dubois,, T. Aldredge,, R. Bashirzadeh,, D. Blakely,, R. Cook,, K. Gilbert,, D. Harrison,, L. Hoang,, P. Keagle,, W. Lumm,, B. Pothier,, D. Qiu,, R. Spadafora,, R. Vicaire,, Y. Wang,, J. Wierzbowski,, R. Gibson,, N. Jiwani,, A. Caruso,, D. Bush, and, J. N. Reeve. 1997. Complete genome sequence of Methano-bacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179: 71357155.
151. Smith, L. D.,, N. Budgen,, S. J. Bungard,, M. J. Danson, and, D. W. Hough. 1989. Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem. J. 261: 973977.
152. Smith, L. D.,, S. J. Bungard,, M. J. Danson, and, D. W. Hough. 1987. Dihydrolipoamide dehydrogenase from the thermoaci-dophilic archaebacterium Thermoplasma acidophilum. Biochem. Soc. Trans. 15: 1097.
153. Soderberg, T. 2005. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes. Archaea 1: 347352.
154. Sonawat, H. M.,, S. Srivastava,, S. Swaminathan, and, G. Govil. 1990. Glycolysis and Entner-Doudoroff pathways in Halobacterium halobium: Some new observations based on 13C NMR spectroscopy. Biochem. Biophys. Res. Commun. 173: 358362.
155. Stec, B.,, H. Yang,, K. A. Johnson,, L. Chen, and, M. F. Roberts. 2000. MJ0109 is an enzyme that is both an inositol monophosphatase and the ’missing’ archaeal fructose-1,6-bisphosphatase. Nat. Struct. Biol. 7: 10461050.
156. Steen, I. H.,, H. Hvoslef,, T. Lien, and, N-K. Birkeland. 2001. Isocitrate dehydrogenase, malate dehydrogenase, and glutamate dehydrogenase from Archaeoglobus fulgidus. Methods Enzymol. 331: 1326.
157. Szymona, M., and, M. Doudoroff. 1960. Carbohydrate metabolism in Rhodopseudomonas spheroides. J. Gen. Microbiol. 22: 167183.
158. Tersteegen, A.,, D. Linder,, R. K. Thauer, and, R. Hedderich. 1997. Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 244: 862868.
159. Tomlinson, G. A., and, L. I. Hochstein. 1976. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 22: 587591.
160. Tomlinson, G. A.,, T. K. Kock, and, L. I. Hochstein. 1974. The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff Pathway. Can. J. Microbiol. 20: 10851091.
161. Tuininga, J. E.,, C. H. Verhees,, J. van der Oost,, S. W. M. Kengen,, A. J. M. Stams, and, W. M. de Vos. 1999. Molecular and biochemical characterisation of the ADP-dependent phospho-fructokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 274: 2102321028.
162. Uhrigshardt, H.,, M. Walden,, H. John,, A. Petersen, and, S. Anemüller. 2002. Evidence for an operative glyoxylate cycle in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Lett. 513: 223229.
163. van der Oost, J.,, M. A. Huynen, and, C. H. Verhees. 2002. Molecular characterization of phosphoglycerate mutase in archaea. FEMS Microbiol. Lett. 212: 111120.
164. van der Oost, J.,, G. Schut,, S. W. M. Kengen,, W. R. Hagen,, M. Thomm, and, W. M. de Vos. 1998. The ferredoxin-de-pendent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation. J. Biol. Chem. 273: 2814928154.
165. Verhees, C. H.,, M. A. Huynen,, D. E. Ward,, E. Schiltz,, W. M. de Vos, and, J. van der Oost. 2001. The phosphoglucose iso-merase from the hyperthermophilic archaeon Pyrococcus fu-riosus is a unique glycolytic enzyme that belongs to the cupin superfamily. J. Biol. Chem. 276: 4092640932.
166. Verhees, C. H.,, S. W. M. Kengen,, J. E. Tuininga,, G. J. Schut,, M. W. W. Adams,, W. M. de Vos, and, J. van der Oost. 2003. The unique features of glycolytic pathways in Archaea. Biochem. J. 375: 231246.
167. Verhees, C. H.,, D. G. M. Koot,, T. J. G. Ettema,, C. Dijkema,, W. M. de Vos, and, J. van der Oost. 2002. Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem. J. 366: 121127.
168. Verhees, C. H.,, J. E. Tuininga,, S. W. M. Kengen,, A. J. M. Stams,, J. van der Oost, and, W. M. de Vos. 2001b. ADP-Dependent phosphofructokinase in mesophilic and thermophilic methanogenic Archaea. J. Bacteriol. 183: 71457153.
169. Vettakkorumakankav, N. N., and, K. J. Stevenson. 1992. Dihydrolipoamide dehydrogenase from Haloferax volcanii: gene cloning, complete primary sequence and comparison to other dihydrolipoamide dehydrogenases. Biochem. Cell Biol. 70: 656663.
170. Vreeland, R. H.,, S. Straight,, J. Krammes,, K. Dougherty,, W. D. Rosenzweig, and, M. Kamekura. 2002. Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6: 445452.
171. Ward, D. E.,, S. W. M. Kengen,, J. van der Oost, and, W. M. de Vos. 2000. Purification and characterization of the alanine aminotransferase from the hyperthermophilic archaeon Pyro-coccus furiosus and its role in alanine production. J. Bacteriol. 182: 25592566.
172. Weitzman, P. D. J. 1987. Patterns of diversity of citric acid cycle enzymes. Biochem. Soc. Symp. 54: 3343.
173. Woese, C. R. 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA 95: 68546859.
174. Wood, A. P., and, D. P. Kelly. 1980. Carbohydrate degradation pathways in Thiobacillus A2 grown on various sugars. J. Gen. Microbiol. 120: 333345.
175. Wood, A. P.,, D. P. Kelly, and, P. R. Norris. 1987. Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch. Microbiol. 146: 382389.
176. Xavier, K. B.,, M. S. Da Costa, and, H. Santos. 2000. Demonstration of a novel glycolytic pathway in the hyperthermophilic archaeon Thermococcus zilligii by 13C-labeling experiments and nuclear magnetic resonance analysis. J. Bacteriol. 182: 46324636.
177. Yu, J-P.,, J. Ladapo, and, W. B. Whitman. 1994. Pathway of glycogen metabolism in Methanococcus maripaludis. J. Bacteriol. 176: 325332.
178. Zaigler, A.,, S. C. Schuster, and, J. Soppa. 2003. Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol. Microbiol. 48: 10891105.
179. Zhang, Q.,, T. Iwasaki,, T. Wakagi, and, T. Oshima. 1996. 2-Oxoacid:ferredoxin oxidoreductase from the thermoaci-dophilic archaeon, Sulfolobus sp. strain 7. J. Biochem. 120: 587599.
180. Zhu, W. H.,, C. I. Reich,, G. J. Olsen,, C. S. Giometti, and, J. R. Yates. 2004. Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. J. Proteome Res. 3: 538548.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error