Chapter 2 : Population Biology of and Related Organisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Population Biology of and Related Organisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap02-2.gif


This chapter explores the contribution that population studies have made to one's understanding of the biology of the , and the authors argue that such studies have a central role to play in understanding the epidemiology and pathogenesis of this important group of gram-negative bacteria. and cause the majority of human cases of -associated gastroenteritis; these two organisms are associated with approximately 90 and 10% of cases, respectively. This chapter discusses variation within the genus . Although human infection is one of the most important practical applications of studies of populations, in terms of population dynamics and evolution, infection is probably irrelevant. Understanding the population biology of is, however, crucial in understanding the transmission to humans and developing means for its control. It is instructive to reflect that the first study of and population structure by multilocus enzyme electrophoresis provided many insights that have proved to be correct and that have been extended and deepened by multilocus sequence typing (MLST) studies. Ongoing nucleotide sequence-based studies involving large numbers of isolates and improved genealogical analysis tools provide the highly attractive prospect that well within the next 10 years, the population biology of these organisms, at least insofar as it relates to human infection, will be effectively resolved.

Citation: Maiden M, Dingle K. 2008. Population Biology of and Related Organisms, p 27-40. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

MLST databases. (a) The growth of the and database since its inception in 2001. Open squares represent isolates submitted; closed squares, sequence types. (b) The structure of the pubMLST database network, which is used for all of the databases. It allows the integration of data from various sources in a variety of public or private databases, ensuring that a common typing nomenclature is used.

Citation: Maiden M, Dingle K. 2008. Population Biology of and Related Organisms, p 27-40. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Relationships among the different microbiological species. The phylogeny was reconstructed with concatenated sequences from the alleles common to all of the schemes (, and ).

Citation: Maiden M, Dingle K. 2008. Population Biology of and Related Organisms, p 27-40. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Illustration of the clonal complexes with the ST-45 clonal complex. (a) Frequency distribution of sequence types in the database, showing the high frequency of ST-45 to its relatives. (b) Variants of ST-45, with allele changes highlighted with boxes. (c) Heuristic representation of the STs shown in (b), drawn with split decomposition, showing the central position of ST-45.

Citation: Maiden M, Dingle K. 2008. Population Biology of and Related Organisms, p 27-40. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Correspondence of clonal complexes with genealogies. Clonal complex designations were used to annotate a phylogeny generated by ClonalFrame. The size of the pie charts represents the number of isolates in each clonal complex, with the color indicating the relative contribution of each source: black, human disease; white, chickens and chicken meat; dark gray, ovines and ovine meat; light gray, environmental sources. Data from and .

