Chapter 2 : Lignocellulosic Biomass Conversion to Ethanol by

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lignocellulosic Biomass Conversion to Ethanol by , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap02-2.gif


Traditional ferments glucose to ethanol rapidly and efficiently, but it is limited in its fermentation of pentose sugars (xylose and arabinose) to ethanol. For future sustainable and cost-efficient lignocellulosic biomass conversion to ethanol, there exist two major challenges: heterogeneous sugar utilization and stress tolerance in engineering microbial catalytic fermentors for bioethanol production. This chapter reviews the current knowledge on the composition and structure of lignocellulosic biomass, its pretreatment and enzymatic saccharification to simple sugars. It also discusses strain development of for efficient fermentation of the biomass-derived sugars to ethanol. Endoglucanase from strain was found to have a wide pH stability and activity. There is an increasing demand for the development of thermostable, environmentally compatible products and for substrate-tolerant cellulases with increased specificity and activity for the application of converting cellulose to glucose for the fuel ethanol industry. Well-functioning hexose transporter family members maintain an easy flow of glucose uptake for the yeast and produce ethanol through glycolysis. Significant progress has been made recently for inhibitors generated from biomass pretreatment. The chapter focuses on the representative inhibitors furfural and 5-hydroxymethylfurfural (HMF). Development of yeast strains that can efficiently utilize heterogeneous sugars and withstand stress conditions in the bioethanol process is key for sustainable, economic and cost-competitive industry dealing with lignocellulosic biomass conversion to ethanol. A comprehensive genomic engineering approach will allow to meet the challenges for efficient lignocellulosic biomass conversion to ethanol in the next decade and beyond.

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Hexose and pentose catabolism pathways of Shown are catabolic pathways of yeast in utilization of major hexoses including glucose, galactose, and mannose; and of pentoses including xylose and arabinose for ethanol production. In the diagram, underlined EC numbers represent endogenous enzymes, and those not underlined indicate an exogenous origin (i.e., introduced to the yeast). Enzyme-encoding genes and EC numbers are presented in parentheses as follows: hexokinase (,; glucokinase (,; galactokinase (,; galactose-1-phosphate uridylyltransferase (,; UDP-glucose 4-epimerase (,; phosphoglucomutase (,; hexokinase 1 (,; mannose-6-phosphate isomerase (,; xylose reductase/aldose (,; xylitol dehydrogenase (,; xylulokinase (,; xylose isomerase (,; arabinitol 4-dehydrogenase (,; L-xylulose reductase (,; L-arabinose isomerase (,; L-ribulokinase (,; and L-ribulose-5-phosphate 4-epimerase (, (adapted from ; and ).

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Metabolic conversion products of inhibitors. Furfural is converted to 2-furanmethanol (FM, furfuryl alcohol) and 5-hydroxymethylfurfural (HMF) converted to 2,5-furan-dimethanol (FDM; 2,5-bis-hydroxymethylfuran) (Liu et al., submitted).

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Cell growth under inhibitor stress. Cell growth of NRRL Y-12632 (gray circles) and strain 12HF10 (black circles) in response to furfural and HMF at 12 mM each on a defined medium (Liu et al., submitted).

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Metabolic dynamics of in presence of inhibitors. Major metabolic conversion dynamics of NRRL Y-12632 (a) and strain 12HF10 (b) including glucose ( ), ethanol ( ), HMF ( ), FDM ( ), furfural ( ), and FM ( ) in the presence of furfural and HMF at 12 mM each on a defined medium as measured by HPLC analysis. Glucose and ethanol were estimated in grams/liter (left axis), and the remaining values are presented in millimolar (right axis) (Liu et al., submitted).

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

The furfural and HMF conversion pathways. A schematic diagram shows furfural conversion into furan methanol (FM) and HMF into 2,5-furan-dimethanol (FDM) relative to glycolysis and ethanol fermentation for ethanologenic yeast (adapted from , and Liu et al., submitted).

