Chapter 17 : Protein Translocation into and across Archaeal Cytoplasmic Membranes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Protein Translocation into and across Archaeal Cytoplasmic Membranes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815516/9781555813918_Chap17-2.gif


Recent analyses of the archaeal Sec and Tat pathways have revealed novel and crucial information about archaeal protein translocation, as well as protein translocation in general. This chapter provides an overview on protein translocation into and across archaeal cytoplasmic membranes. The Sec pathway is the only known universally conserved protein translocation pathway. Protein translocation may be driven by one or several extracytoplasmic activities that provide directionality by preventing movement of the polypeptide chain back into the cytoplasm. In vitro studies suggest that the proton motive force (PMF), in concert with the action of SecA, facilitates bacterial secretion via the Sec pore. Furthermore, the PMF is apparently sufficient to drive translocation of proteins via the twin-arginine translocation (Tat) pore. Thus, it is possible that an ion gradient across the archaeal membrane is the sole source of energy for protein translocation. Many bacteria and archaea possess an additional general secretion pathway, described as the Tat pathway. The presence of the twin-arginine motif in the Tat signal sequence provided a means of identifying novel Tat substrates by computational pattern-matching techniques. Recent in vivo, in vitro, and in silico studies have led to a better understanding of archaeal protein translocation. Moreover, the elucidation of an archaeal Sec-pore X-ray crystal structure strikingly demonstrates how analysis of this pathway in archaea can significantly advance the field of protein translocation as a whole. In addition to standard molecular and biochemical approaches, it is now crucial to develop in vitro Sec and Tat protein translocation systems that will more clearly define the mechanisms of these pathways and reveal the energetics of these cellular processes in archaea.

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Schematic representation of different classes of Sec and Tat signal sequences. Grey and hatched boxes represent N-ter-minally charged and hydrophobic (H region) domains, respectively. Arrows indicate the signal peptide cleavage sites. Cleavage of predicted class 2 signal peptides of Tat substrates by SPII has not yet been confirmed experimentally. Modified from FEMS Reviews (85) with permission of the publisher.

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mammalian SRP interaction with the ribosome. Upon cytoplasmic exposure of the initial TM or H region of many Sec substrates, the SRP interacts with the ribosome nascent chain (RNC) complex via several points of interaction. The SRP54 protein recognizes and binds the nascent polypeptide, while SRP9/14 bind and block the A site (see text). The bending of the SRP RNA molecule required for both of these interactions to occur simultaneously may be facilitated by SRP68/72. SRP proteins are represented by their corresponding numbers. Modified from Current Opinion in Structural Biology (25) with permission of the publisher.

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Sec machinery in the three domains of life. Components of the Sec machinery in representatives of bacteria (E. coli), archaea (H. volcanii), and eucarya (S. cerevisiae). Sec substrates are translocated into or across hydrophobic membranes via the universally conserved heterotrimeric Sec61 (SecYEG in bacteria) pore. Translocation through this protein-conducting channel requires distinct sets of additional Sec components in bacteria, archaea, and eucarya. YidC and TRAM are only involved in the insertion of proteins into the bacterial cytoplasmic and the ER membrane, respectively. While ATP hydrolysis by SecA and Kar2p are involved in energizing Sec translocation in bacteria and eucarya, respectively, no archaeal translocation ATPases have been identified. Cyt, cytoplasm. Reprinted from Current Opinions in Microbiology (84) with permission of the publisher.

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Models of putative archaeal protein translocation energetics. See text for details. (a) Cotranslational translocation. (b) Post-translational translocation with a cytoplasmic energy-coupling protein. (c) Posttranslational translocation with extracytoplasmic activity. (d) Posttranslational translocation harnessing a gradient (e.g., ΔpH) across the cytoplasmic membrane. Figure reprinted from FEMS Reviews (85) with permission of the publisher.

