Chapter 9 : Cations (Zn, Fe)

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Cations (Zn, Fe), Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap09-2.gif


This chapter is a compilation of the current knowledge about mechanisms involved in maintaining iron (Fe) and zinc (Zn) homeostasis and their impact on pathogenicity. In filamentous fungi, genes encoding components of common pathways are often organized in gene clusters defined by coregulation, which facilitates molecular analysis of pathways. Consistent with the role of siderophores in virulence, was found to be the most highly expressed nonribosomal peptide synthetases (NRPS)-encoding gene following incubation with macrophages, and genes encoding siderophore biosynthetic enzymes (SidC, SidD, SidF, and SidG) are significantly induced at the level of gene expression at an early stage of infection in neutropenic mice. Fungal requirements for zinc and iron could potentially open up perspectives for the development of novel antifungal treatments. For instance, since humans do not possess a ZafA ortholog, the ZafA protein might constitute a target for the development of chemotherapeutic agents that selectively interfere with fungal zinc homeostasis. Similarly, blocking of siderophore transporters or siderophore biosynthetic enzymes appears to be particularly promising because the involved proteins are not present in mammals.

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Schematic representation of proteins putatively involved in maintaining zinc homeostasis in . Each protein is represented in its more likely subcellular location according to what is currently known about its correspondent yeast ortholog. Zinc transporters of the ZIP and CDF families are represented by gray cylinders and dashed cylinders, respectively. Other proteins that also may be involved in zinc homeostasis are depicted with a dotted pattern. The zinc-responsive transcriptional activator ZafA is represented by a dark gray pentagon in either an active or inactive state (saturated with zinc ions). MP, metalloproteins. Zinc ions are represented by small black circles.

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Comparison of systems for uptake and storage in and . CM, cytoplasmic membrane; XS, xenosiderophore.

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Structures of TAFC and FC (A) and the proposed biosynthetic pathway (B). Enzymatic activities are boxed, and encoding enzymes are shaded in gray. CoA, coenzyme A.

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Phylogenetic analysis of siderophore transporters from (Afu), (An), and (Y). Available gene names and substrate specificities are indicated. CG, coprogen; EB, enterobactin; FCH, ferrichromes; FOX, ferrioxamines. ATEG 06291.1 is a major facilitator not belonging to the SIT family and served as an outgroup. transporters are boxed. Permeases likely to be involved in transport of TAFC are marked by an open bar.

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Schematic comparison of iron regulatory mechanisms of and