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alexandre, H.,, I. Rousseaux, and, C. Charpentier. 1994. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol. Lett. 124: 1722.
2. Amore, R.,, P. Kotter,, C. Kuster,, M. Ciriacy, and, C. P. Hollenberg. 1991. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene ( xyl1) for the xylose-assimilating yeast Pichia stipitis. Gene 109: 8997.
3. Ando, S.,, I. Arai,, K. Kiyoto, and, S. Hanai. 1986. Identification of aromatic monomers in steam-exploded poplar and their influence on ethanol production by Saccharomyces cerevisiae. J. Ferment. Technol. 64: 567570.
4. Antal, M. J.,, W. S. L. Mok, and, G. N. Richards. 1990. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydr. Res. 199: 91109.
5. Antal, M. J.,, T. Leesomboon,, W. S. Mok, and, G. N. Richards. 1991. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr. Res. 217: 7185.
6. Ashburner, M.,, C. A. Ball,, J. A. Blake,, D. Botstein,, H. Butler,, J. M. Cherry,, A. P. Davis,, K. Dolinski,, S. S. Dwight,, J. T. Eppig,, M. A. Harris,, D. P. Hill,, L. Issel-Tarver,, A. Kasarskis,, S. Lewis,, J. C. Matese,, J. E. Richardson,, M. Ringwald,, G. M. Rubin, and, G. Sherlock. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 2529.
7. Aspinall,, G. O. 1980. Chemistry of cell wall polysaccharides, p. 473500. In J. Preiss (ed.), The Biochemistry of Plants (A Comprehensive Treatise), vol. 3. Carbohydrates: Structure and Function. Academic Press, New York, NY.
8. Augustin, H. W.,, G. Kopperschlager,, H. Steffen, and, E. Hofmann. 1965. Hexokinase as limiting factor of anaerobic glucose consumption of Saccharomyces carlsbergensis NCYC74. Biochim. Biophys. Acta 110: 437439.
9. Bachmann, S. L., and, A. J. McCarthy. 1991. Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl. Environ. Microbiol. 57: 21212130.
10. Batt, C. A.,, S. Carvallo,, D. Easson,, M. Akedo, and, A. J. Sinskey. 1986. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 67: 549553.
11. Bjerre, A. B.,, A. B. Olesen,, T. Fernqvist,, A. Ploger, and, A. S. Schmidt. 1996. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Bioresour. Technol. 49: 568577.
12. Bothast, R., and, B. Saha. 1997. Ethanol production from agricultural biomass substrate. Adv. Appl. Microbiol. 44: 261286.
13. Boussaid, A.,, J. Robinson,, Y.-J. Cal,, D. J. Gregg, and, J. N. Saddler. 1999. Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (Douglas-fir). Biotechnol. Bioeng. 64: 284289.
14. Brownell, H. H., and, J. N. Saddler. 1984. Steam explosion pretreatment for enzymatic hydrolysis. Biotechnol. Bioeng. Symp. 14: 5568.
15. Bruinenberg, P. M.,, P. H. M. de Bot,, J. P. van Dijken, and, W. A. Scheffers. 1983. The role of the redox balance in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. Biotechnol. 18: 287292.
16. Bruinenberg, P. M.,, P. H. M. de Bot,, J. P. van Dijken, and, W. A. Scheffers. 1984. NADH-linked aldose reductase: the key to ethanolic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19: 256260.
17. Cao, N. J.,, M. S. Krishnan,, J. X. Du,, C. S. Gong,, N. W. Y. Ho,, Z. D. Chen, and, G. T. Tsao. 1996. Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol. Lett. 18: 10131018.
18. Chung, I. S., and, Y. Y. Lee. 1985. Ethanol fermentation of crude acid hydrolyzate of cellulose using high-level yeast inocula. Biotechnol. Bioeng. 27: 308315.
19. Devantier, R.,, S. Pedersen, and, L. Olsson. 2005. Transcription analysis of S. cerevisiae in VHG fermentation. Ind. Biotechnol. 1: 5163.
20. Dien, B. S.,, L. B. Iten, and, C. D. Skory. 2005a. Converting herbaceous energy crops to bioethanol; a review with emphasis on pretreatment processes, chapter 23, p. 111. In C. T. Hou (ed.), Handbook of Industrial Biocatalysis. Taylor and Francis, Boca Raton, FL.
21. Dien, B. S.,, D. B. Johnston,, K. B. Hicks,, M. A. Cotta, and, V. Singh. 2005b. Hydrolysis and fermentation of pericarp and endosperm fibers recovered from enzymatic corn dry-grind process. Cereal Chem. 82: 616620.
22. Dien, B. S.,, N. Nagle,, K. B. Hicks,, V. Singh,, R. A. Moreau,, M. P. Tucker,, N. N. Nichols,, D. B. Johnston,, M. A. Cotta,, Q. Nguyen, and, R. J. Bothast. 2004. Fermentation of “Quick Fiber” produced from a modified corn-milling process into ethanol and recovery of corn fiber oil. Appl. Biochem. Biotechnol. 113–116: 937949.
