Chapter 10 : Conidial Germination in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Conidial Germination in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815523/9781555814380_Chap10-2.gif


This chapter discusses the physiological and biochemical aspects of conidial germination in and the regulatory pathways used to activate the process. In a study on genetic analysis of conidial germination in and , three of five genes encoded proteins involved in translational initiation (sgdA) and elongation (sgdB and -C), and a fourth (sgdE) encoded a protein involved in protein stabilization and folding. Thus, out of a bewildering array of early biochemical events, an unbiased genetic approach was able to specifically highlight a central role for translation in conidial germination. The results of this genetic screen suggest that conidial germination may be controlled by signaling pathways that directly activate protein translation. The chapter analyses the findings that link cyclic AMP (cAMP) signaling to conidial germination in species. In both and , overexpression of a dominant negative form of rasA causes a delay in germination, whereas overexpression of dominant active rasA causes initiation of germination, including spore swelling, adhesion, and nuclear decondensation in the absence of a carbon source. The contribution of known and recently reported cell wall-associated proteins (CWPs) to conidial germination is discussed. Recently, several proteins involved in cell wall biosynthesis were implicated in controlling the speed of conidial germination in . Analysis of the transcriptional and translational control of some of cAMP/protein kinase A (PKA), RAS, and mitogen-activated protein kinase (MAPK) genes may reveal how they are regulated by the above-described pathways, as well as other signal transduction pathways.

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Germination of conidia is inhibited at high conidial concentrations. conidia at high (1 × 10 conidia/ml) and low (5 × 10 conidia/ml) concentrations were incubated for 8 h at 37°C in YAG rich medium, and the percentage of germinating conidia with emergent hyphal tubes was counted ( = 300).

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Germination of conidia. Cells were fixed on glass coverslips and visualized following calcofluor (cell wall) and 4′,6′-diamidino-2-phenylindole (nuclear) staining. The morphological and biochemical changes that occur during the first 2 h are the subject of this review.

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The double mutant has a defective cell wall and autolyses during germination. Dormant wild-type (WT) control and O1 mutant conidia (0 h) and conidia that were allowed to germinate in liquid minimal medium for 6 h at 37°C (6 h) were fixed and analyzed by scanning electron microscopy.

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Disruption of AfuEcm33 results in rapid conidial germination. AF293 wild-type and AfuEcm33-disrupted cells were fixed on glass coverslips and visualized following calcofluor (cell wall) staining. Note the early germination and cell-cell clumping in the mutant strain (lower panel) relative to the control AF293 wild-type strain (upper panel).

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Tentative model of conidial germination in . A carbon, phosphate, and nitrate source activates the cAMP/PKA, RAS, and MAPK pathways. The main bottleneck controlling conidial germination is the initiation of protein synthesis. Rapid assembly of polysomes onto prestored mRNA is followed by translation of key enzymes and proteins necessary for tighter adhesion, metabolic activation, conidial uncoating, nuclear decondensation, and isotrophic growth.

