Chapter 31 : Genomic Prospecting for Microbial Biodiesel Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genomic Prospecting for Microbial Biodiesel Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555815547/9781555819057_Chap31-2.gif


This chapter focuses on the structure and regulation of the pathways utilized by various microbes (bacteria, algae, and yeasts) for the production of fatty acids and triacylglycerols (TAGs). An important observation with regard to the possibility of microbial biodiesel production was made when fatty acyl-ACP thioesterase (FAT) enzymes were overproduced in . Thus far it represents the most efficient way to uncouple fatty acid formation from phospholipid and membrane biosynthesis in . Phosphatidic acid (PtdOH) is a key branching point in de novo lipid metabolism, and it is converted either to CDP-diacylglycerol (DAG) or DAG depending on the organism. CDP-DAG and DAG serve as intermediates in membrane phospholipid biosynthesis and, in addition, DAG is converted to TAG. Phosphatidate phosphatases (PAPs) in coordination with phospholipid-producing enzymes are key regulators of the flux of carbon towards TAGs. PAPs catalyze the conversion of PtdOH to DAG; the primary destination of DAG is the synthesis of membrane phospholipids, whereas excess DAG is directed towards TAG. The emerging theme from genome comparisons underlines the evolution of distinct regulatory mechanisms in various phylogenetic groups. All free-living organisms have the machinery to synthesize fatty acids, and conceptually, they could be exploited for biodiesel production. However, the photosynthetic organisms provide the unique opportunity to couple CO sequestration to lipid accumulation and subsequent biodiesel production.

Citation: Lykidis A, Ivanova N. 2008. Genomic Prospecting for Microbial Biodiesel Production, p 407-418. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch31
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Overview of lipid biosynthetic pathways. Carbon sources are converted to pyruvate, which is subsequently converted to acetylCoA. Acetyl-CoA enters lipid biosynthesis via the action of acetylCoA carboxylase (ACC). Fatty acid biosynthesis proceeds through the action of either type I (FASI) or dissociated type II (FASII) systems. The resulting acyl groups are subsequently attached on the glycerol-3-phosphate backbone either via an acyl phosphate intermediate or through the action of specific acyltransferases. PtdOH is distributed between CDP-DAG and DAG. CDP-DAG and DAG are converted mainly to phospholipids via the action of phospholipid synthases. Excess DAG is diverted towards TAG. TAGs can also be derived from phospholipids via the action of PDAT. Abbreviations: MAT; malonyl-CoA:acyl-carrier-protein transacylase; TES, acyl-acyl carrier protein thioesterase; CDS, CDP-diacylglycerol synthetase; PLS, phospholipid synthases (referring to a variety of enzymes utilizing CDP-DAG and/or DAG for phospholipid synthesis); FFA, free fatty acids; PL, phospholipid. See the text for other abbreviations.

Citation: Lykidis A, Ivanova N. 2008. Genomic Prospecting for Microbial Biodiesel Production, p 407-418. In Wall J, Harwood C, Demain A (ed), Bioenergy. ASM Press, Washington, DC. doi: 10.1128/9781555815547.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aguilar, P. S.,, J. E. Cronan, Jr., and, D. de Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180: 21942200.
2. Aguilar, P. S.,, A. M. Hernandez-Arriaga,, L. E. Cybulski,, A. C. Erazo, and, D. de Mendoza. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20: 16811691.
3. Aguilar, P. S., and, D. de Mendoza. 2006. Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol. Microbiol. 62: 15071514.
4. Al-Feel, W.,, S. S. Chirala, and, S. J. Wakil. 1992. Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 89: 45344538.
5. Alvarez, H. M., and, A. Steinbuchel. 2002. Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biotechnol. 60: 367- 376.
6. Armbrust, E. V.,, J. A. Berges,, C. Bowler,, B. R. Green,, D. Martinez,, N. H. Putnam,, S. Zhou,, A. E. Allen,, K. E. Apt,, M. Bechner,, M. A. Brzezinski,, B. K. Chaal,, A. Chiovitti,, A. K. Davis,, M. S. Demarest,, J. C. Detter,, T. Glavina,, D. Goodstein,, M. Z. Hadi,, U. Hellsten,, M. Hildebrand,, B. D. Jenkins,, J. Jurka,, V. V. Kapitonov,, N. Kroger,, W. W. Lau,, T. W. Lane,, F. W. Larimer,, J. C. Lippmeier,, S. Lucas,, M. Medina,, A. Montsant,, M. Obornik,, M. S. Parker,, B. Palenik,, G. J. Pazour,, P. M. Richardson,, T. A. Rynearson,, M. A. Saito,, D. C. Schwartz,, K. Thamatrakoln,, K. Valentin,, A. Vardi,, F. P. Wilkerson, and, D. S. Rokhsar. 2004. The genome of the di-atom Thalassiosira pseudonana : ecology, evolution, and metabolism. Science 306: 7986.