23. Dombek, K. M., and, L. O. Ingram. 1987. Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl. Environ. Microbiol. 53: 12861291.
24. Doner, L. W., and, K. B. Hicks. 1997. Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem. 74: 176181.
25. Draude, K. M.,, C. B. Kurniawan, and, S. J. B. Duff. 2001. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 79: 113120.
26. Duff, S. J. B., and, W. D. Murray. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55: 133.
27. Dunlop,, A. P. 1948. Furfural formation and behavior. Ind. Eng. Chem. 40: 204209.
28. Du Preez, J. C. 1994. Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzyme Microb. Technol. 16: 944956.
29. Du Preez, J. C.,, M. Bosch, and, B. A. Prior. 1986. Xylose fermentation by Candida shehatae and Pichia stipitis : effects of pH, temperature and substrate concentration. Enzyme Microb. Technol. 8: 360364.
30. Eliasson, A.,, C. Christensson,, C. F. Wahlbom, and, B. Hahn-Hägerdal. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66: 33813386.
31. Erasmus, D.,, G. van der Merwe, and, H. van Vuure. 2003. Genome-wide expression analysis: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. Yeast Res. 3: 375399.
32. Eriksson, T.,, J. Borjesson, and, F. Tjerneld. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31: 353364.
33. Fiaux, J.,, Z. P. Cakar,, M. Sonderegger,, K. Wuthrich,, U. Sauer. 2003. Metabolic-flux profiling of the yeast Saccharomyces cerevisiae and Pichia stipitis. Eukaryot. Cell 2: 170180.
34. Filho, E. X. F.,, M. G. Touhy, J. Puls, and, M. P. Coughlan. 1991. The xylan-degrading enzyme systems of Penicillium capsulatum and Talaromyces emersonii. Biochem. Soc. Trans. 19: 25S.
35. Fisk, D. G.,, C. A. Ball,, K. Dolinski,, S. R. Engel,, E. L. Hong,, L. IsselTarver,, K. Schwartz,, A. Sethuraman,, D. Botstein, and, J. M. Cherry. 2006. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 23: 857865.
36. Focher, B.,, A. Marzetti,, M. Cattaneo,, P. I. Beltrame, and, P. J. Carniti. 1981. Effects of structural features of cotton cellulose on enzymatic hydrolysis. Appl. Polym. Sci. 26: 19891999.
37. Gardonyi, M., and, B. Hahn-Hägerdal. 2003. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb. Technol. 32: 252259.
38. Garrote, G.,, H. Dominguez, and, J. C. Parajo. 2001. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics. Bioresour. Technol. 79: 155164.
39. Gilbert, H. J., and, G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187194.
40. Gilkes, N. R.,, B. Henrissat, D. C. Kilburn,, R. C. Miller Jr., and, R. A. Warren. 1991. Domains in microbial β-1,4-glycanases: sequence, conservation, function, and enzyme families. Microbiol. Rev. 55: 303315.
41. Gong, C. S.,, L. F. Chen,, M. C. Flickinger,, L. C. Chiang, and, G. T. Tsao. 1981. Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430436.
42. Gorsich, S. W.,, Z. L. Liu, and, P. J. Slininger. 2005. The role of the pentose phosphate pathway in fermentation inhibitor tolerance. Abstr. 5-33. 27th Symp. Biotechnol. Fuels Chemicals, Denver, CO.
43. Gorsich, S. W.,, B. S. Dien, N. N. Nichols, P. J. Slininger, Z. L. Liu, and, C. Skory. 2006. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71: 339349.
44. Grethlein,, H. E. 1985. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3: 155160.
45. Grohmann, K., and, R. J. Bothast. 1997. Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32: 405415.
46. Grotkjær, T.,, P. Christakopoulos, J. Nielsen, and, L. Olsson. 2005. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab. Eng. 7: 437444.
47. Gulati, M.,, K. Kohlmann, M. Ladisch, R. B. Hespell, and, R. J. Bothast. 1996. Assessment of ethanol production options from corn products. Bioresour. Technol. 58: 253264.
48. Hahn-Hägerdal, B.,, H. Jeppsson, K. Skoog, and, B. A. Prior. 1994. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Technol. 16: 933943.
49. Harhangi, H. R.,, A. S. Akhmanova, R. Emmens, C. van derDrift, W. T. de Laat, J. P. van Dijken, M. S. Jetten, J. T. Pronk, and, H. J. Op den Camp. 2003. Xylose metabolism in the anaerobic fungus Piromyces sp. E2 follows the bacterial pathway. Arch. Microbiol. 180: 134141.