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aramayo, R.,, T. H. Adams, and, W. E. Timberlake. 1989. A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans. Genetics 122: 6571.
2. Ashe, M. P.,, S. K. De Long, and, A. B. Sachs. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11: 833848.
3. Asif, A. R.,, M. Oellerich,, V. W. Amstrong,, B. Riemenschneider,, M. Monod, and, U. Reichard. 2006. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J. Proteome Res. 5: 954962.
4. Bainbridge, B. W. 1971. Macromolecular composition and nuclear division during spore germination in Aspergillus nidulans. J. Gen. Microbiol. 66: 319325.
5. Barrios-Gonzáles, J.,, C. Martinez,, A. Aguilera, and, M. Raimbault. 1989. Germination of concentrated suspensions of spores from Aspergillus niger. Biotechnol. Lett. 11: 551554.
6. Beauvais, A.,, D. Maubon,, S. Park,, W. Morelle,, M. Tanguy,, M. Huerre,, D. S. Perlin, and, J. P. Latge. 2005. Two a(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol. 71: 15311538.
7. Beauvais, A.,, C. Schmidt,, S. Guadagnini,, P. Roux,, E. Perret,, C. Henry,, S. Paris,, A. Mallet,, M. C. Prevost, and, J. P. Latge. 2007. An extra- cellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell. Microbiol. 9: 15881600.
8. Belaish, R.,, H. Sharon,, E. Levdansky,, S. Greenstein,, Y. Shadkchan, and, N. Osherov. 2008. The Aspergillus nidulans cetA and calA genes are involved in conidial germination and cell wall morphogenesis. Fungal Genet. Biol. 45: 232242.
9. Bencina, M.,, M. Legisa, and, N. D. Read. 2005. Cross-talk between cAMP and calcium signaling in Aspergillus niger. Mol. Microbiol. 56: 268281.
10. Bernard, M., and, J. P. Latge. 2001. Aspergillus fumigatus cell wall: composition and biosynthesis. Med. Mycol. 39 (Suppl. 10) : 917.
11. Bruneau, J. M.,, T. Magnin,, E. Tagat,, R. Legrand,, M. Bernard,, M. Diaquin,, C. Fudali, and, J. P. Latge. 2001. Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electro-phoresis 22: 28122823.
12. Chabane, S.,, J. Sarfati,, O. Ibrahim-Granet,, C. Du,, C. Schmidt,, I. Mouyna,, M. C. Prevost,, R. Calderone, and, J. P. Latge. 2006. Gly-cosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl. Environ. Microbiol. 72: 32593267.
13. Chang, M. H.,, K. S. Chae,, D. M. Han, and, K. Y. Jahng. 2004. The GanB G a-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167: 13051315.
14. Chitarra, G. S.,, T. Abee,, F. M. Rombouts,, M. A. Posthumus, and, J. Dijksterhuis. 2004. Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl. Environ. Microbiol. 70: 28232829.
15. da Silva Ferreira, M. E.,, T. Heinekamp,, A. Hard,, A. A. Brakhage,, C. P. Semighini,, S. D. Harris,, M. Savoldi,, P. F. de Gouvea,, M. H. Goldman, and, G. H. Goldman. 2007. Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet. Biol. 44: 219230.
16. da Silva Ferreira, M. E.,, M. R. Kress,, M. Savoldi,, M. H. Goldman,, A. Hard,, T. Heinekamp,, A. A. Brakhage, and, G. H. Goldman. 2006. The akuBKU 80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5: 207211.
17. Dayton, J. S., and, A. R. Means. 1996. Ca 2+/calmodulin-dependent kinase is essential for both growth and nuclear division in Aspergillus nidulans. Mol. Biol. Cell 7: 15111519.
18. Dayton, J. S.,, M. Sumi,, N. N. Nanthakumar, and, A. R. Means. 1997. Expression of a constitutively active Ca 2+/calmodulin-dependent kinase in Aspergillus nidulans spores prevents germination and entry into the cell cycle. J. Biol. Chem. 272: 32233230.
19. d’Enfert, C,, B. M. Bonini,, P. D. Zapella,, T. Fontaine,, A. M. da Silva, and, H. F. Terenzi. 1999. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol. Microbiol. 32: 471483.
20. d’Enfert, C, and, T. Fontaine. 1997. Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol. Microbiol. 24: 203216.
21. Deng, Y.,, H. Dong,, Q. Jin,, C. Dai,, Y. Fang,, S. Liang,, K. Wang,, J. Shao,, Y. Lou,, W. Shi,, D. J. Vakalounakis, and, D. Li. 2006. Analysis of expressed sequence tag data and gene expression profiles involved in conidial germination of Fusarium oxysporum. Appl. Environ. Microbiol. 72: 16671671.
22. Deutschbauer, A. M.,, R. M. Williams,, A. M. Chu, and, R. W. Davis. 2002. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99: 1553015535.