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Andrews, S. C. 1998. Iron storage in bacteria. Adv. Microb. Physiol. 40: 281351.
2. Anke, H. 1977. Desferritriacetylfusigen, an antibiotic from Aspergillus deflectus. J. Antibiot. 30: 125128.
3. Antelo, L.,, C. Hof,, K. Welzel,, K. Eisfeld,, O. Sterner, and, H. Anke. 2006. Siderophores produced by Magnaporthe grisea in the presence and absence of iron. Z. Naturforsch. Teil C 61: 461464.
4. Ardon, O.,, H. Bussey,, C. Philpott,, D. M. Ward,, S. Davis-Kaplan,, S. Verroneau,, B. Jiang, and, J. Kaplan. 2001. Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J. Biol. Chem. 276: 4304943055.
5. Askwith, C,, D. Eide,, A. Van Ho,, P. S. Bernard,, L. Li,, S. Davis-Kaplan,, D. M. Sipe, and, J. Kaplan. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76: 403410.
6. Banerjee, B.,, P. A. Greenberger,, J. N. Fink, and, V. P. Kurup. 1998. Immunological characterization of Asp f 2, a major allergen from Aspergillus fumigatus associated with allergic bronchopulmonary aspergillosis. Infect. Immun. 66: 51755182.
7. Barrow, N. J. 1993. Mechanisms of reaction of zinc with soil and soil components, p. 15-27. In A. D. Robson (ed.), Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands.
8. Beltramini, M.,, P. Zambenedetti,, W. Wittkowski, and, P. Zatta. 2004. Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res. 1013: 134141.
9. Bensen, E. S.,, S. J. Martin,, M. Li,, J. Berman, and, D. A. Davis. 2004. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54: 13351351.
10. Bignell, E.,, S. Negrete-Urtasun,, A. M. Calcagno,, K. Haynes,, H. N. Arst, Jr., and, T. Rogers. 2005. The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol. Microbiol. 55: 10721084.
11. Bird, A. J. 2007. Metallosensors, the ups and downs of gene regulation. Adv. Microb. Physiol. 53: 231267.
12. Bird, A.,, M. V. Evans-Galea,, E. Blankman,, H. Zhao,, H. Luo,, D. R. Winge, and, D. J. Eide. 2000. Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator. J. Biol. Chem. 275: 1616016166.
13. Bird, A. J.,, K. McCall,, M. Kramer,, E. Blankman,, D. R. Winge, and, D. J. Eide. 2003. Zinc fingers can act as Zn 2+ sensors to regulate transcriptional activation domain function. EMBO J. 22: 51375146.
14. Bird, A. J.,, S. Swierczek,, W. Qiao,, D. J. Eide, and, D. R. Winge. 2006a. Zinc metalloregulation of the zinc finger pair domain. J. Biol. Chem. 281: 2532625335.
15. Bird, A. J.,, H. Zhao,, H. Luo,, L. T. Jensen,, C. Srinivasan,, M. Evans-Galea,, D. R. Winge, and, D. J. Eide. 2000b. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO J. 19: 37043713.
16. Boelaert, J. R.,, M. de Locht,, J. Van Cutsem,, V. Kerrels,, B. Canti-nieaux,, A. Verdonck,, H. W. Van Landuyt, and, Y. J. Schneider. 1993. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J. Clin. In-vestig. 91: 19791986.
17. Brakhage, A. A.,, A. Andrianopoulos,, M. Kato,, S. Steidl,, M. A. Davis,, N. Tsukagoshi, and, M. J. Hynes. 1999. HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet. Biol. 27: 243252.
18. Brickman, T. J., and, M. A. Mclntosh. 1992. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J. Biol. Chem. 267: 1235012355.
19. Bullen, J. J.,, H. J. Rogers,, P. B. Spalding, and, C. G. Ward. 2006. Natural resistance, iron and infection: a challenge for clinical medicine. J. Med. Microbiol. 55: 251258.
20. Caddick, M. X.,, A. G. Brownlee, and, H. N. Arst, Jr. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus ni-dulans. Mol. Gen. Genet. 203: 346353.
21. Calera, J. A.,, M. C. Ovejero,, R. Lopez-Medrano,, M. Segurado,, P. Puente, and, F. Leal. 1997. Characterization of the Aspergillus ni-dulans aspndl gene demonstrates that the ASPND1 antigen, which it encodes, and several Aspergillus fumigatus immunodominant antigens belong to the same family. Infect. Immun. 65: 13351344.
22. Chang, Y. C,, C. M. Bien,, H. Lee,, P. J. Espenshade, and, K. J. Kwon-Chung. 2007. Sre1p, a regulator of oxygen sensing and sterol ho-meostasis, is required for virulence in Cryptococcus neoformans. Mol. Microbiol. 64: 614629.
23. Charlang, G.,, B. Ng,, N. H. Horowitz, and, R. M. Horowitz. 1981. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol. Cell. Biol. 1: 94100.
24. Chen, X. Z.,, J. B. Peng,, A. Cohen,, H. Nelson,, N. Nelson, and, M. A. Hediger. 1999. Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents. J. Biol. Chem. 274: 3508935094.
25. Coleman, J. E. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61: 897946.
26. Cousins, R. J.,, J. P. Liuzzi, and, L. A. Lichten. 2006. Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281: 2408524089.
27. Coyle, P.,, J. C. Philcox,, L. C. Carey, and, A. M. Rofe. 2002. Metal-lothionein: the multipurpose protein. Cell. Mol. Life Sci. 59: 627647.