50. Hartley, R. D., and, C. W. Ford. 1989. Phenolic constituents of plant cell walls and wall biodegradability, p. 135145. In L. G. Lewis and, M. G. Paice (ed.), Plant Cell Wall Polymers, Biogenesis, and Biodegradation. American Chemical Society, Washington, DC.
51. Henrissat, B.,, H. Driguez, C. Viet, and, M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 3: 722726.
52. Hinman, N. D.,, D. J. Schell,, C. J. Rieley,, P. W. Bergeron, and, P. J. Walter. 1992. Preliminary estimate of the cost of ethanol production for SSF technology. Appl. Biochem. Biotechnol. 34/35: 639649.
53. Ho, N. W. Y.,, Z. Chen, and, A. P. Brainard. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 18521859.
54. Ho, N. W. Y.,, P. Stevis, S. Rosenfeld, J. J. Huang, and, G. T. Tsao. 1984. Expression of the E. coli xylose isomerase gene by a yeast promoter. Biotechnol. Bioeng. Symp. 13: 245250.
55. Hood, E. E.,, K. R. Hood, and, S. E. Fritz. 1991. Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci. 79: 1322.
56. Ibeas, J. I., and, J. Jimenez. 1997. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl. Environ. Microbiol. 63: 712.
57. Ingram,, L. O. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125: 670678.
58. Ingram,, L. O. 1990. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9: 305319.
59. Ingram, L. O., and, T. M. Buttke. 1984. Effects of alcohols on micro-organisms. Adv. Microb. Physiol. 25: 253300.
60. Jeffries,, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320326.
61. Jeffries, T. W., and, Y.-S. Jin. 2004. Metabolic engineering for improved fermentation of pentose by yeasts. Appl. Microbiol. Biotechnol. 63: 495509.
62. Jeppsson, M.,, B. Johansson, B. Hahn-Hägerdal, and, M. F. Gorwa-Grauslund. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68: 16041609.
63. Jin, Y. S.,, H. Ni,, J. M. Laplaza, and, T. W. Jeffries. 2003. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 69: 495503.
64. Johansson, B.,, C. Christensson, T. Hobley, and, B. Hahn-Hägerdal. 2001. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol. 67: 42494255.
65. Kanehisa, M.,, S. Goto,, M. Hattori,, K. F. Aoki-Kinoshita,, M. Itoh,, S. Kawashima,, T. Katayama,, M. Araki, and, M. Hirakawa. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: D354D357.
66. Karhumaa, K.,, B. Hahn-Hägerdal, and, M. F. Gorwa-Grauslund. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359368.
67. Khan, Q., and, S. Hadi. 1994. Inactivation and repair of bacteriophage lambda by furfural. Biochem. Mol. Biol. Int. 32: 379385.
68. Klinke, H. B.,, B. K. Ahring,, A. S. Schmidt, and, A. B. Thomson. 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol. 82: 1526.
69. Klinke, H. B.,, A. B. Thomsen, and, B. K. Ahring. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 1026.
70. Kötter, P., and, M. Ciriacy. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38: 776783.
71. Kötter P., R. Amore,, C. P. Hollenberg, and, M. Ciriacy. 1990. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18: 493500.
72. Krishnan, M. S.,, N. W. Y. Ho, and, G. T. Tsao. 1999. Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotechnol. 77–79: 373388.
73. Kuyper, M.,, A. A. Winkler,, J. P. van Dijken, and, J. T. Pronk. 2004. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4: 655664.
74. Kuyper, M.,, H. R. Harhangi,, A. K. Stave,, A. A. Winkler,, M. S. Jetten,, W. T. de Laat,, J. J. de Ridder,, H. J. Op den Camp,, J. P. van Dijken, and, J. T. Pronk. 2003. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4: 6978.
75. Kuyper, M.,, M. M. Hartog,, M. J. Toirkens,, M. J. Almering,, A. A. Winkler,, J. P. van Dijken, and, J. T. Pronk. 2005a. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5: 399409.
76. Kuyper, M.,, M. J. Toirkens,, J. A. Diderich,, A. A. Winkler,, J. P. van Dijken, and, J. T. Pronk. 2005b. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925934.
77. Larroy, C.,, M. R. Fernadez,, E. Gonzalez,, X. Pares, and, J. A. Biosca. 2002. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem. J. 361: 163172.
78. Larsson, S.,, E. Palmqvist,, B. Hahn-Hägerdal,, C. Tengborg,, K. Stenberg,, G. Zacchi, and, N. Nilvebrant. 1999. The generation of inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151159.
