Chapter 20 : Towards Hydrogenase Engineering for Hydrogen Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Towards Hydrogenase Engineering for Hydrogen Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap20-2.gif


This chapter discusses hydrogenase structure-function relationship studies in which new properties of modified enzymes might serve as an inspiration source for rational optimization of hydrogenases for biotechnological processes. A key point is that these reactions that appear as competitors for biotechnological purposes are often essential for cell survival or development. In part, this explains the difficulty and the slow progress in biohydrogen research. Two research directions can be proposed to overcome this kind of limitation: improve the substrate specificity of hydrogenase or, more radically, redirect redox intermediates. The V74M-L122M hydrogenase oxidized by oxygen remained in the same redox state as the native enzyme oxidized anaerobically, as demonstrated by the predominance of an Ni-B EPR signal (while Ni-A is predominant in the oxygen-exposed native enzyme) and by the abundance of a hydroxyl-bridging ligand at the active site in the structure. It was shown that it is possible to improve dioxygen resistance of [NiFe] hydrogenases. The enzyme bias, substrate specificity, and oxygen resistance are the main domains in which some progress has already been made, opening the way towards future applications. But other issues, like heterologous expression of [NiFe] hydrogenases that would facilitate molecular research and organism engineering or deciphering the catalytic mechanism that would allow the development of biomimetic catalysts, are also the subjects of intensive research and will contribute to biohydrogen implementation.

Citation: Rousset M, Cournac L. 2008. Towards Hydrogenase Engineering for Hydrogen Production, p 249-257. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

[Fe] hydrogenase from ( ). Protein Data Bank ID 2b0j. Three-dimensional structure of the apoenzyme is shown.

Citation: Rousset M, Cournac L. 2008. Towards Hydrogenase Engineering for Hydrogen Production, p 249-257. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(Top row and bottom row, left and center) Photographs, taken through the optic microscope, of the bacterial cells presented in this chapter. (formerly ) is from Wiki microbe; is from Evolution Ecology and Biodiversity Lab Manual online from the University of Winnipeg; is from the Metalbioreduction web page; is from Viet Sciences; is from Wellesley College. (Bottom row, right) The photobioreactor is a bacteria reactor specially designed for the culture of photosynthetic organisms. The photobioreactor presented here contains growing cells from the Commissariat à l’Energie Atomique, the Institut de Biologie Environmentale et Biotechnologie, and the Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues.