28. Cramer, R. A., Jr.,, J. E. Stajich,, Y. Yamanaka,, F. S. Dietrich,, W. J. Steinbach, and, J. R. Perfect. 2006. Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene 383: 2432.
29. Dancis, A. 1998. Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae. J. Pediatr. 132: S24S29.
30. Dancis, A.,, R. D. Klausner,, A. G. Hinnebusch, and, J. G. Barriocanal. 1990. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 22942301.
31. Dancis, A.,, D. G. Roman,, G. J. Anderson,, A. G. Hinnebusch, and, R. D. Klausner. 1992. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89: 38693873.
32. de Lorenzo, V.,, A. Bindereif,, B. H. Paw, and, J. B. Neilands. 1986. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J. Bacteriol. 165: 570578.
33. De Luca, N. G., and, P. M. Wood. 2000. Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv. Microb. Physiol. 43: 3974.
34. De Silva, D. M.,, C. C. Askwith,, D. Eide, and, J. Kaplan. 1995. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol. Chem. 270: 10981101.
35. Destoumieux-Garzon, D.,, J. Peduzzi,, X. Thomas,, C. Djediat, and, S. Rebuffat. 2006. Parasitism of iron-siderophore receptors of Escher-ichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals 19: 181191.
36. Dinarello, C. A. 1988. Biology of interleukin 1. FASEB J. 2: 108115.
37. Dix, D. R.,, J. T. Bridgham,, M. A. Broderius,, C. A. Byersdorfer, and, D. J. Eide. 1994. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J. Biol. Chem. 269: 2609226099.
38. Eichhorn, H.,, F. Lessing,, B. Winterberg,, J. Schirawski,, J. Kamper,, P. Muller, and, R. Kahmann. 2006. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18: 33323345.
39. Eide, D. J. 2006. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763: 711722.
40. Eide, D.,, S. Davis-Kaplan,, I. Jordan,, D. Sipe, and, J. Kaplan. 1992. Regulation of iron uptake in Saccharomyces cerevisiae. The ferri-reductase and Fe(II) transporter are regulated independently. J. Biol. Chem. 267: 2077420781.
41. Eisendle, M.,, H. Oberegger,, R. Buttinger,, P. Illmer, and, H. Haas. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidu-lans. Eukaryot. Cell 3: 561563.
42. Eisendle, M.,, H. Oberegger,, I. Zadra, and, H. Haas. 2003. The sid-erophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine N5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49: 359375.
43. Eisendle, M.,, M. Schrettl,, C. Kragl,, D. Muller,, P. Illmer, and, H. Haas. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot. Cell 5: 15961603.
44. Emery, T. 1971. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10: 14831488.
45. Essen, S. A.,, D. Bylund,, S. J. Holmstrom,, M. Moberg, and, U. S. Lundstrom. 2006. Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19: 269282.
46. Evans-Galea, M. V.,, E. Blankman,, D. G. Myszka,, A. J. Bird,, D. J. Eide, and, D. R. Winge. 2003. Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding. Biochemistry 42: 10531061.
47. Fang, F. C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2: 820832.
48. Felice, M. R.,, I. De Domenico,, L. Li,, D. M. Ward,, B. Bartok,, G. Musci, and, J. Kaplan. 2005. Post-transcriptional regulation of the yeast high affinity iron transport system. J. Biol. Chem. 280: 2218122190.
49. Fernández-Martínez, J.,, C. V. Brown,, E. Diez,, J. Tilburn,, H. N. Arst, Jr.,, M. A. Peñalva, and, E. A. Espeso. 2003. Overlap of nuclear localisation signal and specific DNA-binding residues within the zinc finger domain of PacC. J. Mol. Biol. 334: 667684.
50. Finegold, A. A.,, K. P. Shatwell,, A. W. Segal,, R. D. Klausner, and, A. Dancis. 1996. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J. Biol. Chem. 271: 3102131024.
51. Finking, R.,, J. Solsbacher,, D. Konz,, M. Schobert,, A. Schafer,, D. Jahn, and, M. A. Marahiel. 2002. Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. J. Biol. Chem. 277: 5029350302.
52. Fischbach, M. A.,, H. Lin,, L. Zhou,, Y. Yu,, R. J. Abergel,, D. R. Liu,, K. N. Raymond,, B. L. Wanner,, R. K. Strong,, C. T. Walsh,, A. Aderem, and, K. D. Smith. 2006. The pathogenassociated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. USA 103: 1650216507.
53. Fischer Walker, C., and, R. E. Black. 2004. Zinc and the risk for infectious disease. Annu. Rev. Nutr. 24: 255275.
54. Flo, T. H.,, K. D. Smith,, S. Sato,, D. J. Rodriguez,, M. A. Holmes,, R. K. Strong,, S. Akira, and, A. Aderem. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432: 917921.
55. Fluckinger, M.,, H. Haas,, P. Merschak,, B. J. Glasgow, and, B. Redl. 2004. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob. Agents Chemother. 48: 33673372.
56. Fraker, P. J., and, L. E. King. 2004. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 24: 277298.