23. Du, C,, J. Sarfati,, J. P. Latge, and, R. Calderone. 2006. The role of the sakA (Hog1) and tcsB (sinl) genes in the oxidant adaptation of Aspergillus fumigatus. Med. Mycol. 44: 211218.
24. Fillinger, S.,, M. K. Chaveroche,, P. van Dijck,, R. de Vries,, G. Ruijter,, J. Thevelein, and, C. d’Enfert. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147: 18511862.
25. Fortwendel, J. R.,, J. C. Panepinto,, A. E. Seitz,, D. S. Askew, and, J. C. Rhodes. 2004. Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet. Biol. 41: 129139.
26. Gams, W., and, J. A. Stalpers. 1994. Has the prehistoric ice-man contributed to the preservation of living fungal spores? FEMS Micro-biol. Lett. 120: 910.
27. Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334361.
28. Ghiorse, W. C, and, M. R. Edwards. 1973. Ultrastructure of Aspergillus fumigatus conidia development and maturation. Protoplasma 76: 4959.
29. Greenstein, S.,, Y. Shadkchan,, J. Jadoun,, C. Sharon,, S. Markovich, and, N. Osherov. 2006. Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cef A-disrupted strain. Fungal Genet. Biol. 43: 4253.
30. Grenier, J.,, C. Potvin,, J. Trudel, and, A. Asselin. 1999. Some thaumatin-like proteins hydrolyse polymeric beta-1,3-glucans. Plant J. 19: 473480.
31. Griffin, D. H. 1994. Fungal Physiology, 2nd ed. Wiley-Liss, New York, NY.
32. Han, K. H.,, J. A. Seo, and, J. H. Yu. 2004. A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol. Microbiol. 51: 13331345.
33. Harris, S. D. 1999. Morphogenesis is coordinated with nuclear division in germinating Aspergillus nidulans conidiospores. Microbiology 145: 27472756.
34. Herman, P. K, and, J. Rine. 1997. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. EMBO J. 16: 61716181.
35. Hinnebusch, A. G. 2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59: 407450.
36. Hollomon, D. W. 1970. Ribonucleic acid synthesis during fungal spore germination. J. Gen. Microbiol. 62: 7587.
37. Horikoshi, K.,, Y. Okitaka, and, K. Ikeda. 1965. Ribosomes in dormant and germinating conidia of Aspergillus oryzae. Agric. Biol. Chem. 29: 724727.
38. Inoki, K.,, H. Ouyang,, Y. Li, and, K. L. Guan. 2005. Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69: 79100.
39. Inoue, H., and, T. Ishikawa. 1970. Macromolecule synthesis and germination of conidia in temperature sensitive mutants of Neurospora crassa. Jpn. J. Genet. 45: 357369.
40. Joseph, J. D., and, A. R. Means. 2000. Identification and characterization of two Ca 2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans. J. Biol. Chem. 275: 3823038238.
41. Kahl, C. R., and, A. R. Means. 2003. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24: 719736.
42. Kasuga, T.,, J. P. Townsend,, C. Tian,, L. B. Gilbert,, G. Mannhaupt,, J. W. Taylor, and, N. L. Glass. 2005. Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Res. 33: 64696485.
43. Lafon, A.,, J. A. Seom,, K. H. Han,, J. H. Yu, and, C. d’Enfert. 2005. The heterotrimeric G-protein GanBct-SfaDfi-GpgA-y is a carbon source sensor involved in early cAMP-dependent germination in As-pergillus nidulans. Genetics 171: 7180.
44. Large, J. P.,, I. Mouyna,, F. Tekaia,, A. Beauvais,, J. P. Debeaupuis, and, W. Nierman. 2005. Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med. My-col. 43 (Suppl. 1) : S15S22.
45. Lengeler, K. B.,, R. C. Davidson,, C. D’souza,, T. Harashima,, W. C. Shen,, P. Wang,, X. Pan,, M. Waugh, and, J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64: 746785.
46. Levdansky, E.,, J. Romano,, Y. Shadkchan,, H. Sharon,, K. J. Verstrepen,, G. R. Fink, and, N. Osherov. 2007. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot. Cell 6: 13801391.
47. Li, H.,, H. Zhou,, Y. Luo,, H. Ouyang,, H. Hu, and, C. Jin. 2007. Gly-cosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol. Microbiol. 64: 10141027.
48. Liebmann, B.,, S. Gattung,, B. Jahn, and, A. A. Brakhage. 2003. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol. Genet. Genomics 269: 420435.
49. Liebmann, B.,, M. Muller,, A. Braun, and, A. A. Brakhage. 2004. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect. Immun. 72: 51935203.