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Tat components and model of Tat secretory mechanism. (A) Typcial structure of Tat machinery components in bacteria and archaea. The postamphipathic helical C terminus for TatA and TatB has been excluded for visual simplicity. (B) Model of Tat substrate translocation in E. coli. Tat substrates (oval) obtain tertiary structure in the cytoplasm and are targeted to the membrane TatBC complex in an unknown manner. Once bound to substrate, the TatBC complex interacts with a multimeric TatA ring in a ΔpH-dependent manner. The plugged inactive TatA ring likely alters to an active unplugged confirmation upon engaging substrate. There are insufficient data describing points of protein interactions, and the depicted points of interaction between proteins are not meant to be completely accurate.

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alami, M.,, I. Luke,, S. Deitermann,, G. Eisner,, H.G. Koch,, J. Brunner, and, M. Muller. 2003. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12: 937946.
2. Albers, S. V., and, A. J. Driessen. 2005. Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus sol-fataricus. Microbiology 151: 763773.
3. Albers, S. V., and, A. M. Driessen. 2002. Signal peptides of secreted proteins of the archaeon Sulfolobus sol-fataricus: a genomic survey. Arch. Microbiol. 177: 209216.
4. Albers, S. V.,, Z. Szabo, and, A. J. Driessen. 2003. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185: 39183925.
5. Alder, N. N.,, Y. Shen,, J. L. Brodsky,, L. M. Hendershot, and, A. E. Johnson. 2005. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol. 168: 38999.
6. Allers, T., and, M. Mevarech. 2005. Archaeal genetics—the third way. Nat. Rev. Genet. 6: 5873.
7. Angelini, S.,, S. Deitermann, and, H. G. Koch. 2005. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6: 476481.
8. Bardy, S. L.,, S. Y. Ng,, D. S. Carnegie, and, K. F. Jarrell. 2005. Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. J. Bacteriol. 187: 11881191.
9. Bardy, S, L.,, S. Y. Ng, and, K. F. Jarrell. 2004. Recent advances in the structure and assembly of the archaeal flagellum. J. Mol. Microbiol. Biotechnol. 7: 4151.
10. Bendtsen, J. D.,, H. Nielsen,, D. Widdick,, T. Palmer, and, S. Brunak. 2005. Prediction of twin-arginine signal peptides. BMC Bioinformatics 6: 167.
11. Berks, B. C. 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22: 393404.
12. Blaudeck, N.,, P. Kreutzenbeck,, M. Muller,, G. A. Sprenger, and, R. Freudl. 2005. Isolation and characterization of bi-functional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J. Biol. Chem. 280: 34263432.
13. Bolhuis, A. 2002. Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148: 33353346.
14. Cao, T. B., and, M. H. Saier, Jr. 2003. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim. Biophys. Acta 1609: 115125.
15. Cline, K., and, H. Mori. 2001. Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J. Cell Biol. 154: 719729.
16. Cristobal, S.,, J. W. de Gier,, H. Nielsen, and, G. von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J. 18: 29822990.
17. Dalbey, R. E., and, M. Chen. 2004. Sec-translocase mediated membrane protein biogenesis. Biochim. Biophys. Acta 1694: 3753.
18. Deitermann. S.,, G. S. Sprie, and, H. G. Koch. 2005. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J. Biol. Chem. 280: 3907739085.
19. De Keersmaeker, S.,, L. Van Mellaert,, K. Schaerlaekens,, W. Van Dessel,, Vrancken K., et al. 2005. Structural organization of the twin-arginine translocation system in Streptomyces lividans. FEBS Lett. 579: 797802.
20. Dilks, K.,, M. I. Gimenez, and, M. Pohlschröder. 2005. Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J. Bacteriol. 187: 81048113.