57. Froissard, M.,, N. Belgareh-Touze,, M. Dias,, N. Buisson,, J. M. Ca-madro,, R. Haguenauer-Tsapis, and, E. Lesuisse. 2007. Trafficking of siderophore transporters in Saccharomyces cerevisiae and intra-cellular fate of ferrioxamine B conjugates. Traffic 8: 16011616.
58. Gaither, L. A., and, D. J. Eide. 2001. Eukaryotic zinc transporters and their regulation. Biometals 14: 251270.
59. Ganz, T., and, E. Nemeth. 2006. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G199G203.
60. Georgatsou, E., and, D. Alexandraki. 1994. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 30653073.
61. Georgatsou, E.,, L. A. Mavrogiannis,, G. S. Fragiadakis, and, D. Alex-andraki. 1997. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J. Biol. Chem. 272: 1378613792.
62. Goetz, D. H.,, M. A. Holmes,, N. Borregaard,, M. E. Bluhm,, K. N. Raymond, and, R. K. Strong. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10: 10331043.
63. Greenshields, D.,, L. Guosheng,, J. Feng,, G. Selvaraj, and, Y. Wei. 2007. The siderophore biosynthetic gene SID1, but not the ferroxidase gene FET3, is required for full Fusarium graminearum virulence. Mol. Plant Pathol. 8: 411421.
64. Haas, H. 2003. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol 62: 316330.
65. Haas, H.,, K. Angermayr, and, G. Stoffler. 1997. Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184: 3337.
66. Haas, H.,, M. Schoeser,, E. Lesuisse,, J. F. Ernst,, W. Parson,, B. Abt,, G. Winkelmann, and, H. Oberegger. 2003. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem. J. 371: 505513.
67. Haas, H.,, I. Zadra,, G. Stoffler, and, K. Angermayr. 1999. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 274: 46134619.
68. Haase, H., and, L. Rink. 2007. Signal transduction in monocytes: the role of zinc ions. Biometals 20: 579585.
69. Hachem, R.,, P. Bahna,, H. Hanna,, L. C. Stephens, and, I. Raad. 2006. EDTA as an adjunct antifungal agent for invasive pulmonary aspergillosis in a rodent model. Antimicrob. Agents Chemother. 50: 18231827.
70. Harrison, K. A., and, G. A. Marzluf. 2002. Characterization of DNA binding and the cysteine rich region of SRE, a GATA factor in Neurospora crassa involved in siderophore synthesis. Biochemistry 41: 1528815295.
71. Hassett, R.,, D. R. Dix,, D. J. Eide, and, D. J. Kosman. 2000. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem. J. 351: 477484.
72. Hassett, R., and, D. J. Kosman. 1995. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270: 128134.
73. Herbig, A.,, A. J. Bird,, S. Swierczek,, K. McCall,, M. Mooney,, C. Y. Wu,, D. R. Winge, and, D. J. Eide. 2005. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Mol. Microbiol. 57: 834846.
74. Heymann, P.,, J. F. Ernst, and, G. Winkelmann. 1999. Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12: 301306.
75. Heymann, P.,, J. F. Ernst, and, G. Winkelmann. 2000a. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 13: 6572.
76. Heymann, P.,, J. F. Ernst, and, G. Winkelmann. 2000b. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 186: 221227.
77. Heymann, P.,, M. Gerads,, M. Schaller,, F. Dromer,, G. Winkelmann, and, J. F. Ernst. 2002. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect. Immun. 70: 52465255.
78. Hissen, A. H.,, J. M. Chow,, L. J. Pinto, and, M. M. Moore. 2004. Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores. Infect. Immun. 72: 14021408.
79. Hissen, A. H.,, A. N. Wan,, M. L. Warwas,, L. J. Pinto, and, M. M. Moore. 2005. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N 5-oxygenase, is required for virulence. Infect. Immun. 73: 54935503.
80. Hof, C.,, K. Eisfeld,, K. Welzel,, L. Antelo,, A. J. Foster, and, H. Anke. 2007. Ferricrocin synthesis in Magnaporthae grisaea and its role in pathogenicity in rice. Mol. Plant Pathol. 8: 163172.
81. Hong, S. K.,, S. B. Han,, M. Snyder, and, E. Y. Choi. 1999. SHC1, a high pH inducible gene required for growth at alkaline pH in Sac-charomyces cerevisiae. Biochem. Biophys. Res. Commun. 255: 116122.
82. Horowitz, N. H.,, G. Charlang,, G. Horn, and, N. P. Williams. 1976. Isolation and identification of the conidial germination factor of Neurospora crassa. J. Bacteriol. 127: 135140.
83. Hortschansky, P.,, M. Eisendle,, Q. Al-Abdallah,, A. D. Schmidt,, S. Bergmann,, M. Thon,, O. Kniemeyer,, B. Abt,, B. Seeber,, E. R. Werner,, M. Kato,, A. A. Brakhage, and, H. Haas. 2007. Interaction of HapX with the CCAAT-binding complex-a novel mechanism of gene regulation by iron. EMBO J. 26: 31573168.
84. Howard, D. H. 2004. Iron gathering by zoopathogenic fungi. FEMS Immunol. Med. Microbiol. 40: 95100.
85. Hsiang, T., and, D. L. Baillie. 2005. Comparison of the yeast proteome to other fungal genomes to find core fungal genes. J. Mol. Evol. 60: 475483.