79. Lee, S. F., and, C. W. Forsberg. 1987. Purification and characterization of an α-L-arabinofuranosidase from Clostridium acetobutylicum ATCC 824. Can. J. Microbiol. 33: 10111016.
80. Leonard, R. H., and, G. J. Hajny. 1945. Fermentation of wood sugars to ethyl alcohol. Ind. Eng. Chem. 37: 390395.
81. Lewkowski, J. 2001. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc 1: 1754.
82. Liu,, Z. L. 2005. Genomic adaptive response of yeast to biofuel fermentation inhibitors. Soc. Ind. Microbiol. Annu. Meet. 2005 (s) :37.
83. Liu,, Z. L. 2006. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl. Microbiol. Biotechnol. 73: 2736.
84. Liu,, Z. L. 2007. Genomic engineering of Saccharomyces cerevisiae for biomass conversion to ethanol, p. 97. Abstr. Soc. Ind. Micro-biol. Annu. Meet.
85. Liu, Z. L., and, D. Palmquist. 2007. A robust standard for absolute mRNA quantification of Saccharomyces cerevisiae by qRT-PCR using the universal RNA controls. XXIII Int. Conf. Yeast Gen. Mol. Biol., abstr. 0064.
86. Liu, Z. L., and, S. Sinha. 2006. Transcriptional regulatory analysis reveals PDR3 and GCR1 as regulators of significantly induced genes by 5-hydroxymethylfurfural stress involved in bioethanol conversion for ethanologenic yeast Saccharomyces cerevisiae. Microarray Gene Expr. Data Soc. Meet. 9: 119.
87. Liu, Z. L., and, P. J. Slininger. 2004a. Functional genomic studies of in situ detoxification of bioethanol fermentation inhibitors using ethanologenic yeast. Soc. Ind. Microbiol. Annu. Meet. S146: 85.
88. Liu, Z. L., and, P. J. Slininger. 2004b. Global gene expression analysis of ethanologenic yeasts in adaptation to bioethanol fermentation inhibitory stress. Genomes 2004: 61.
89. Liu, Z. L., and, P. J. Slininger. 2005. Development of genetically engineered stress tolerant ethanologenic yeasts using integrated functional genomics for effective biomass conversion to ethanol, p. 283294. In J. Outlaw,, K. Collins, and, J. Duffield (ed.), Agriculture as a Producer and Consumer of Energy. CAB International, Wallingford, United Kingdom.
90. Liu, Z. L., and, P. J. Slininger. 2006a. In situ detoxification of inhibitors by ethanologenic yeast for biomass conversion to ethanol. Proc. World BioEnergy 2006: 121.
91. Liu, Z. L., and, P. J. Slininger. 2006b. Transcriptome dynamics of ethanologenic yeast in response to 5-hydroxymethylfurfural stress related to biomass conversion to ethanol, p. 679684. In A. Mendez-Vilas (ed.), Modern Multidisciplinary Applied Micro-biology: Exploiting Microbes and Their Interactions. Wiley-VCH, Weinheim, Germany.
92. Liu, Z. L., and, P. J. Slininger. 2007. Universal external RNA controls for microbial gene expression analysis using microarray and qRTPCR. J. Microbiol. Methods 68: 486496.
93. Liu, Z. L.,, P. J. Slininger, and, S. W. Gorsich. 2005. Enhanced biotransformation of furfural and 5-hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Biochem. Biotechnol. 121–124: 451460.
94. Liu, Z. L.,, P. J. Slininger, and, B. J. Andersh. 2006. Induction of pleiotropic drug resistance gene expression indicates important roles of PDR to cope with furfural and 5-hydroxymethylfurfural stress in ethanologenic yeast, p. 169. Abstr. 27th Symp. Biotechnol. Fuels Chem.
95. Liu, Z. L.,, P. J. Slininger, B. S. Dien, M. A. Berhow, C. P. Kurtzman, and, S. W. Gorsich. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31: 345352.
96. Lucero, P.,, E. Penalver, E. Moreno, and, R. Lagunas. 1997. Moderate concentrations of ethanol inhibit endocytosis of the yeast maltose transporter. Appl. Environ. Microbiol. 63: 38313836.
97. Luo, C.,, D. Brink, and, H. Blanch. 2002. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22: 125138.
98. Martel, P., and, J. M. Gould. 1990. Cellulose stability and delignification after alkaline hydrogen peroxide treatment of straw. J. Appl. Polymer Sci. 39: 707714.
99. Martin, C., and, L. Jonsson. 2003. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Technol. 32: 386395.
100. Martin, C.,, M. Marcet, O. Almazan, and, L. J. Jonsson. 2007. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour. Technol. 98:1767–1773.