50. Liu, T.,, Q. Zhang,, L. Wang,, L. Yu,, W. Leng,, J. Yang,, L. Chen,, J. Peng,, L. Ma,, J. Dong,, X. Xu,, Y. Xue,, Y. Zhu,, W. Zhang,, L. Yang,, W. Li,, L. Sun,, Z. Wan,, G. Ding,, F. Yu,, K. Tu,, Z. Qian,, R. Li,, Y. Shen,, Y. Li, and, Q. Jin. 2007. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics 8: 100109.
51. Loo, M. W.,, N. S. Schricker, and, P. J. Russell. 1981. Heat-sensitive mutant strain of Neurospora crassa, 4M(t), conditionally defective in 25S ribosomal ribonucleic acid production. Mol. Cell. Biol. 1: 199207.
52. Ma, H.,, L. A. Snook,, C. Tian,, S. G. Kaminskyj, and, T. E. Dahms. 2006. Fungal surface remodelling visualized by atomic force microscopy. Mycol. Res. 110: 879886.
53. Macko, V.,, R. C. Staples,, Z. Yaniv, and, R. R. Granados. 1976. Self-inhibitors of fungal spore germination, p. 73-100. In D. J. Weber and, W. M. Hess (ed.), The Fungal Spore. John Wiley, New York, NY.
54. Maubon, D.,, S. Park,, M. Tanguy,, M. Huerre,, C. Schmitt,, M. C. Prevost,, D. S. Perlin,, J. P. Latge, and, A. Beauvais. 2006. AGS3, an a(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 43: 366375.
55. Mellado, E.,, G. Dubreucq,, P. Mol,, J. Sarfati,, S. Paris,, M. Diaquin,, D. W. Holden,, J. L. Rodriguez-Tudela, and, J. P. Latge. 2003. Cell wall biogenesis in a double chitin synthase mutant ( chsG~ I chsE~) of Aspergillus fumigatus. Fungal Genet. Biol. 38: 98109.
56. Mirkes, P. E. 1974. Polysomes, ribonucleic acid, and protein synthesis during germination of Neurospora crassa conidia. J. Bacteriol. 117: 196202.
57. Mirkes, P. E, and, B. McCalley. 1976. Synthesis of polyadenylic acid-containing ribonucleic acid during the germination of Neurospora crassa conidia. J. Bacteriol. 125: 174180.
58. Moir, A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526530.
59. Moir, A., and, D. A. Smith. 1990. The genetics of bacterial spore germination. Annu. Rev. Microbiol. 44: 531553.
60. Momany, M.,, R. Lindsey,, T. W. Hill,, E. A. Richardson,, C. Momany,, M. Pedreira,, G. M. Guest,, J. F. Fisher,, R. B. Hessler, and, K. A. Roberts. 2004. The Aspergillus fumigatus cell wall is organized in domains that are remodelled during polarity establishment. Microbiology 150: 32613268.
61. Momany, M., and, I. Taylor. 2000. Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation. Microbiology 146: 32793284.
62. Neirman, W. C., et al. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 11511156.
63. Nelson, G.,, O. Kozlova-Zwinderman,, A. J. Collis,, M. R. Knight,, J. R. Fincham,, C. P. Stanger,, A. Renwick,, J. G. Hessing,, P. J. Punt,, C. A. van den Hondel, and, N. D. Read. 2004. Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol. Microbiol. 52: 14371450.
64. Orr, W. C., and, W. E. Timberlake. 1982. Clustering of spore-specific genes in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 79: 59765980.
65. Osherov, N.,, J. Mathew,, A. Romans, and, G. S. May. 2002. Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridization. Fungal Genet. Biol. 37: 197204.
66. Osherov, N., and, G. S. May. 2000. Conidial germination in Aspergil-lus nidulans requires RAS signaling and protein synthesis. Genetics 155: 647656.
67. Paris, S.,, J. P. Debeaupuis,, R. Crameri,, M. Carey,, F. Charles,, M. C. Prevost,, C. Schmitt,, B. Philippe, and, J. P. Latgé. 2003. Conidial hydrophobins of Aspergillus fumigatus. Appl. Environ. Microbiol. 69: 15811588.
68. Pott, G. B.,, T. K. Miller,, J. A. Bartlett,, J. S. Palas, and, C. P. Selitren-nikoff. 2000. The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet. Biol. 31: 5567.
69. Rohde, M.,, M. Schwienbacher,, T. Nikolaus,, J. Heesemann, and, F. Ebel. 2002. Detection of early phase specific surface appendages during germination of Aspergillus fumigatus conidia. FEMS Micro-biol. Lett. 206: 99105.
70. Rolland, F.,, J. Winderickx, and, J. M. Thevelein. 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2: 183201.
71. Romano, J.,, G. Nimrod,, N. Ben-Tal,, Y. Shadkchan,, K. Baruch,, H. Sharon, and, N. Osherov. 2006. Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology 152: 19191928.