86. Ibrahim, A. S.,, T. Gebermariam,, Y. Fu,, L. Lin,, M. I. Husseiny,, S. W. French,, J. Schwartz,, C. D. Skory,, J. E. Edwards, Jr., and, B. J. Spell-berg. 2007. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J. Clin. Investig. 117: 26492657.
87. Jensen, L. T.,, M. Ajua-Alemanji, and, V. C. Culotta. 2003. The Sac-charomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J. Biol. Chem. 278: 4203642040.
88. Johnson, R.,, C. Voisey,, L. Johnson,, J. Pratt,, D. Fleetwood,, A. Khan, and, G. Bryan. 2007. Distribution of NRPS gene families within the Neotyphodium/ Epichloe complex. Fungal Genet. Biol. 44: 11801190.
89. Jung, W. H.,, A. Sham,, R. White, and, J. W. Kronstad. 2006. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 4: e410.
90. Kaplan, J.,, D. McVey Ward,, R. J. Crisp, and, C. C. Philpott. 2006. Iron-dependent metabolic remodeling in S. cerevisiae. Biochim. Biophys. Acta 1763: 646651.
91. Kim, Y.,, Y. Deng, and, C. C. Philpott. 2007. GGA2- and ubiquitin-dependent trafficking of Arn1, the ferrichrome transporter of Sac-charomyces cerevisiae. Mol. Biol. Cell 18: 17901802.
92. Kleinschmidt-DeMasters, B. K. 2002. Central nervous system aspergillosis: a 20-year retrospective series. Hum. Pathol. 33: 116124.
93. Kontoyiannis, D. P.,, G. Chamilos,, R. E. Lewis,, S. Giralt,, J. Cortes,, I. I. Raad,, J. T. Manning, and, X. Han. 2007. Increased bone marrow iron stores is an independent risk factor for invasive aspergillosis in patients with high-risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation. Cancer 110: 13031306.
94. Kosman, D. J. 2003. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 47: 11851197.
95. Kragl, C,, M. Schrettl,, B. Abt,, B. Sarg,, H. H. Lindner, and, H. Haas. 2007. EstB-mediated hydrolysis of the siderophore triacetylfusari-nine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot. Cell 6: 12781285.
96. Kroncke, K. D. 2007. Cellular stress and intracellular zinc dysho-meostasis. Arch. Biochem. Biophys. 463: 183187.
97. Kumanovics, A.,, K. E. Poruk,, K. A. Osborn,, D. M. Ward, and, J. Kaplan. 2006. YKE4 (YIL023C) encodes a bidirectional zinc transporter in the endoplasmic reticulum of Saccharomyces cerevisiae. J. Biol. Chem. 281: 2256622574.
98. Labbe, S.,, B. Pelletier, and, A. Mercier. 2007. Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 20: 523537.
99. Lamb, T. M.,, W. Xu,, A. Diamond, and, A. P. Mitchell. 2001. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J. Biol. Chem. 276: 18501856.
100. Lan, C. Y.,, G. Rodarte,, L. A. Murillo,, T. Jones,, R. W. Davis,, J. Dungan,, G. Newport, and, N. Agabian. 2004. Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53: 14511469.
101. Lee, A.,, A. K. Henras, and, G. Chanfreau. 2005. Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae. Mol. Cell 19: 3951.
102. Leong, S. A., and, G. Winkelmann. 1998. Molecular biology of iron transport in fungi. Metal Ions Biol. Syst. 35: 147186.
103. Lesuisse, E.,, M. Simon-Casteras, and, P. Labbe. 1998. Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144: 34553462.
104. Li, L.,, O. S. Chen,, D. McVey Ward, and, J. Kaplan. 2001. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276: 2951529519.
105. Lian, T.,, M. I. Simmer,, C. A. D’Souza,, B. R. Steen,, S. D. Zuyderduyn,, S. J. Jones,, M. A. Marra, and, J. W. Kronstad. 2005. Iron-regulated transcription and capsule formation in the fungal pathogen Cryp-tococcus neoformans. Mol. Microbiol. 55: 14521472.
106. Lin, S. J.,, R. A. Pufahl,, A. Dancis,, T. V. O’Halloran, and, V. C. Culotta. 1997. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J. Biol. Chem. 272: 92159220.
107. Liuzzi, J. P.,, L. A. Lichten,, S. Rivera,, R. K. Blanchard,, T. B. Aydemir,, M. D. Knutson,, T. Ganz, and, R. J. Cousins. 2005. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA 102: 68436848.
108. López-Medrano, R.,, M. C. Ovejero,, J. A. Calera,, P. Puente, and, F. Leal. 1996. Immunoblotting patterns in the serodiagnosis of aspergilloma: antibody response to the 90kDa Aspergillus fumigatus antigen. Eur. J. Clin. Microbiol. Infect. Dis. 15: 146152.
109. Magneson, G. R.,, J. M. Puvathingal, and, W. J. Ray, Jr. 1987. The concentrations of free Mg 2+ and free Zn 2+ in equine blood plasma. J. Biol. Chem. 262: 1114011148.
110. Maret, W. 2006. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid. Redox Signal. 8: 14191441.
111. Matzanke, B. F. 1994. Iron storage in fungi, p. 179-213. In G. Win-kelmann and, D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dek-ker, Inc., New York, NY.
112. Matzanke, B. F.,, E. Bill,, A. X. Trautwein, and, G. Winkelmann. 1987. Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J. Bacteriol. 169: 58735876.