7. Barbier, G.,, C. Oesterhelt,, M. D. Larson,, R. G. Halgren,, C. Wilkerson,, R. M. Garavito,, C. Benning, and, A. P. Weber. 2005. Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol. 137: 460474.
8. Bouvier-Nave, P.,, P. Benveniste,, P. Oelkers,, S. L. Sturley, and, H. Schaller. 2000. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur. J. Biochem. 267: 8596.
9. Buhman, K. K.,, H. C. Chen, and, R. V. Farese, Jr. 2001. The enzymes of neutral lipid synthesis. J. Biol. Chem. 276: 4036940372.
10. Campbell, J. W., and, J. E. Cronan, Jr. 2001a. Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J. Bacteriol. 183: 59825990.
11. Campbell, J. W., and, J. E. Cronan, Jr. 2001b. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55: 305332.
12. Carman, G. M., and, S. A. Henry. 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361399.
13. Cernac, A., and, C. Benning. 2004. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 40: 575585.
14. Cho, H., and, J. E. Cronan, Jr. 1995. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J. Biol. Chem. 270: 42164219.
15. Cronan, J. E., Jr., and, G. L. Waldrop. 2002. Multi-subunit acetylCoA carboxylases. Prog. Lipid Res. 41: 407435.
16. Dahlqvist, A.,, U. Stahl,, M. Lenman,, A. Banas,, M. Lee,, L. Sandager,, H. Ronne, and, S. Stymne. 2000. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc. Natl. Acad. Sci. USA 97: 64876492.
17. Daniel, J.,, C. Deb,, V. S. Dubey,, T. D. Sirakova,, B. Abomoelak,, H. R. Morbidoni, and, P. E. Kolattukudy. 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J. Bacteriol. 186: 50175030.
18. Davis, M. S.,, J. Solbiati, and, J. E. Cronan, Jr. 2000. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem. 275: 2859328598.
19. Davis, M. S., and, J. E. Cronan, Jr. 2001. Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J. Bacteriol. 183: 14991503.
20. Derelle, E.,, C. Ferraz,, S. Rombauts,, P. Rouze,, A. Z. Worden,, S. Robbens,, F. Partensky,, S. Degroeve,, S. Echeynie,, R. Cooke,, Y. Saeys,, J. Wuyts,, K. Jabbari,, C. Bowler,, O. Panaud,, B. Piegu,, S. G. Ball,, J. P. Ral,, F. Y. Bouget,, G. Piganeau,, B. De Baets,, A. Picard,, M. Delseny,, J. Demaille,, Y. Van de Peer, and, H. Moreau. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. USA 103: 1164711652.
21. DiRusso, C. C., and, W. D. Nunn. 1985. Cloning and characterization of a gene ( fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J. Bacteriol. 161: 583588.
22. DiRusso, C. C.,, T. L. Heimert, and, A. K. Metzger. 1992. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J. Biol. Chem. 267: 86858691.
23. DiRusso, C. C.,, V. Tsvetnitsky,, P. Hojrup, and, J. Knudsen. 1998. Fatty acyl-CoA binding domain of the transcription factor FadR. Characterization by deletion, affinity labeling, and isothermal titration calorimetry. J. Biol. Chem. 273: 3365233659.
24. Dormann, P.,, T. A. Voelker, and, J. B. Ohlrogge. 1995. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch. Biochem. Biophys. 316: 612618.
25. Dowhan, W. 1997. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66: 199232.
26. Dujon, B.,, D. Sherman,, G. Fischer,, P. Durrens,, S. Casaregola,, I. La-fontaine,, J. De Montigny,, C. Marck,, C. Neuveglise,, E. Talla,, N. Goffard,, L. Frangeul,, M. Aigle,, V. Anthouard,, A. Babour,, V. Barbe,, S. Barnay,, S. Blanchin,, J. M. Beckerich,, E. Beyne,, C. Bleykasten,, A. Boisrame,, J. Boyer,, L. Cattolico,, F. Confanioleri,, A. De Daruvar,, L. Despons,, E. Fabre,, C. Fairhead,, H. Ferry-Dumazet,, A. Groppi,, F. Hantraye,, C. Hennequin,, N. Jauniaux,, P. Joyet,, R. Kachouri,, A. Kerrest,, R. Koszul,, M. Lemaire,, I. Lesur,, L. Ma,, H. Muller,, J. M. Nicaud,, M. Nikolski,, S. Oztas,, O. OzierKalogeropoulos,, S. Pellenz,, S. Potier,, G. F. Richard,, M. L. Straub,, A. Suleau,, D. Swennen,, F. Tekaia,, M. Wesolowski-Louvel,, E. West-hof,, B. Wirth,, M. Zeniou-Meyer,, I. Zivanovic,, M. BolotinFukuhara,, A. Thierry,, C. Bouchier,, B. Caudron,, C. Scarpelli,, C. Gaillardin,, J. Weissenbach,, P. Wincker, and, J. L. Souciet. 2004. Genome evolution in yeasts. Nature 430: 3544.