Citation: Maiden M, Dingle K. 2008. Population Biology of and Related Organisms, p 27-40. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abulreesh, H. H.,, T. A. Paget, and, R. Goulder. 2006. Campylobacter in waterfowl and aquatic environments: incidence and methods of detection. Environ. Sci. Technol. 40: 71227131.
2. Achtman, M. 1996. A surfeit of YATMs? J. Clin. Microbiol. 34: 1870.
3. Achtman, M. 1997. Microevolution and epidemic spread of serogroup A Neisseria meningitidis —a review. Gene 192: 135140.
4. Aeschbacher, M., and, J.-C. Piffaretti. 1989. Population genetics of human and animal enteric Campylobacter strains. Infect. Immun. 57: 14321437.
5. Allen, V. M.,, S. A. Bull,, J. E. Corry,, G. Domingue,, F. Jorgensen,, J. A. Frost,, R. Whyte,, A. Gonzalez,, N. Elviss, and, T. J. Humphrey. 2007. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonisation. Int. J. Food Microbiol. 113: 5461.
6. Balding, D. J.,, M. J. Bishop, and, C. Cannings. 2003. Handbook of Statistical Genetics. John Wiley and Sons Ltd., Chichester, United Kingdom.
7. Bentley, S. D., and, J. Parkhill. 2004. Comparative genomic structure of prokaryotes. Annu. Rev. Genet. 38: 771792.
8. Bolton, F. J., and, L. Robertson. 1982. A selective medium for isolating Campylobacter jejuni/coli. J. Clin. Pathol. 35: 462467.
9. Brenner, S. E. 1999. Errors in genome annotation. Trends Genet. 15: 132133.
10. Champion, O. L.,, M. W. Gaunt,, O. Gundogdu,, A. Elmi,, A. A. Witney,, J. Hinds,, N. Dorrell, and, B. W. Wren. 2005. Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc. Natl. Acad. Sci. USA 102: 1604316048.
11. Chan, M. S.,, M. C. Maiden, and, B. G. Spratt. 2001. Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17: 10771083.
12. Clark, C. G.,, L. Price,, R. Ahmed,, D. L. Woodward,, P. L. Melito,, F. G. Rodgers,, F. Jamieson,, B. Ciebin,, A. Li, and, A. Ellis. 2003. Characterization of waterborne outbreak-associated Campylobacter jejuni, Walkerton, Ontario. Emerg. Infect. Dis. 9: 12321241.
13. Colles, F. M.,, K. Jones,, R. M. Harding, and, M. C. Maiden. 2003. Genetic diversity of Campylobacter jejuni isolates from farm animals and the farm environment. Appl. Environ. Microbiol. 69: 74097413.
14. Didelot, X., and, D. Falush. 2007. Inference of bacterial micro-evolution using multilocus sequence data. Genetics 175: 12511266.
15. Dingle, K. E.,, F. M. Colles,, D. Falush, and, M. C. Maiden. 2005. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J. Clin. Microbiol. 43: 340347.
16. Dingle, K. E.,, F. M. Colles,, R. Ure,, J. Wagenaar,, B. Duim,, F. J. Bolton,, A. J. Fox,, D. R. A. Wareing, and, M. C. J. Maiden. 2002. Molecular characterisation of Campylobacter jejuni clones: a rational basis for epidemiological investigations. Emerg. Infect. Dis. 8: 949955.
17. Dingle, K. E.,, F. M. Colles,, D. R. A. Wareing,, R. Ure,, A. J. Fox,, F. J. Bolton,, H. J. Bootsma,, R. J. L. Willems,, R. Urwin, and, M. C. J. Maiden. 2001a. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39: 1423.
18. Dingle, K. E., and, M. C. Maiden. 2005. Population genetics of Campylobacter jejuni, p. 4358. In J. M. Ketley and, M. E. Konkel (ed.), Campylobacter Molecular and Cellular Biology. Horizon Bioscience, Wymondham,United Kingdom.
19. Dingle, K. E.,, N. van den Braak,, F. M. Colles,, L. J. Price,, D. L. Woodward,, F. G. Rodgers,, H. P. Endtz,, A. van Belkum, and, M. C. J. Maiden. 2001b. Sequence typing confirms that Campylobacter jejuni strains associated with Guillain Barré and Miller Fisher syndromes are of diverse genetic lineage, serotype and flagella type. J. Clin. Microbiol. 39: 33463349.
20. D’lima, C. B.,, W. G. Miller,, R. E. Mandrell,, S. L. Wright,, R. M. Siletzky,, D. K. Carver, and, S. Kathariou. 2007. Clonal population structure and specific genotypes of multidrug-resistant Campylobacter coli from turkeys. Appl. Environ. Microbiol. 73: 21562164.
21. Duim, B.,, P. C. Godschalk,, N. van den Braak,, K. E. Dingle,, J. R. Dijkstra,, E. Leyde,, J. van der Plas,, F. M. Colles,, H. P. Endtz,, J. A. Wagenaar,, M. C. Maiden, and, A. van Belkum. 2003. Molecular evidence for dissemination of unique Campylobacter jejuni clones in Curacao, Netherlands Antilles. J. Clin. Microbiol. 41: 55935597.