101. Martinez, A.,, M. E. Rodriguez,, S. W. York,, J. F. Preston, and, L. O. Ingram. 2000. Effect of Ca(OH) 2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolyzates. Biotechnol. Bioeng. 69: 526536.
102. McMillan,, J. D. 1993. Pretreatment of lignocellulosic biomass, p. 292323. In M. E. Himmel,, J. O. Baker, and, R. P. Overend (ed.), Enzymatic Conversion of Biomass for Fuel Production. American Chemical Society, Washington, DC.
103. Meaden, P. G.,, N. Arneborg, L. U. Guldfeldt, H. Siegumfeldt, and, M. Jakobsen. 1999. Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock. Yeast 15: 12111222.
104. Modig, T.,, G. Liden, and, M. Taherzadeh. 2002. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363: 769776.
105. Moes, C. J.,, I. S. Pretorius, and, W. H. van Zyl. 1996. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene ( xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18: 269274.
106. Mohsenzadeh, M.,, W. Saupe-Thies,, G. Sterier,, T. Schroeder,, F. Fran-cella,, P. Ruoff, and, L. Rensing. 1998. Temperature adaptation of house keeping and heat shock gene expression in Neurospora crassa. Fungal Genet. Biol. 25: 3143.
107. Monteiro, G. A.,, P. Supply, A. Goffeau, and, I. Sa-Correia. 1994. The in vivo activation of Saccharomyces cerevisiae plasma membrane H(+)-ATPase by ethanol depends on the expression of the PMA1 gene, but not of the PMA2 gene. Yeast 10: 14391446.
108. Morimoto, S., and, M. Murakami. 1967. Studies on fermentation products from aldehyde by microorganisms: the fermentative production of furfural alcohol from furfural by yeasts (part I). J. Ferment. Technol. 45: 442446.
109. Mussatto, S. I., and, I. C. Roberto. 2004. Alternatives for detoxification of dilute-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour. Technol. 93: 110.
110. Nemirovskii, V., and, V. Kostenko. 1991. Transformation of yeast growth inhibitors which occurs during biochemical processing of wood hydrolysates. Gidroliz Lesokhimm Prom-st 1: 1617.
111. Nemirovskii, V.,, L. Gusarova,, Y. Rakhmilevich,, A. Sizov, and, V. Kostenko. 1989. Pathways of furfurol and oxymethyl furfurol conversion in the process of fodder yeast cultivation. Biotekhnologiya 5: 285289.
112. Nguyen, Q. A., and, J. N. Saddler. 1991. An integrated model for the technical and economic evaluation of an enzymatic biomass conversion process. Bioresour. Technol. 35: 275282.
113. Nilsson, A.,, M. F. Gorwa-Grauslund,, B. Hahn-Hägerdal, and, G. Liden. 2005. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl. Environ. Microbiol. 71: 78667871.
114. Olsson, L., and, B. Hahn-Hägerdal. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312331.
115. Ostergaard, S.,, L. Olsson, and, J. Nielsen. 2000. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64: 3450.
116. Outlaw, J.,, K. J. Collins, and, J. A. Duffield. 2005. Agriculture as a Producer and Consumer of Energy. CABI Publishing, Oxfordshire, Oxford, United Kingdom.
117. Palmqvist, E., and, B. Hahn-Hägerdal. 2000a. Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresour. Technol. 74: 1724.
118. Palmqvist, E., and, B. Hahn-Hägerdal. 2000b. Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 2533.
119. Palmqvist, E.,, J. Almeida,, B. Hahn-Hägerdal. 1999. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447454.
120. Petersson, A.,, J. R. M. Almeida,, T. Modig,, K. Karhumaa,, B. Hahn-Hägerdal,, M. F. Gorwa-Grauslund, and, G. Liden. 2006. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23: 455464.
121. Philippidis, G. P.,, T. K. Smith, and, C. E. Wyman. 1993. Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol. Bioeng. 41: 846853.
122. Poutanen, K.,, M. Tenkanen, H. Korte, and, J. Puls. 1991. Accessory enzymes involved in the hydrolysis of xylans, p. 426436. In G. F. Leatham and, M. E. Himmel (ed.), Enzymes in Biomass Conversion. American Chemical Society, Washington, DC.
123. Prior, B. A.,, S. G. Kilian, and, J. C. duPreez. 1989. Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis : prospects and problems. Process Biochem. Feb: 2132.
124. Richard, P.,, M. H. Toivari, and, M. Penttila. 2000. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett. 190: 3943.