27. Focks, N., and, C. Benning. 1998. Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 118: 91101.
28. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 11051115.
29. Greenberg, M. L., and, J. M. Lopes. 1996. Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 60: 120.
30. Guschina, I. A., and, J. L. Harwood. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160186.
31. Han, G. S.,, W. I. Wu, and, G. M. Carman. 2006. The Saccharomyces cerevisiae lipin homolog is a Mg2 -dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281: 92109218.
32. Hasslacher, M.,, A. S. Ivessa,, F. Paltauf, and, S. D. Kohlwein. 1993. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J. Biol. Chem. 268: 1094610952.
33. Heath, R. J.,, S. Jackowski, and, C. O. Rock. 1994. Guanosine tetraphosphate inhibition of fatty acid and phospholipid in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase ( plsB). J. Biol. Chem. 269: 2658426590.
34. Heath, R. J., and, C. O. Rock. 1996a. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 271: 18331836.
35. Heath, R. J., and, C. O. Rock. 1996b. Inhibition of beta-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 271: 1099611000.
36. Henry, M. F., and, J. E. Cronan, Jr. 1992. A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell 70: 671679.
37. Hoja, U.,, S. Marthol,, J. Hofmann,, S. Stegner,, R. Schulz,, S. Meier,, E. Greiner, and, E. Schweizer. 2004. HFA1 encoding an organellespecific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 279: 2177921786.
38. Huang, Y. S.,, S. L. Pereira, and, A. E. Leonard. 2004. Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie 86: 793798.
39. Ishige, T.,, A. Tan,, K. Takabe,, K. Kawasaki,, Y. Sakai, and, N. Kato. 2002. Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl. Environ. Microbiol. 68: 11921195.
40. Jain, R. K.,, M. Coffey,, K. Lai,, A. Kumar, and, S. L. MacKenzie. 2000. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem. Soc. Trans. 28: 958961.
41. Jako, C.,, A. Kumar,, Y. Wei,, J. Zou,, D. L. Barton,, E. M. Giblin,, P. S. Covello, and, D. C. Taylor. 2001. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 126: 861874.
42. James, E. S., and, J. E. Cronan. 2004. Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated. J. Biol. Chem. 279: 25202527.
43. Jiang, P., and, J. E. Cronan, Jr. 1994. Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J. Bacteriol. 176: 28142821.
44. Kalscheuer, R., and, A. Steinbuchel. 2003. A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J. Biol. Chem. 278: 80758082.
45. Kalscheuer, R.,, H. Luftmann, and, A. Steinbuchel. 2004. Synthesis of novel lipids in Saccharomyces erevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl. Environ. Micro-biol. 70: 71197125.
46. Kalscheuer, R.,, T. Stolting, and, A. Steinbuchel. 2006a. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 25292536.
47. Kalscheuer, R.,, T. Stoveken,, H. Luftmann,, U. Malkus,, R. Reichelt, and, A. Steinbuchel. 2006b. Neutral lipid biosynthesis in engineered Escherichia coli : jojoba oil-like wax esters and fatty acid butyl esters. Appl. Environ. Microbiol. 72: 13731379.
48. Khotimchenko, S. V., and, I. M. Yakovleva. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 7379.
49. Kim, H. U., and, A. H. Huang. 2004. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol. 134: 12061216.
50. Klaus, D.,, J. B. Ohlrogge,, H. E. Neuhaus, and, P. Dormann. 2004. Increased fatty acid production in potato by engineering of acetylCoA carboxylase. Planta 219: 389396.
51. Li, S. J., and, J. E. Cronan, Jr. 1993. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J. Bacteriol. 175: 332340.
52. Lu, Y. J.,, Y. M. Zhang,, K. D. Grimes,, J. Qi,, R. E. Lee, and, C. O. Rock. 2006. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol. Cell 23: 765772.
53. Lynn, S. G.,, S. S. Kilham,, D. A. Kreeger, and, S. J. Interlandi. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus ( Bacillariophyceae). J. Phycol. 36: 510522.