Citation: Rousset M, Cournac L. 2008. Towards Hydrogenase Engineering for Hydrogen Production, p 249-257. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Appel, J.,, S. Phunpruch,, K. Steinmuller, and, R. Schulz. 2000. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173: 333338.
2. Armstrong, F. A., and, S. P. Albracht. 2005. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philos. Trans. R. Soc. London A 363: 937954.
3. Bernhard, M.,, T. Buhrke,, B. Bleijlevens,, A. L. De Lacey,, V. M. Fernandez,, S. P. Albracht, and, B. Friedrich. 2001. The H 2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J. Biol. Chem. 276: 1559215597.
4. Bianco, P. 2002. Protein modified- and membrane electrodes: strategies for the development of biomolecular sensors. J. Biotechnol. 82: 393409.
5. Black, L. K.,, C. Fu, and, R. J. Maier. 1994. Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J. Bacteriol. 176: 71027106.
6. Bleijlevens, B.,, T. Buhrke,, E. van der Linden,, B. Friedrich, and, S. P. Albracht. 2004. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J. Biol. Chem. 279: 4668646691.
7. Buhrke, T.,, B. Bleijlevens,, S. P. Albracht, and, B. Friedrich. 2001. Involvement of hyp gene products in maturation of the H(2)-sensing [NiFe] hydrogenase of Ralstonia eutropha. J. Bacteriol. 183: 70877093.
8. Buhrke, T., and, B. Friedrich. 1998. hoxX ( hypX) is a functional member of the Alcaligenes eutrophus hyp gene cluster. Arch. Microbiol. 170: 460463.
9. Buhrke, T.,, O. Lenz,, N. Krauss, and, B. Friedrich. 2005. Oxygen tolerance of the H 2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J. Biol. Chem. 280: 2379123796.
10. Burgdorf, T.,, A. L. De Lacey, and, B. Friedrich. 2002. Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha. J. Bacteriol. 184: 62806288.
11. Burgdorf, T.,, O. Lenz,, T. Buhrke,, E. van der Linden,, A. K. Jones,, S. P. Albracht, and, B. Friedrich. 2005. [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J. Mol. Microbiol. Biotechnol. 10: 181196.
12. Casalot, L., and, M. Rousset. 2001. Maturation of the [NiFe] hydro-genases. Trends Microbiol. 9: 228237.
13. Cournac, L.,, G. Guedeney,, G. Peltier, and, P. M. Vignais. 2004. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPHdehydrogenase complex. J. Bacteriol. 186: 17371746.
14. De Lacey, A. L.,, V. M. Fernandez,, M. Rousset, and, R. Cammack. Activation. and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem. Rev. 107: 43044330.
15. Dementin, S.,, V. Belle,, P. Bertrand,, B. Guigliarelli,, G. Adryanczyk-Perrier,, A. L. De Lacey,, V. Fernandez,, M. Rousset, and, C. Léger. 2006. Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers. J. Am. Chem. Soc. 128: 52095218.
16. Dementin, S.,, V. Belle,, S. Champ,, P. Bertrand,, B. Guigliarelli,, A. L. De Lacey,, V. M. Fernandez,, C. Léger, and, M. Rousset. 2007. Molecular modulation of NiFe hydrogenase activity. Int. J. Hydrogen Energy, in press.
17. Dementin, S.,, B. Burlat,, A. L. De Lacey,, A. Pardo,, G. Adryanczyk-Perrier,, B. Guigliarelli,, V. M. Fernandez, and, M. Rousset. 2004. A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase. J. Biol. Chem. 279: 1050810513.
18. Duche, O.,, S. Elsen,, L. Cournac, and, A. Colbeau. 2005. Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O 2 sensitive without affecting its transductory activity. FEBS J. 272: 38993908.
19. Elsen, S.,, A. Colbeau,, J. Chabert, and, P. M. Vignais. 1996. The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J. Bacteriol. 178: 51745181.
20. Fernandez, V. M.,, A. L. De Lacey, and, M. Rousset. 2005. Native and mutant hydrogenases: unravelling structure and function. Coordin. Chem. Rev. 249: 15961608.
21. Fouchard, S.,, A. Hemschemeier,, A. Caruana,, J. Pruvost,, J. Legrand,, T. Happe,, G. Peltier, and, L. Cournac. 2005. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl. Environ. Microbiol. 71: 61996205.
22. Happe, R. P.,, W. Roseboom,, G. Egert,, C. G. Friedrich,, C. Massanz,, B. Friedrich, and, S. P. Albracht. 2000. Unusual FTIR and EPR properties of the H 2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett. 466: 259263.
23. Henstra, A. M.,, J. Sipma,, A. Rinzema, and, A. J. Stams. 2007. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18: 200206.
24. Higuchi, Y.,, T. Yagi, and, N. Yasuoka. 1997. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5: 16711680.
25. Horner, D. S.,, B. Heil,, T. Happe, and, T. M. Embley. 2002. Iron hydrogenases: ancient enzymes in modern eukaryotes. Trends Biochem. Sci. 27: 148153.
26. Ihara, M.,, H. Nakamoto,, T. Kamachi,, I. Okura, and, M. Maeda. 2006a. Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase. Photochem. Photobiol. 82: 16771685.
27. Ihara, M.,, H. Nishihara,, K. S. Yoon,, O. Lenz,, B. Friedrich,, H. Nakamoto,, K. Kojima,, D. Honma,, T. Kamachi, and, I. Okura. 2006b. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82: 676682.
28. King, P.,, M. L. Ghirardi, and, M. Seibert. 2004. Oxygen resistant hydrogenases and methods for designing and making same. U.S. patent WO 2004/093524 A2.
29. Korbas, M.,, S. Vogt,, W. Meyer-Klaucke,, E. Bill,, E. J. Lyon,, R. K. Thauer, and, S. Shima. 2006. The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J. Biol. Chem. 281: 3080430813.
30. Kruse, O.,, J. Rupprecht,, J. H. Mussgnug,, G. C. Dismukes, and, B. Hankamer. 2005. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4: 957970.
31. Leach, M. R., and, D. B. Zamble. 2007. Metallocenter assembly of the hydrogenase enzymes. Curr. Opin. Chem. Biol. 11: 159165.
32. Leger, C.,, S. Dementin,, P. Bertrand,, M. Rousset, and, B. Guigliarelli. 2004. Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry. J. Am. Chem. Soc. 126: 1216212172.