113. McNabb, D. S.,, Y. Xing, and, L. Guarente. 1995. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 9: 4758.
114. Mei, B.,, A. D. Budde, and, S. A. Leong. 1993. sidl, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc. Natl. Acad. Sci. USA 90: 903907.
115. Miele, R.,, D. Barra, and, M. C. Bonaccorsi di Patti. 2007. A GATA-type transcription factor regulates expression of the high-affinity iron uptake system in the methylotrophic yeast Pichia pastoris. Arch. Biochem. Biophys. 465: 172179.
116. Miethke, M., and, M. A. Marahiel. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413451.
117. Moore, R. E.,, Y. Kim, and, C. C. Philpott. 2003. The mechanism of ferrichrome transport through Arn1p and its metabolism in Sac-charomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100: 56645669.
118. Mootz, H. D.,, D. Schwarzer, and, M. A. Marahiel. 2002. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3: 490504.
119. Moreno, M. A.,, J. Amich,, R. Vicentefranqueira,, F. Leal, and, J. A. Calera. 2007a. Culture conditions for zinc- and pH-regulated gene expression studies in Aspergillus fumigatus. Int. Microbiol. 10: 187192.
120. Moreno, M. A.,, O. Ibrahim-Granet,, R. Vicentefranqueira,, J. Amich,, P. Ave,, F. Leal,, J. P. Latge, and, J. A. Calera. 2007b. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol. Microbiol. 64: 11821197.
121. Moshage, H. 1997. Cytokines and the hepatic acute phase response. J. Pathol. 181: 257266.
122. Muller, G.,, S. J. Barclay, and, K. N. Raymond. 1985. The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. J. Biol. Chem. 260: 1391613920.
123. Neilands, J. B. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 2672326726.
124. Ng, T. T.,, G. D. Robson, and, D. W. Denning. 1994. Hydrocortisone-enhanced growth of Aspergillus spp.: implications for pathogenesis. Microbiology 140: 24752479.
125. Oberegger, H.,, M. Eisendle,, M. Schrettl,, S. Graessle, and, H. Haas. 2003. 4′-Phosphopantetheinyl transferase-encoding npgA is essential for siderophore biosynthesis in Aspergillus nidulans. Curr. Genet. 44: 211215.
126. Oberegger, H.,, M. Schoeser,, I. Zadra,, B. Abt, and, H. Haas. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol. Microbiol. 41: 10771089.
127. Oberegger, H.,, M. Schoeser,, I. Zadra,, M. Schrettl,, W. Parson, and, H. Haas. 2002a. Regulation offreA, acoA, lysF, and cycA expression by iron availability in Aspergillus nidulans. Appl. Environ. Microbiol. 68: 57695772.
128. Oberegger, H.,, I. Zadra,, M. Schoeser,, B. Abt,, W. Parson, and, H. Haas. 2002b. Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem. Soc. Trans. 30: 781783.
129. Oide, S.,, S. B. Krasnoff,, D. M. Gibson, and, B. G. Turgeon. 2007. Intracellular siderophores are essential for ascomycete sexual de- velopment in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot. Cell 6: 13391353.
130. Oide, S.,, W. Moeder,, H. Haas,, S. Krasnoff,, D. Gibson,, K. Yoshioka, and, B. G. Turgeon. 2006. NPS6, encoding a non-ribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18: 28362853.
131. Pagani, A.,, L. Villarreal,, M. Capdevila, and, S. Atrian. 2007. The Sac-charomyces cerevisiae Crs5 metallothionein metal-binding abilities and its role in the response to zinc overload. Mol. Microbiol. 63: 256269.
132. Pao, S. S.,, I. T. Paulsen, and, M. H. Saier, Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62: 134.
133. Papanikolaou, G., and, K. Pantopoulos. 2005. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202: 199211.
134. Paris, S.,, D. Wysong,, J. P. Debeaupuis,, K. Shibuya,, B. Philippe,, R. D. Diamond, and, J. P. Latgé. 2003. Catalases of Aspergillus fumigatus. Infect. Immun. 71: 35513562.
135. Park, Y. S.,, J. H. Kim,, J. H. Cho,, H. I. Chang,, S. W. Kim,, H. D. Paik,, C. W. Kang,, T. H. Kim,, H. C. Sung, and, C. W. Yun. 2007. Physical and functional interaction of FgFtr1-FgFet1 and FgFtr2-FgFet2 is required for iron uptake in Fusarium graminearum. Biochem. J. 408: 97104.
136. Park, Y. S.,, T. H. Kim,, H. I. Chang,, H. C. Sung, and, C. W. Yun. 2006. Cellular iron utilization is regulated by putative siderophore transporter FgSit1 not by free iron transporter in Fusarium graminearum. Biochem. Biophys. Res. Commun. 345: 16341642.
137. Pelletier, B.,, J. Beaudoin,, Y. Mukai, and, S. Labbe. 2002. Fep1, an iron sensor regulating iron transporter gene expression in Schizo-saccharomyces pombe. J. Biol. Chem. 277: 2295022958.
138. Pelletier, B.,, J. Beaudoin,, C. C. Philpott, and, S. Labbe. 2003. Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophoreiron transport system. Nucleic Acids Res. 31: 43324344.
139. Peñalva, M. A., and, H. N. Arst, Jr. 2004. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol. 58: 425451.