21. Dilks, K.,, M. I. Gimenez, and, M. Pohlschröder. 2005. Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J. Bacteriol. 187: 81048113.
22. Dilks, K.,, R. W. Rose,, E. Hartmann, and, M. Pohlschröder. 2003. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J. Bacteriol. 185: 14781483.
23. Duong, F., and, W. Wickner. 1997. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16: 27562768.
24. Duong, F., and, W. Wickner. 1997. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J. 16: 48714879.
25. Egea, P. F.,, S. O. Shan,, J. Napetschnig,, D. F. Savage,, P. Walter, and, R. M. Stroud. 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427: 215221.
26. Egea, P. F.,, R. M. Stroud, and, P. Walter. 2005. Targeting proteins to membranes: structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15: 213220.
27. Eichler, J. 2002. Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes. J. Mol. Evol. 54: 411415.
28. Eichler, J. 2003. Evolution of the prokaryotic protein translocation complex: a comparison of archaeal and bacterial versions of SecDF. Mol. Phylogenet. Evol. 27: 504509.
29. Evans, E. A.,, R. Gilmore, and, G. Blobel. 1986. Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. USA 83: 581585.
30. Falb, M.,, F. Pfeiffer,, P. Palm,, K. Rodewald,, V. Hickmann,, J. Tittor, and, D. Oesterhelt. 2005. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res. 15: 13361343.
31. Fang, H., and, N. Green. 1994. Nonlethal sec71–1 and sec72–1 mutations eliminate proteins associated with the Sec63p-BiP complex from S. cerevisiae. Mol. Biol. Cell 5: 933942.
32. Finke, K.,, K. Plath,, S. Panzner,, S. Prehn,, T. A. Rapoport,, E. Hartmann, and, T. Sommer. 1996. A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J. 15: 14821494.
33. Flower, A. M.,, L. L. Hines, and, P. L. Pfennig. 2000. SecG is an auxiliary component of the protein export apparatus of Escherichia coli. Mol. Gen. Genet. 263: 131136.
34. Fons, R. D.,, B. A. Bogert, and, R. S. Hegde. 2003. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160: 529539.
35. Gier, J. W. 2005. Biogenesis of inner membrane proteins in Escherichia coli. Annu. Rev. Microbiol. 59: 329355.
36. Gohlke, U.,, L. Pullan,, C. A. McDevitt,, I. Porcelli,, E. de Leeuw, et al. 2005. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc. Natl. Acad. Sci. USA 102: 1048210486.
37. Görlich, D.,, E. Hartmann,, S. Prehn, and, T. A. Rapoport. 1992. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357: 4752.
38. Görlich, D.,, S. Prehn,, E. Hartmann,, K. U. Kalies, and, T. A. Rapoport. 1992. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71: 489503.
39. Görlich, D., and, T. A. Rapoport. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75: 615630.
40. Gropp, R.,, F. Gropp, and, M. C. Betlach. 1992. Association of the halobacterial 7S RNA to the polysome correlates with expression of the membrane protein bacterioopsin. Proc. Natl. Acad. Sci. USA 89: 12041208.
41. Haddad, A.,, R. W. Rose, and, M. Pohlschröder. 2005. The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain. J. Bacteriol. 187: 40154022.
42. Halic, M.,, T. Becker,, M. R. Pool,, C. M. Spahn,, R. A. Grassucci, et al. 2004. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427: 808814.
43. Hamman, B. D.,, L. M. Hendershot, and, A. E. Johnson. 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92: 747758.
44. Hanada, M.,, K. I. Nishiyama,, S. Mizushima, and, H. Tokuda. 1994. Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12). J. Biol. Chem. 269: 2362523631.
45. Hand, N. J.,, A. Laskewitz,, R. Klein, and, M. Pohlschröder. 2006. Archaeal and Bacterial SecD and SecF homologs exhibit striking structural and functional conservation. J. Bacteriol. 188: 12511259.
46. Hartmann, E.,, T. Sommer,, S. Prehn,, D. Gorlich,, S. Jentsch, and, T. A. Rapoport. 1994. Evolutionary conservation of components of the protein translocation complex. Nature 367: 654657.