22. Duim, B.,, T. M. Wassenaar,, A. Rigter, and, J. Wagenaar. 1999. High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl. Environ. Microbiol. 65: 23692375.
23. Endtz, H. P.,, J. S. Vliegenthart,, P. Vandamme,, H. W. Weverink,, N. P. van den Braak,, H. A. Verbrugh, and, A. van Belkum. 1997. Genotypic diversity of Campylobacter lari isolated from mussels and oysters in The Netherlands. Int. J. Food Microbiol. 34: 7988.
24. Falush, D.,, M. Stephens, and, J. K. Pritchard. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 15671587.
25. Fearnhead, P.,, N. G. Smith,, M. Barrigas,, A. Fox, and, N. French. 2005. Analysis of recombination in Campylobacter jejuni from MLST population data. J. Mol. Evol. 61: 333340.
26. Feil, E. J.,, B. C. Li,, D. M. Aanensen,, W. P. Hanage, and, B. G. Spratt. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186: 15181530.
27. Feil, E. J.,, M. C. J. Maiden,, M. Achtman, and, B. G. Spratt. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol. Biol. Evol. 16: 14961502.
28. Fitzgerald, C.,, L. O. Helsel,, M. A. Nicholson,, S. J. Olsen,, D. L. Swerdlow,, R. Flahart,, J. Sexton, and, P. I. Fields. 2001. Evaluation of methods for subtyping Campylobacter jejuni during an outbreak involving a food handler. J. Clin. Microbiol. 39: 23862390.
29. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species. PLoS Biol. 3: e15.
30. French, N.,, M. Barrigas,, P. Brown,, P. Ribiero,, N. Williams,, H. Leatherbarrow,, R. Birtles,, E. Bolton,, P. Fearnhead, and, A. Fox. 2005. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environ. Microbiol. 7: 11161126.
31. Garcia, M. M.,, G. M. Ruckerbauer,, M. D. Eaglesome, and, W. E. Boisclair. 1983. Detection of Campylobacter fetus in artificial insemination bulls with a transport enrichment medium. Can. J. Comp. Med. 47: 336340.
32. Gillespie, I. A.,, S. J. O’Brien,, J. A. Frost,, G. K. Adak,, P. Horby,, A. V. Swan,, M. J. Painter,, K. R. Neal, and, C. S. S., S. Collaborators. 2002. A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg. Infect. Dis. 8: 937942.
33. Jolley, K. A.,, M. S. Chan, and, M. C. Maiden. 2004. mlstdbNet—distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5: 86.
34. Jolley, K. A.,, E. J. Feil,, M. S. Chan, and, M. C. Maiden. 2001. Sequence type analysis and recombinational tests (START). Bioinformatics 17: 12301231.
35. Jolley, K. A., and, M. C. Maiden. 2006. AgdbNet—antigen sequence database software for bacterial typing. BMC Bioinformatics 7: 314.
36. Kinana, A. D.,, E. Cardinale,, I. Bahsoun,, F. Tall,, J. M. Sire,, S. Breurec,, B. Garin,, C. Saad-Bouh Boye, and, J. D. Perrier-Gros-Claude. 2007. Campylobacter coli isolates derived from chickens in Senegal: diversity, genetic exchange with Campylobacter jejuni and quinolone resistance. Res. Microbiol. 158: 138142.
37. Kinana, A. D.,, E. Cardinale,, F. Tall,, I. Bahsoun,, J. M. Sire,, B. Garin,, S. Breurec,, C. S. Boye, and, J. D. Perrier-Gros-Claude. 2006. Genetic diversity and quinolone resistance in Campylobacter jejuni isolates from poultry in Senegal. Appl. Environ. Microbiol. 72: 33093313.
38. Levin, B. R. 1981. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99: 123.
39. Litrup, E.,, M. Torpdahl, and, E. M. Nielsen. 2007. Multilocus sequence typing performed on Campylobacter coli isolates from humans, broilers, pigs and cattle originating in Denmark. J. Appl. Microbiol. 103: 210218.
40. Maiden, M. C. 2006. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60: 561588.
41. Maiden, M. C. J. 1993. Population genetics of a transformable bacterium: the influence of horizontal genetical exchange on the biology of Neisseria meningitidis. FEMS Microbiol. Lett. 112: 243250.
42. Maiden, M. C. J. 2000. High-throughput sequencing in the population analysis of bacterial pathogens. Int. J. Med. Microbiol. 290: 183190.
43. Maiden, M. C. J.,, J. A. Bygraves,, E. Feil,, G. Morelli,, J. E. Russell,, R. Urwin,, Q. Zhang,, J. Zhou,, K. Zurth,, D. A. Caugant,, I. M. Feavers,, M. Achtman, and, B. G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95: 31403145.