140. Portnoy, M. E.,, X. F. Liu, and, V. C. Culotta. 2000. Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Mol. Cell. Biol. 20: 78937902.
141. Powell, P. E.,, G. R. Cline,, C. P. P. Reid, and, P. J. Szanizlo. 1980. Occurrance of hydroxamate siderophore iron in soils. Nature 287: 833834.
142. Protchenko, O., and, C. C. Philpott. 2003. Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Sac-charomyces cerevisiae. J. Biol. Chem. 278: 3658236587.
143. Puig, S.,, E. Askeland, and, D. J. Thiele. 2005. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99110.
144. Ramanan, N., and, Y. Wang. 2000. A high-affinity iron permease essential for Candida albicans virulence. Science 288: 10621064.
145. Ratledge, C., and, L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881941.
146. Roosenberg, J. M.,, Y. M. Lin,, Y. Lu, and, M. J. Miller. 2000. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7: 159197.
147. Rotrosen, D.,, C. L. Yeung,, T. L. Leto,, H. L. Malech, and, C. H. Kwong. 1992. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256: 14591462.
148. Rutherford, J. C., and, A. J. Bird. 2004. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot. Cell 3: 113.
149. Santos, R.,, N. Buisson,, S. Knight,, A. Dancis,, J. M. Camadro, and, E. Lesuisse. 2003. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149: 579588.
150. Scazzocchio, C. 2000. The fungal GATA factors. Curr. Opin. Micro-biol. 3: 126131.
151. Schrettl, M.,, E. Bignell,, C. Kragl,, C. Joechl,, T. Rogers,, H. N. Arst, Jr.,, K. Haynes, and, H. Haas. 2004a. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 200: 12131219.
152. Schrettl, M.,, E. Bignell,, C. Kragl,, Y. Sabiha,, O. Loss,, M. Eisendle,, A. Wallner,, H. N. Arst,, K. Haynes, and, H. Haas. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3: e128.
153. Schrettl, M.,, G. Winkelmann, and, H. Haas. 2004b. Ferrichrome in Schizosaccharomyces pombe: an iron transport and iron storage compound. Biometals 17: 647654.
154. Schroeder, J. J., and, R. J. Cousins. 1990. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc Natl Acad Sci USA 87: 31373141.
155. Schwecke, T.,, K. Gottling,, P. Durek,, I. Duenas,, N. F. Kaufer,, S. Zock-Emmenthal,, E. Staub,, T. Neuhof,, R. Dieckmann, and, H. von Dohren. 2006. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. ChemBioChem 7: 612622.
156. Segurado, M.,, R. Lopez-Aragon,, J. A. Calera,, J. M. Fernandez-Abalos, and, F. Leal. 1999. Zinc-regulated biosynthesis of immunodominant antigens from Aspergillus spp. Infect. Immun. 67: 23772382.
157. Serrano, R.,, D. Bernal,, E. Simon, and, J. Arino. 2004. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J. Biol. Chem. 279: 1969819704.
158. Serrano, R.,, H. Martin,, A. Casamayor, and, J. Arino. 2006. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J. Biol. Chem. 281: 3978539795.
159. Shi, X.,, C. Stoj,, A. Romeo,, D. J. Kosman, and, Z. Zhu. 2003. Fre1p Cu 2+ reduction and Fet3p Cu 1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J. Biol. Chem. 278: 5030950315.
160. Singh, A.,, N. Kaur, and, D. J. Kosman. 2007. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. J. Biol. Chem. 282: 2861928626.
161. Smith, J. L. 2004. The physiological role of ferritin-like compounds in bacteria. Crit. Rev. Microbiol. 30: 173185.
162. Smith, R. L., and, A. D. Johnson. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukary-otes. Trends Biochem. Sci. 25: 325330.
163. Spahl, D. U.,, D. Berendji-Grun,, C. V. Suschek,, V. Kolb-Bachofen, and, K. D. Kroncke. 2003. Regulation of zinc homeostasis by in-ducible NO synthase-derived NO: nuclear metallothionein translo-cation and intranuclear Zn 2+ release. Proc. Natl. Acad. Sci. USA 100: 1395213957.
164. Stearman, R.,, D. S. Yuan,, Y. Yamaguchi-Iwai,, R. D. Klausner, and, A. Dancis. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271: 15521557.
165. Steenbergen, J. N., and, A. Casadevall. 2003. The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect. 5: 667675.
166. Stoj, C. S.,, A. J. Augustine,, E. I. Solomon, and, D. J. Kosman. 2007. Structure-function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae. J. Biol. Chem. 282: 7862- 7868.
167. Striz, I., and, I. Trebichavsky. 2004. Calprotectin: a pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 53: 245253.
168. Takeda, A.,, A. Minami,, S. Takefuta,, M. Tochigi, and, N. Oku. 2001. Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J. Neurosci. Res. 63: 447452.
169. Tapiero, H., and, K. D. Tew. 2003. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharma-cother. 57: 399411.
170. Tobiasen, C.,, J. Aahman,, K. S. Ravnholt,, M. J. Bjerrum,, M. N. Grell, and, H. Giese. 2007. Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr. Genet. 51: 4358.