47. Hatzixanthis, K.,, T. Palmer, and, F. Sargent. 2003. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol. Microbiol. 49: 13771390.
48. Hayashi, S., and, H. C. Wu. 1990. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22: 451471.
49. Houben, E. N.,, P. A. Scotti,, Q. A. Valent,, J. Brunner,, J. L. de Gier,, B. Oudega, and, J. Luirink. 2000. Nascent Lep inserts into the Escherichia coli inner membrane in the vicinity of YidC, SecY and SecA. FEBS Lett. 476: 229233.
50. Irihimovitch, V., and, J. Eichler. 2003. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278: 1288112887.
51. Jongbloed, J. D.,, H. Antelmann,, M. Hecker,, R. Nijland,, S. Bron, et al. 2002. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem. 277: 4406844078.
52. Jongbloed, J. D.,, U. Grieger,, H. Antelmann,, M. Hecker,, R. Nijland,, S. Bron, and, J. M. van Dijl. 2004. Two minimal Tat translocases in Bacillus. Mol. Microbiol. 54: 13191325.
53. Jungnickel. B.,, T. A. Rapoport, and, E. Hartmann. 1994. Protein translocation: common themes from bacteria to man. FEBS Lett. 346: 73347.
54. Kabani, M.,, J. M. Beckerich, and, C. Gaillardin. 2000. Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol. Cell. Biol. 20: 69236934.
55. Karamyshev, A. L., and, A. E. Johnson. 2005. Selective SecA association with signal sequences in ribosome-bound nascent chains: A potential role for SecA in ribosome targeting to the bacterial membrane. J. Biol. Chem. 280: 4048940493.
56. Kato, Y.,, K. Nishiyama, and, H. Tokuda. 2003. Depletion of SecDF-YajC causes a decrease in the level of SecG: implication for their functional interaction. FEBS Lett. 550: 114118.
57. Keenan, R. J.,, D. M. Freymann,, R. M. Stroud, and, P. Walter. 2001. The signal recognition particle. Annu. Rev. Biochem. 70: 755775.
58. Kinch, L. N.,, M. H. Saier, Jr., and, N. V. Grishin. 2002. Sec61beta—a component of the archaeal protein secretory system. Trends Biochem. Sci. 27: 170171.
59. Kokoeva, M. V.,, K. F. Storch,, C. Klein, and, D. Oesterhelt. 2002. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J. 21: 23122322.
60. Koning, S. M.,, S. V. Albers,, W. N. Konings, and, A. J. Driessen. 2002. Sugar transport in (hyper) thermophilic archaea. Res. Microbiol. 153: 6167.
61. Lichi, T.,, G. Ring, and, J. Eichler. 2004. Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. Eur. J. Biochem. 271: 13821390.
62. Macnab, R. M. 2004. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694: 207217.
63. Mason, N.,, L. F. Ciufo, and, J. D. Brown. 2000. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19: 41644174.
64. Matsuyama, S.,, Y. Fujita, and, S. Mizushima. 1993. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. EMBO J. 12: 265270.
65. Mattar, S.,, B. Scharf,, S. B. Kent,, K. Rodewald,, D. Oesterhelt, and, M. Engelhard. 1994. The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 269: 1493914945.
66. Miller, J. D.,, S. Tajima,, L. Lauffer, and, P. Walter. 1995. The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane. J. Cell Biol. 128: 273282.
67. Moll, R.,, S. Schmidtke, and, G. Schaefer. 1996. A putative signal recognition particle receptor alpha subunit (SR alpha) homologue is expressed in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. FEMS Microbiol. Lett. 137: 5156.
68. Moll, R. G. 2003. Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. Biochem. J. 374: 247254.
69. Moll, R. G. 2004. The archaeal signal recognition particle: steps toward membrane binding. J. Bioenerg. Biomembr. 36: 4753.
70. Mori, H., and, K. Ito. 2003. Biochemical characterization of a mutationally altered protein translocase: proton motive force stimulation of the initiation phase of translocation. J. Bacteriol. 185: 405412.