125. Saha,, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279291.
126. Saha, B. C. 2004a. Lignocellulose biodegradation and applications in biotechnology, p. 234. In B. C. Saha and, K. Hayaski (ed.), Lignocellulose Biodegradation. American Chemical Society, Washington, DC.
127. Saha, B. C. 2004b. Production, purification, and propertie. of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem. 39. 1871.1876.
128. Saha, B. C., and, M. A. Cotta. 2006. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol. Prog. 22: 449453.
129. Saha, B. C., and, R. J. Bothast. 1999a. Pretreatment and enzymatic saccharification of corn fiber. Appl. Biochem. Biotechnol. 76: 6577.
130. Saha, B. C., and, R. J. Bothast. 1999b. Enzymology of xylan degradation, p. 167194. In S. H. Imam,, R. V. Greene, and, B. R. Zaidi (ed.), Biopolymers: Utilizing Nature’s Advanced Materials. American Chemical Society, Washington, DC.
131. Saha, B. C.,, L. B. Iten,, M. A. Cotta, and, Y. V. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of wheat straw to ethanol. Process Biochem. 40: 36933700.
132. Saha, B. C.,, S. N. Freer, and, R. J. Bothast. 1995. Thermostable β-glucosidases, p. 197207. In J. N. Saddler and, M. H. Penner (ed.), Enzymatic Degradation of Insoluble Carbohydrates. American Chemical Society, Washington, DC.
133. Sajbidor J., Z. Ciesarova, and, D. Smogrovicova. 1995. Influence of ethanol on the lipid content and fatty acid composition of Saccharomyces cerevisiae. Folia Microbiol. (Praha) 40: 508510.
134. Sanchez, B., and, J. Bautista. 1988. Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme Microb. Technol. 10: 315318.
135. Sarthy, A.V.,, B. L. McConaughy,, Z. Lobo,, J. A. Sundstrom,, C. E. Furlong, and, B. D. Hall. 1987. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 19962000.
136. Saulnier, L., and, J. F. Thibault. 1999. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J. Sci. Food Agric. 79: 396402.
137. Saulnier, L.,, C. Marot, E. Chanliaud, and, J. F. Thibault. 1995. Cell wall polysaccharide interactions in maize bran. Carbohydr. Polymers 26: 279287.
138. Scalbert, A.,, B. Monties,, J. Y. Lallemand,, E. Guittet, and, C. Rolando. 1985. Ether linkages between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24: 13591362.
139. Sedlak, M., and, N. W. Y. Ho. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 114: 403416.
140. Singh, V., and, S. R. Eckhoff. 1997. Economics of germ preseparation for dry grind ethanol facilities. Cereal Chem. 74: 462466.
141. Slininger, P. J.,, P. L. Bolen, and, C. P. Kurtzman. 1987. Pachysolen tannophilus : properties and process considerations for ethanol production from D-xylose. Enzyme Microb. Technol. 9: 515.
142. Slininger, P. J.,, B. S. Dien,, S. W. Gorsich, and, Z. L. Liu. 2006. Nitrogen source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl. Microbiol. Biotechnol. 72: 12851296.
143. Sonderegger, M.,, M. Schumperli, and, U. Sauer. 2004a. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70: 28922897.
144. Sonderegger, M.,, M. Jeppsson,, C. Larsson,, M. F. Gorwa-Grauslund,, E. Boles,, L. Olsson,, I. Spencer-Martins,, B. Hahn-Hägerdal, and, U. Sauer. 2004b. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 87: 9098.
145. Sonderegger, M., and, U. Sauer. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69: 19901998.
146. Song, M., and, Z. L. Liu. A. linear discrete dynamic system model for temporal gene interaction and regulatory network influence in response to bioethanol conversion inhibitor HMF for ethanologenic yeast. Lecture Notes Bioinformatics, in press.
147. Sun, Y., and, J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 111.
148. Taherzadeh, M.,, L. Gustafsson, and, C. Niklasson. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701708.
149. Tan, L. U. L.,, E. K. C. Yu, P. Mayers, and, J. N. Saddler. 1987. Column cellulose hydrolysis reactor: the effect of retention time, temperature, cellulase concentration, and exogeneously added cellobiose on the overall process. Appl. Microbiol. Biotechnol. 26: 2127.
150. Tanaka, M.,, M. Fukui, and, R. Matsuno. 1988. Effect of pore size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases. Biotechnol. Bioeng. 32: 897902.