72. Santangelo, G. M. 2006. Glucose signaling in Saccharomyces cerevi-siae. Microbiol. Mol. Biol. Rev. 70: 253282.
73. Santos, J. L, and, K. Shiozaki. 2001. Fungal histidine kinases. Sci. STKE 98: RE1.
74. Schmit, J. C., and, S. Brody. 1976. Biochemical genetics of Neurospora crassa conidial germination. Bacteriol. Rev. 40: 141.
75. Setlow, P. 2003. Spore germination. Curr. Opin. Microbiol. 6: 550556.
76. Shimizu, K., and, N. P. Keller. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591600.
77. Som, T., and, V. S. Kolaparthi. 1994. Developmental decisions in As-pergillus nidulans are modulated by Ras activity. Mol. Cell. Biol. 14: 53335348.
78. Steinbach, W. J.,, R. A. Cramer, Jr.,, B. Z. Perfect,, Y. G. Asfaw,, T. C. Sauer,, L. K. Najvar,, W. R. Kirkpatrick,, T. F. Patterson,, D. K. Benjamin, Jr.,, J. Heitman, and, J. R. Perfect. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5: 10911103.
79. Stephens, K. E.,, K. Y. Miller, and, B. L. Miller. 1999. Functional analysis of DNA sequences required for conidium-specific expression of the Spo1-C1C gene of Aspergillus nidulans. Fungal Genet. Biol. 27: 231242.
80. Sunnerhagen, P. 2007. Cytoplasmatic post-transcriptional regulation and intracellular signalling. Mol. Genet. Genomics 277: 341355.
81. Swaminathan, S.,, T. Masek,, C. Molin,, M. Pospisek, and, P. Sunner-hagen. 2006. Rck2 is required for reprogramming of ribosomes during oxidative stress. Mol. Biol. Cell 17: 14721482.
82. Taubitz, A.,, B. Bauer,, J. Heesemann, and, F. Ebel. 2007. Role of respiration in the germination process of the pathogenic mold Aspergillus fumigatus. Curr. Microbiol. 54: 354360.
83. Thau, N.,, M. Monod,, B. Crestani,, C. Rolland,, G. Tronchin,, J. P. Latgé, and, S. Paris. 1994. Rodletless mutants of Aspergillus fumigatus. Infect. Immun. 62: 43804388.
84. Timberlake, W. E. 1980. Developmental gene regulation in Aspergillus nidulans. Dev. Biol. 78: 497510.
85. Tronchin, G.,, J. P. Bouchara,, M. Ferron,, G. Larcher, and, D. Cha-basse. 1995. Cell surface properties of Aspergillus fumigatus conidia: correlation between adherence, agglutination, and rearrangements of the cell wall. Can. J. Microbiol. 41: 714721.
86. Tronchin, G.,, K. Esnault,, G. Renier,, R. Filmon,, D. Chabasse, and, J. P. Bouchara. 1997. Expression and identification of a laminin-binding protein in Aspergillus fumigatus conidia. Infect. Immun. 65: 915.
87. Tronchin, G.,, K. Esnault,, M. Sanchez,, G. Larcher,, A. Marot-Leblond, and, J. P. Bouchara. 2002. Purification and partial characterization of a 32-kilodalton sialic acid-specific lectin from Aspergillus fumigatus. Infect. Immun. 70: 68916895.
88. van Etten, J. L.,, K. R. Dahlbaerg, and, G. M. Russo. 1983. Fungal spore germination, p. 235–266. In J. E. Smith (ed.), Fungal Differentiation: a Contemporary Synthesis. Marcel Dekker, New York, NY.
89. Warwas, M. L.,, J. N. Watson,, A. J. Bennet, and, M. M. Moore. 2007. Structure and role of sialic acids on the surface of Aspergillus fumigatus conidiospores. Glycobiology 17: 401410.
90. Wasylnka, J. A.,, M. I. Simmer, and, M. M. Moore. 2001. Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species. Microbiology 147: 869877.
91. Witteveen, C. F., and, J. Visser. 1995. Polyol pools in Aspergillus niger. FEMS Microbiol. Lett. 134: 5762.
92. Xu, Q.,, M. Ibarra,, D. Mahadeo,, C. Shaw,, E. Huang,, A. Kuspa,, D. Cotter, and, G. Shaulski. 2004. Transcriptional transitions during Dictyostelium spore germination. Eukaryot. Cell 3: 11011110.
93. Zhao, W.,, J. C. Panepinto,, J. R. Fortwendel,, L. Fox,, B. G. Oliver,, D. S. Askew, and, J. C. Rhodes. 2006. Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect. Im-mun. 74: 48654874.
94. Zimmermann, C. R.,, W. C. Orr,, R. F. Leclerc,, E. C. Barnard, and, W. E. Timberlake. 1980. Molecular cloning and selection of genes regulated in Aspergillus development. Cell 21: 709715.


Generic image for table
Table 1.

conidial germination in different media

Citation: Osherov N. 2009. Conidial Germination in , p 131-142. In Latgé J, Steinbach W (ed), and Aspergillosis. ASM Press, Washington, DC. doi: 10.1128/9781555815523.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error