71. Nakamura, K.,, S. Yahagi,, T. Yamazaki, and, K. Yamane. 1999. Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J. Biol. Chem. 274: 1356913576.
72. Narita, S.,, S. Matsuyama, and, H. Tokuda. 2004. Lipopro-tein trafficking in Escherichia coli. Arch. Microbiol. 182: 16.
73. Neuhof, A.,, Rolls, M. M.,, B. Jungnickel,, K. U. Kalies, and, T. A. Rapoport. 1998. Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction. Mol. Biol. Cell 9: 103115.
74. Nielsen, H.,, S. Brunak, and, G. von Heijne. 1999. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12: 39.
75. Nishiyama, K.,, A. Fukuda,, K. Morita, and, H. Tokuda. 1999. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J. 18: 10491058.
76. Nouwen, N., and, A. J. Driessen. 2002. SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 44: 13971405.
77. Oates, J.,, C. M. Barrett,, J. P. Barnett,, K. G. Byrne,, A. Bolhuis, and, C. Robinson. 2005. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J. Mol. Biol. 346: 295305.
78. Ortenberg, R., and, M. Mevarech. 2000. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J. Biol. Chem. 275: 2283922846.
79. Osborne, A. R.,, T. A. Rapoport, and, B. van den Berg. 2005. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21: 529550.
80. Paetzel, M.,, A. Karla,, N. C. Strynadka, and, R. E. Dalbey. 2002. Signal peptidases. Chem. Rev. 102: 45494580.
81. Palacín, A.,, R. de la Fuente,, L. A. Valle, I, Rivas, and, R. P. Mellado. 2003. Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. Microbiology 149: 24352442.
82. Palmer, T.,, F. Sargent, and, B. C. Berks. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13: 175180.
83. Panzner, S.,, L. Dreier,, E. Hartmann,, S. Kostka, and, T. A. Rapoport. 1995. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81: 561570.
84. Pohlschröder, M.,, M. I. Gimenes, and, K. F. Jarrell. 2005. Protein transport in Archaea: Sec and Twin arginine translocation pathways. Invited review. Curr. Opin. Microbiol. 8: 713719.
85. Pohlschröder, M.,, K. Dilks,, N. J. Hand, and, R. Wesley Rose. 2004. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol. Rev. 28: 324.
86. Pohlschröder, M.,, W. A. Prinz,, E. Hartmann, and, J. Beckwith. 1997. Protein translocation in the three domains of life: variations on a theme. Cell 91: 563566.
87. Pop, O. I.,, M. Westermann,, R. Volkmer-Engert,, D. Schulz,, C. Lemke, et al. 2003. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. J. Biol. Chem. 278: 3842838436.
88. Qi, H. Y., and, H. D. Bernstein. 1999. SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J. Biol. Chem. 274: 89938997.
89. Randall, L. L., and, S. J. Hardy. 2002. SecB, one small chaperone in the complex milieu of the cell. Cell. Mol. Life Sci. 59: 16171623.
90. Rose, R. W.,, T. Bruser,, J. C. Kissinger, and, M. Pohlschröder. 2002. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45: 943950.
91. Rose, R. W., and, M. Pohlschröder. 2002. In vivo analysis of an essential archaeal signal recognition particle in its native host. J. Bacteriol. 184: 32603267.
92. Rosendal, K. R.,, K. Wild,, G. Montoya, and, I. Sinning. 2003. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc. Natl. Acad. Sci. USA 100: 1470114706.
93. Rothblatt, J. A.,, R. J. Deshaies,, S. L. Sanders,, G. Daum, and, R. Schekman. 1989. Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J. Cell Biol. 109: 26412652.
94. Sadler, I.,, A. Chiang,, T. Kurihara,, J. Rothblatt,, J. Way, and, P. Silver. 1989. A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J. Cell Biol. 109: 26652675.
95. Sankaran, K.,, S. D. Gupta, and, H. C. Wu. 1995. Modification of bacterial lipoproteins. Methods Enzymol. 250: 683697.
96. Sargent, F.,, E. G. Bogsch,, N. R. Stanley,, M. Wexler,, C. Robinson, et al. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 17: 36403650.