33. Loscher, S.,, T. Burgdorf,, I. Zebger,, P. Hildebrandt,, H. Dau,, B. Friedrich, and, M. Haumann. 2006. Bias from H 2 cleavage to production and coordination changes at the Ni-Fe active site in the NAD +-reducing hydrogenase from Ralstonia eutropha. Biochemistry 45: 1165811665.
34. Lyon, E. J.,, S. Shima,, R. Boecher,, R. K. Thauer,, F., W. Grevels,, E. Bill,, W. Roseboom, and, S. P. Albracht. 2004. Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H 2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 126: 1423914248.
35. Martin, W., and, M. Muller. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392: 3741.
36. Matias, P. M.,, C. M. Soares,, L. M. Saraiva,, R. Coelho,, J. Morais,, J. Le Gall, and, M. A. Carrondo. 2001. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3. J. Biol. Inorg. Chem. 6: 6381.
37. Melis, A.,, L. Zhang,, M. Forestier,, M. L. Ghirardi, and, M. Seibert. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122: 127136.
38. Montet, Y.,, P. Amara,, A. Volbeda,, X. Vernede,, E. C. Hatchikian,, M. J. Field,, M. Frey, and, J. C. Fontecilla-Camps. 1997. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat. Struct. Biol. 4: 523526.
39. Pardo, A.,, A. L. De Lacey,, V. M. Fernandez,, H. J. Fan,, Y. Fan, and, M. B. Hall. 2006. Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). J. Biol. Inorg. Chem. 11: 286306.
40. Peters, J. W.,, W. N. Lanzilotta,, B. J. Lemon, and, L. C. Seefeldt. 1998. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282: 18531858. (Erratum, 283:35, 1999; erratum, 283:2102, 1999.)
41. Pierik, A. J.,, W. Roseboom,, R. P. Happe,, K. A. Bagley, and, S. P. Albracht. 1999. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN) 2CO, Biology’s way to activate H 2. J. Biol. Chem. 274: 33313337.
42. Pilak, O.,, B. Mamat,, S. Vogt,, C. H. Hagemeier,, R. K. Thauer,, S. Shima,, C. Vonrhein,, E. Warkentin, and, U. Ermler. 2006. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. J. Mol. Biol. 358: 798809.
43. Prince, R. C., and, H. S. Kheshgi. 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol. 31: 1931.
44. Qian, D. J.,, C. Nakamura,, S. O. Wenk,, H. Ishikawa,, N. Zorin, and, J. Miyake. 2002. A hydrogen biosensor made of clay, poly(butylviologen), and hydrogenase sandwiched on a glass carbon electrode. Biosens. Bioelectron. 17: 789796.
45. Rey, L.,, D. Fernandez,, B. Brito,, Y. Hernando,, J. M. Palacios,, J. Imperial, and, T. Ruiz-Argueso. 1996. The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene ( hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. Mol. Gen. Genet. 252: 237248.
46. Rotte, C.,, K. Henze,, M. Muller, and, W. Martin. 2000. Origins of hydrogenosomes and mitochondria. Curr. Opin. Microbiol. 3: 481486.
47. Rousset, M.,, Y. Montet,, B. Guigliarelli,, N. Forget,, M. Asso,, P. Bertrand,, J. C. Fontecilla-Camps, and, E. C. Hatchikian. 1998. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 95: 1162511630.
48. Rupprecht, J.,, B. Hankamer,, J. H. Mussgnug,, G. Ananyev,, C. Dismukes, and, O. Kruse. 2006. Perspectives and advances of biological H 2 production in microorganisms. Appl. Microbiol. Biotechnol. 72: 442449.
49. Shima, S.,, E. J. Lyon,, M. Sordel-Klippert,, M. Kauss,, J. Kahnt,, R. K. Thauer,, K. Steinbach,, X. Xie,, L. Verdier, and, C. Griesinger. 2004. The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew. Chem. Int. Ed. Engl. 43: 25472551.
50. Shima, S., and, R. K. Thauer. 2007. A third type of hydrogenase catalyzing H 2 activation. Chem. Rec. 7: 3746.
51. Stadtman, E. R. 2004. Cyclic oxidation and reduction of methionine residues of proteins in antioxidant defense and cellular regulation. Arch. Biochem. Biophys. 423: 25.
52. Stadtman, E. R. 2006. Protein oxidation and aging. Free Radic. Res. 40: 12501258.
53. Stadtman, E. R.,, J. Moskovitz,, B. S. Berlett, and, R. L. Levine. 2002. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol. Cell. Biochem. 234-235: 39.
54. Teixeira, M.,, I. Moura,, A. V. Xavier,, J. J. Moura,, J. LeGall,, D. V. DerVartanian,, H. D. Peck, Jr., and, B. H. Huynh. 1989. Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mossbauer and EPR characterization of the metal centers. J. Biol. Chem. 264: 1643516450.
55. Teixeira, V. H.,, A. M. Baptista, and, C. M. Soares. 2006. Pathways of H 2 toward the active site of [NiFe]-hydrogenase. Biophys. J. 91: 20352045.
56. Vignais, P. M., and, B. Billoud. 2007. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107: 42064272.
57. Vignais, P. M.,, B. Billoud, and, J. Meyer. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25: 455501.
58. Vignais, P. M., and, A. Colbeau. 2004. Molecular biology of microbial hydrogenases. Curr. Issues Mol. Biol. 6: 159188.
59. Vincent, K. A.,, A. Parkin,, O. Lenz,, S. P. Albracht,, J. C. Fontecilla-Camps,, R. Cammack,, B. Friedrich, and, F. A. Armstrong. 2005. Electrochemical definitions of O 2 sensitivity and oxidative inactivation in hydrogenases. J. Am. Chem. Soc. 127: 1817918189.
60. Volbeda, A.,, M. H. Charon,, C. Piras,, E. C. Hatchikian,, M. Frey, and, J. C. Fontecilla-Camps. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373: 580587.
61. Volbeda, A.,, E. Garcin,, C. Piras,, A. L. de Lacey,, V. M. Fernandez,, C. E. Hatchikian,, M. Frey, and, J. C. Fontecilla-Camps. 1996. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 118: 1298912996.
62. Volbeda, A.,, Y. Montet,, X. Vernede,, C. E. Hatchikian, and, J. C. Fontecilla-Camps. 2002. High-resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase. Int. J. Hydrogen Energy 27: 14491461.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error