54. Marini, P. E.,, C. A. Perez, and, D. de Mendoza. 2001. Growth-rate regulation of the Bacillus subtilis accBC operon encoding subunits of acetyl-CoA carboxylase, the first enzyme of fatty acid synthesis. Arch. Microbiol. 175: 234237.
55. Marrakchi, H.,, Y. M. Zhang, and, C. O. Rock. 2002. Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochem. Soc. Trans. 30: 10501055.
56. Matsuzaki, M.,, O. Misumi,, I. T. Shin,, S. Maruyama,, M. Takahara,, S. Y. Miyagishima,, T. Mori,, K. Nishida,, F. Yagisawa,, K. Nishida,, Y. Yoshida,, Y. Nishimura,, S. Nakao,, T. Kobayashi,, Y. Momoyama,, T. Higashiyama,, A. Minoda,, M. Sano,, H. Nomoto,, K. Oishi,, H. Hayashi,, F. Ohta,, S. Nishizaka,, S. Haga,, S. Miura,, T. Morishita,, Y. Kabeya,, K. Terasawa,, Y. Suzuki,, Y. Ishii,, S. Asakawa,, H. Takano,, N. Ohta,, H. Kuroiwa,, K. Tanaka,, N. Shimizu,, S. Sugano,, N. Sato,, H. Nozaki,, N. Ogasawara,, Y. Kohara, and, T. Kuroiwa. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653657.
57. Mhaske, V.,, K. Beldjilali,, J. Ohlrogge, and, M. Pollard. 2005. Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene (At5g13640). Plant Physiol. Biochem. 43: 413417.
58. Napolitano, G. E. 1994. The relationship of lipids with light and chlorophyll measurements in freshwater algae and periphyton. J. Phycol. 30: 943950.
59. Nishida, I.,, Y. Tasaka,, H. Shiraishi, and, N. Murata. 1993. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol. Biol. 21: 267277.
60. Oelkers, P.,, D. Cromley,, M. Padamsee,, J. T. Billheimer, and, S. L. Sturley. 2002. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J. Biol. Chem. 277: 88778881.
61. Ohlrogge, J.,, L. Savage,, J. Jaworski,, T. Voelker, and, D. Post-Beitten-miller. 1995. Alteration of acyl-acyl carrier protein pools and acetyl-CoA carboxylase expression in Escherichia coli by a plant medium chain acyl-acyl carrier protein thioesterase. Arch. Biochem. Biophys. 317: 185190.
62. Ohlrogge, J. B., and, J. G. Jaworski. 1997. Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 109136.
63. Olukoshi, E. R., and, N. M. Packter. 1994. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140: 931943.
64. Overath, P.,, G. Pauli, and, H. U. Schairer. 1969. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur. J. Biochem. 7: 559574.
65. Palenik, B.,, J. Grimwood,, A. Aerts,, P. Rouze,, A. Salamov,, N. Putnam,, C. Dupont,, R. Jorgensen,, E. Derelle,, S. Rombauts,, K. Zhou,, R. Otillar,, S. S. Merchant,, S. Podell,, T. Gaasterland,, C. Napoli,, K. Gendler,, A. Manuell,, V. Tai,, O. Vallon,, G. Piganeau,, S. Jancek,, M. Heijde,, K. Jabbari,, C. Bowler,, M. Lohr,, S. Robbens,, G. Werner,, I. Dubchak,, G. J. Pazour,, Q. Ren,, I. Paulsen,, C. Delwiche,, J. Schmutz,, D. Rokhsar,, Y. Van de Peer,, H. Moreau, and, I. V. Grigoriev. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. USA 104: 77057710.
66. Peterfy, M.,, J. Phan,, P. Xu, and, K. Reue. 2001. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 27: 121124.
67. Phan, J., and, K. Reue. 2005. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1: 7383.
68. Qi, B.,, T. Fraser,, S. Mugford,, G. Dobson,, O. Sayanova,, J. Butler,, J. A. Napier,, A. K. Stobart, and, C. M. Lazarus. 2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol. 22: 739745.
69. Raman, N., and, C. C. DiRusso. 1995. Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues in the carboxyl terminus required for ligand binding. J. Biol. Chem. 270: 10921097.
70. Ratledge, C., and, J. P. Wynn. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51: 151.
71. Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86: 807815.
72. Rock, C.O., and, S. Jackowski. 1982. Regulation of phospholipid synthesis in Escherichia coli. Composition of the acyl-acyl carrier protein pool in vivo. J. Biol. Chem. 257: 1075910765.