97. Sargent, F.,, N. R. Stanley,, B. C. Berks, and, T. Palmer. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem. 274: 3607336082.
98. Scotti, P. A.,, M. L. Urbanus,, J. Brunner,, J. W. de Gier,, G. von Heijne, et al. 2000. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 19: 542549.
99. Shan, S. O., and, P. Walter. 2005. Co-translational protein targeting by the signal recognition particle. FEBS Lett. 579: 921926.
100. Shelness, G. S.,, Y. S. Kanwar, and, G. Blobel. 1988. cDNA-derived primary structure of the glycoprotein component of canine microsomal signal peptidase complex. J. Biol. Chem. 263: 1706317070.
101. Snapp, E. L.,, G. A. Reinhart,, B. A. Bogert,, J. Lippincott-Schwartz, and, R. S. Hegde. 2004. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164: 9971007.
102. Stanley, N. R.,, T. Palmer, and, B. C. Berks. 2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J. Biol. Chem. 275: 1159111596.
103. Steel, G. J.,, D. M. Fullerton,, J. R. Tyson, and, C. J. Stirling. 2004. Coordinated activation of Hsp70 chaperones. Science 303: 98101.
104. Stoeckenius, W.,, R. H. Lozier, and, R. A. Bogomolni. 1979. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim. Biophys. Acta 505: 215278.
105. Szabó, Z.,, A. Oliveira Stahl,, S.-V Albers,, J. C. Kissinger,, A. J. M. Driessen, and, M. Pohlschröder. 2007. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 189: 772778.
106. Talmadge, K.,, S. Stahl, and, W. Gilbert. 1980. Eukaryotic signal sequence transports insulin antigen in Escherichia coli. Proc. Natl. Acad. Sci. USA 77: 33693373.
107. Thomas, N. A.,, S. L. Bardy, and, K. F. Jarrell. 2001. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol. Rev. 25: 147174.
108. Van den Berg, B.,, W. M. Clemons, Jr.,, I. Collinson,, Y. Modis,, E. Hartmann, et al. 2004. X-ray structure of a protein-conducting channel. Nature 427: 3644.
109. von Heijne, G. 1990. The signal peptide. J. Membr. Biol. 115: 195201.
110. Vrontou, E., and, A. Economou. 2004. Structure and function of SecA, the preprotein translocase nanomotor. Biochim. Biophys. Acta 1694: 6780.
111. Walter, P., and, G. Blobel. 1981. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91: 557561.
112. Weichenrieder, O.,, K. Wild,, K. Strub, and, S. Cusack. 2000. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408: 167173.
113. Weiner, J. H.,, P. T. Bilous,, G. M. Shaw,, S. P. Lubitz,, L. Frost, et al. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93: 93101.
114. Wiedmann, M.,, T. V. Kurzchalia,, E. Hartmann, and, T. A. Rapoport. 1987. A signal sequence receptor in the endoplas-mic reticulum membrane. Nature 328: 830833.
115. Wild, K.,, M. Halic,, I. Sinning, and, R. Beckmann. 2004. SRP meets the ribosome. Nat. Struct. Mol. Biol. 11: 10491053.
116. Yahr, T. L., and, W. T. Wickner. 2001. Functional reconstitution of bacterial Tat translocation in vitro. EMBO J. 20: 24722479.
117. Yen, M. R.,, K. T. Harley,, Y. H. Tseng, and, M. H. Saier, Jr. 2001. Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol. Lett. 204: 223231.
118. Yi, L., and, R. E. Dalbey. 2005. Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review). Mol. Membr. Biol. 22: 101111.
119. Zago, M. A.,, P. P. Dennis, and, A. D. Omer. 2005. The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus sol-fataricus. Mol. Microbiol. 55: 18121828.


Generic image for table
Table 1.

Signal peptide classes in Archaea

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17
Generic image for table
Table 2.

The Tat pathway in Archaea deduced from complete genome sequences

Citation: Pohlschröder M, Dilks K. 2007. Protein Translocation into and across Archaeal Cytoplasmic Membranes, p 369-384. In Cavicchioli R (ed), Archaea. ASM Press, Washington, DC. doi: 10.1128/9781555815516.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error