171. Tucker, S. L.,, C. R. Thornton,, K. Tasker,, C. Jacob,, G. Giles,, M. Egan, and, N. J. Talbot. 2004. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16: 15751588.
172. Uetz, P.,, L. Giot,, G. Cagney,, T. A. Mansfield,, R. S. Judson,, J. R. Knight,, D. Lockshon,, V. Narayan,, M. Srinivasan,, P. Pochart,, A. Qureshi-Emili,, Y. Li,, B. Godwin,, D. Conover,, T. Kalbfleisch,, G. Vijayadamodar,, M. Yang,, M. Johnston,, S. Fields, and, J. M. Rothberg. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623627.
173. Urbanowski, J. L., and, R. C. Piper. 1999. The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J. Biol. Chem. 274: 3806138070.
174. van der Helm, D., and, G. Winkelmann. 1994. Hydroxamates and polycarbonates as iron transport agents (siderophores) in fungi, p. 39–148. In G. Winkelmann and, D. R. Winge (ed.), Metal Ions in Fungi. Marcel Dekker, Inc., New York, NY.
175. Vicentefranqueira, R.,, M. A. Moreno,, F. Leal, and, J. A. Calera. 2005. The zrfA and zrfB genes of Aspergillus fumigatus encode the zinc transporter proteins of a zinc uptake system induced in an acid, zinc-depleted environment. Eukaryot. Cell 4: 837848.
176. Waters, B. M., and, D. J. Eide. 2002. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J. Biol. Chem. 277: 3374933757.
177. Webster, J. I.,, L. Tonelli, and, E. M. Sternberg. 2002. Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 20: 125163.
178. Weinberg, E. D. 1999. The role of iron in protozoan and fungal infectious diseases. J. Eukaryot. Microbiol. 46: 231238.
179. Weiss, G. 2002. Iron and immunity: a double-edged sword. Eur. J. Clin. Investig. 32 (Suppl.1) : 7078.
180. Welzel, K.,, K. Eisfeld,, L. Antelo,, T. Anke, and, H. Anke. 2005. Characterization of the ferrichrome A biosynthetic gene cluster in the homobasidiomycete Omphalotus olearius. FEMS Microbiol. Lett. 249: 157163.
181. Winkelmann, G. 2001. Siderophore transport in fungi, p. 463–480. In G. Winkelmann (ed.), Microbial Transport Systems. Wiley-VCH, Weinheim, Germany.
182. Wu, C. Y.,, A. J. Bird,, D. R. Winge, and, D. J. Eide. 2007. Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J. Biol. Chem. 282: 21842195.
183. Yamada, O.,, S. Na Nan,, T. Akao,, M. Tominaga,, H. Watanabe,, T. Satoh,, H. Enei, and, O. Akita. 2003. dffA gene from Aspergillus oryzae encodes L-ornithine N5-oxygenase and is indispensable for deferriferrichrysin biosynthesis. J. Biosci. Bioeng. 95: 8288.
184. Yamaguchi-Iwai, Y.,, A. Dancis, and, R. D. Klausner. 1995. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 14: 12311239.
185. Yeager, M. P.,, P. M. Guyre, and, A. U. Munck. 2004. Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol. Scand. 48: 799813.
186. Yuan, W. M.,, G. D. Gentil,, A. D. Budde, and, S. A. Leong. 2001. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J. Bacteriol. 183: 40404051.
187. Yun, C. W.,, M. Bauler,, R. E. Moore,, P. E. Klebba, and, C. C. Philpott. 2001. The role of the FRE family of plasma membrane reductases in the uptake of siderophoreiron in Saccharomyces cerevisiae. J. Biol. Chem. 276: 1021810223.
188. Yun, C. W.,, T. Ferea,, J. Rashford,, O. Ardon,, P. O. Brown,, D. Bot-stein,, J. Kaplan, and, C. C. Philpott. 2000a. Desferrioxamine- mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J. Biol. Chem. 275: 1070910715.
189. Yun, C. W.,, J. S. Tiedeman,, R. E. Moore, and, C. C. Philpott. 2000b. Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J. Biol. Chem. 275: 1635416359.
190. Zarember, K. A.,, J. A. Sugui,, Y. C. Chang,, K. J. Kwon-Chung, and, J. I. Gallin. 2007. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J. Immunol. 178: 63676373.
191. Zhao, H.,, E. Butler,, J. Rodgers,, T. Spizzo,, S. Duesterhoeft, and, D. Eide. 1998. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J. Biol. Chem. 273: 2871328720.
192. Zhao, H., and, D. J. Eide. 1997. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharo-myces cerevisiae. Mol. Cell. Biol. 17: 50445052.
193. Zhou, L. W.,, H. Haas, and, G. A. Marzluf. 1998. Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa. Mol. Gen. Genet. 259: 532540.
194. Znaidi, S.,, B. Pelletier,, Y. Mukai, and, S. Labbe. 2004. The Schizo-saccharomyces pombe corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J. Biol. Chem. 279: 94629474.


Generic image for table
Table 1.

Selected genes of whose expression is or might be regulated by ZafA

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Generic image for table
Table 2.

Siderophore production by selected fungi

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9
Generic image for table
Table 3.

Characterized fungal siderophore NRPSs

Citation: Calera J, Haas H. 2009. Cations (Zn, Fe), p 107-129. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error