73. Roessler, P. G., and, J. B. Ohlrogge. 1993. Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J. Biol. Chem. 268: 1925419259.
74. Ruuska, S. A.,, T. Girke,, C. Benning, and, J. B. Ohlrogge. 2002. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14: 11911206.
75. Salas, J. J., and, J. B. Ohlrogge. 2002. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys. 403: 2534.
76. Sasaki, Y., and, Y. Nagano. 2004. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 68: 11751184.
77. Schujman, G. E.,, L. Paoletti,, A. D. Grossman, and, D. de Mendoza. 2003. FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev. Cell 4: 663672.
78. Schujman, G. E.,, M. Guerin,, A. Buschiazzo,, F. Schaeffer,, L. I. Llarrull,, G. Reh,, A. J. Vila,, P. M. Alzari, and, D. de Mendoza. 2006. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J. 25: 40744083.
79. Schuller, H. J.,, A. Hahn.,, F. Troster,, A. Schutz, and, E. Schweizer. 1992. Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J. 11: 107114.
80. Schuller, H. J.,, A. Schutz,, S. Knab,, B. Hoffmann, and, E. Schweizer. 1994. Importance of general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty acid synthase genes FAS1 and FAS2. Eur. J. Biochem. 225: 213222.
81. Schweizer, E., and, J. Hofmann. 2004. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 68: 501517.
82. Slabas, A. R.,, A. White,, P. O’Hara, and, T. Fawcett. 2002. Investigations into the regulation of lipid biosynthesis in Brassica napus using antisense down-regulation. Biochem. Soc. Trans. 30: 10561059.
83. Sorger, D., and, G. Daum. 2002. Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J. Bacteriol. 184: 519524.
84. Stahl, U.,, A. S. Carlsson,, M. Lenman,, A. Dahlqvist,, B. Huang,, W. Banas,, A. Banas, and, S. Stymne. 2004. Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 135: 13241335.
85. Stoveken, T.,, R. Kalscheuer,, U. Malkus,, R. Reichelt, and, A. Steinbuchel. 2005. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1:characterization of a novel type of acyltransferase. J. Bacteriol. 187: 13691376.
86. Stukey, J. E.,, V. M. McDonough, and, C. E. Martin. 1989. Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J. Biol. Chem. 264: 1653716544.
87. Tatsuzawa, H.,, E. Takizawa,, M. Wada, and, Y. Yamamoto. 1996. Fatty acid and lipid composition of the acidophilic green algae Chlamydomonas sp. J. Phycol. 32: 598601.
88. Tehlivets, O.,, K. Scheuringer, and, S. D. Kohlwein. 2007. Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta 1771: 255270.
89. Uthoff, S.,, T. Stoveken,, N. Weber,, K. Vosmann,, E. Klein,, R. Kalscheuer, and, A. Steinbuchel. 2005. Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol. 71: 790796.
90. Voelker, T. A., and, H. M. Davies. 1994. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J. Bacteriol. 176: 73207327.
91. Wenz, P.,, S. Schwank,, U. Hoja, and, H. J. Schuller. 2001. A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product. Nucleic Acids Res. 29: 46254632.
92. Witters, L. A., and, T. D. Watts. 1990. Yeast acetyl-CoA carboxylase: in vitro phosphorylation by mammalian and yeast protein kinases. Biochem. Biophys. Res. Commun. 169: 369376.
93. Wynn, J. P.,, A. bin Abdul Hamid, and, C. Ratledge. 1999. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145: 19111917.
94. Zhang, S.,, Y. Skalsky, and, D. J. Garfinkel. 1999. MGA2 or SPT23 is required for transcription of the delta9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151: 473483.
95. Zhang, Y. M.,, H. Marrakchi, and, C. O. Rock. 2002. The FabR (YijC) transcription factor regulates unsaturated fatty acid biosyn-thesis in Escherichia coli. J. Biol. Chem. 277: 1555815565.
96. Zhang, Y. M.,, H. Marrakchi,, S. W. White, and, C. O. Rock. 2003. The application of computational methods to explore the diversity and structure of bacterial fatty acid synthase. J. Lipid Res. 44: 110.
97. Zheng, Z.,, Q. Xia,, M. Dauk,, W. Shen,, G. Selvaraj, and, J. Zou. 2003. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15: 18721887.
98. Zou, J.,, V. Katavic,, E. M. Giblin,, D. L. Barton,, S. L. MacKenzie,, W. A. Keller,, X. Hu, and, D. C. Taylor. 1997. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9: 909923.
99. Zou, J.,, Y. Wei,, C. Jako,, A. Kumar,, G. Selvaraj, and, D. C. Taylor. 1999. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 19: 645653.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error