151. Teixeira, M. C.,, P. Monteiro,, P. Jain,, S. Tenreiro,, A. R. Fernandes,, N. P. Mira,, M. Alenquer,, A. T. Freitas,, A. L. Oliveira, and, I. SáCorreia. 2006. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic. Acids Res. 34: D446D451.
152. Thomson,, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104: 6582.
153. Timell,, T. E. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1: 4570.
154. Toivari, M. H.,, A. Aristidou, L. Ruohonen, and, M. Penttila. 2001. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase ( XKSI) and oxygen availability. Metab. Eng. 3: 236249.
155. Traff, K. L.,, R. R. Otero Cordero, W. H. van Zyl, and, B. Hahn-Hagerdal. 2001. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expression the xylA and XKSI genes. Appl. Environ. Microbiol. 67: 56685674.
156. van Maris, A. J. A.,, D. A. Abbott,, E. Bellissimi,, J. van den Brink,, M. Kuyper,, M. A. H. Luttik,, H. W. Wisselink,, W. A. Scheffers,, J. P. van Dijken, and, J. T. Pronk. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90: 391418.
157. van Zyl, C.,, B. A. Prior,, S. G. Kilian, and, J. L. Kock. 1989. D-xylose utilization by Saccharomyces cerevisiae. J. Gen. Microbiol. 135: 27912798.
158. van Zyl, W. H.,, A. Elliasson, T. Hobley, and, B. Hahn-Hagerdal. 1999. Xylose utilization by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl. Microbiol. Biotechnol. 52: 829833.
159. Verho, R.,, J. Londesborough, M. Penttila, and, P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 58925897.
160. Villa, G. P.,, R. Bartroli,, R. Lopez,, M. Guerra,, M. Enrique,, M. Penas,, E. Rodriquez,, D. Redondo,, I. Iglesias, and, M. Diaz. 1992. Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 12: 509512.
161. Wahjudi, J.,, L. Xu,, P. Yang,, V. Singh,, P. Buriak,, K. D. Rausch,, A. J. McAloon,, M. E. Tumbleson, and, S. R. Eckhoff. 2000. The quick fiber process: effect of mash temperature, dry solids and residual germ on fiber yield and purity. Cereal Chem. 77: 640644.
162. Wahlbom, C. F., and, B. Hahn-Hägerdal. 2002. Furfural, 5-hydroxymethylfurfural, and acetone act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78: 172178.
163. Wahlbom, C. F.,, W. H. van Zyl, L. J. Jonsson, B. Hahn-Hagerdal, and, R. R. Otero. 2003. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichis stipitis CBS 6054. FEMS Yeast Res. 3: 319326.
164. Walfridsson, M.,, X. Bao,, M. Anderlund,, G. Lilius,, B. Hahn-Hägerdal. 1996. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62: 46484651.
165. Wheals, A. E.,, L. C. Basso,, D. M. Alves, and, H. V. Amorim. 1999. Fuel ethanol after 25 years. Trends Biotechnol. 17: 482–487.
166. Wyman, C. E. 1994. Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour. Technol. 50: 316.
167. Yang, B.,, A. Boussaid,, S. D. Mansfield,, D. J. Gregg, and, J. N. Saddler. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol. Bioeng. 77: 678684.
168. You, K. M., C.-L. Rosenfield, and, D. C. Knipple. 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69: 14991503.
169. Zaldivar, J.,, A. Martinez, and, L. O. Ingram. 1999. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65: 2433.
170. Zaldivar, J.,, J. Nielsen, and, L. Olsson. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56: 1734.
171. Zaldivar, J.,, A. Borges,, B. Johansson,, H. P. Smits,, S. G. Villas-Boas,, J. Nielsen, and, L. Olsson. 2002. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 59: 436442.
172. Zheng, Y.,, H. M. Lin,, J. Wen,, N. Cao,, G. T. Tsao. 1995. Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol. Lett. 17: 845850.


Generic image for table
Table 1.

Enzymes involved in cellulose and hemicellulose degradation

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Generic image for table
Table 2.

Ethanol fermentation kinetics of selective representative yeast strains

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2
Generic image for table
Table 3.

A survey of representative strains for improved xylose utilization by genetic engineering and directed adaptation selection

Citation: Liu Z, Saha B, Slininger P. 2008. Lignocellulosic Biomass Conversion to Ethanol by , p 17-36. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error