44. Manning, G.,, C. G. Dowson,, M. C. Bagnall,, I. H. Ahmed,, M. West, and, D. G. Newell. 2003. Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter jejuni. Appl. Environ. Microbiol. 69: 63706379.
45. Maynard Smith, J. 1989. Trees, bundles or nets. Trends Ecol. Evol. 4: 302304.
46. Maynard Smith, J.,, C. G. Dowson, and, B. G. Spratt. 1991. Localized sex in bacteria. Nature 349: 2931.
47. Maynard Smith, J.,, N. H. Smith,, M. O’Rourke, and, B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90: 43844388.
48. McCarthy, N. D.,, F. M. Colles,, K. E. Dingle,, M. C. Bagnall,, G. Manning,, M. C. Maiden, and, D. Falush. 2007. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 13: 267272.
49. Mickan, L.,, R. Doyle,, M. Valcanis,, K. E. Dingle,, L. Unicomb, and, J. Lanser. 2007. Multilocus sequence typing of Campylobacter jejuni isolates from New South Wales, Australia. J. Appl. Microbiol. 102: 144152.
50. Miller, W. G.,, M. D. Englen,, S. Kathariou,, I. V. Wesley,, G. Wang,, L. Pittenger-Alley,, R. M. Siletz,, W. Muraoka,, P. J. Fedorka-Cray, and, R. E. Mandrell. 2006. Identification of host-associated alleles by multilocus sequence typing of Campylobacter coli strains from food animals. Microbiology 152:(Pt. 1): 245255.
51. Miller, W. G.,, S. L. On,, G. Wang,, S. Fontanoz,, A. J. Lastovica, and, R. E. Mandrell. 2005. Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J. Clin. Microbiol. 43: 23152329.
52. Narra, H. P., and, H. Ochman. 2006. Of what use is sex to bacteria? Curr. Biol. 16: R705R710.
53. Parker, C. T.,, W. G. Miller,, S. T. Horn, and, A. J. Lastovica. 2007. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni. BMC Microbiol. 7: 50.
54. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665668.
55. Sails, A. D.,, B. Swaminathan, and, P. I. Fields. 2003a. Clonal complexes of Campylobacter jejuni identified by multilocus sequence typing correlate with strain associations identified by multilocus enzyme electrophoresis. J. Clin. Microbiol. 41: 40584067.
56. Sails, A. D.,, B. Swaminathan, and, P. I. Fields. 2003b. Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. J. Clin. Microbiol. 41: 47334739.
57. Schouls, L. M.,, S. Reulen,, B. Duim,, J. A. Wagenaar,, R. J. Willems,, K. E. Dingle,, F. M. Colles, and, J. D. Van Embden. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J. Clin. Microbiol. 41: 1526.
58. Selander, R. K.,, D. A. Caugant,, H. Ochman,, J. M. Musser,, M. N. Gilmour, and, T. S. Whittam. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51: 837884.
59. Sopwith, W.,, A. Birtles,, M. Matthews,, A. Fox,, S. Gee,, M. Painter,, M. Regan,, Q. Syed, and, E. Bolton. 2006. Campylobacter jejuni multilocus sequence types in humans, northwest England, 2003–2004. Emerg. Infect. Dis. 12: 15001507.
60. Spratt, B. G., and, M. C. J. Maiden. 1999. Bacterial population genetics, evolution and epidemiology. Proc. R. Soc. Lond. B Biol. Sci. 354: 701710.
61. Stackebrandt, E.,, W. Frederiksen,, G. M. Garrity,, P. A. Grimont,, P. Kampfer,, M. C. Maiden,, X. Nesme,, R. Rossello-Mora,, J. Swings,, H. G. Truper,, L. Vauterin,, A. C. Ward, and, W. B. Whitman. 2002. Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int. J. Syst. Bacteriol. 52 (Pt. 3): 10431047.
62. Suerbaum, S.,, M. Lohrengel,, A. Sonneveld,, F. Ruberg, and, M. Kist. 2001. Allelic diversity and recombination in Campylobacter jejuni. J. Bacteriol. 183: 25532559.
63. Thakur, S., and, W. A. Gebreyes. 2005. Campylobacter coli in swine production: antimicrobial resistance mechanisms and molecular epidemiology. J. Clin. Microbiol. 43: 57055714.
64. Thakur, S.,, W. E. Morrow,, J. A. Funk,, P. B. Bahnson, and, W. A. Gebreyes. 2006. Molecular epidemiologic investigation of Campylobacter coli in swine production systems, using multilocus sequence typing. Appl. Environ. Microbiol. 72: 56665669.
65. van Bergen, M. A.,, K. E. Dingle,, M. C. Maiden,, D. G. Newell,, L. van der Graaf-Van Bloois,, J. P. van Putten, and, J. A. Wagenaar. 2005. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing. J. Clin. Microbiol. 43: 58885898.
66. Wassenaar, T. M., and, D. G. Newell. 2000. Genotyping of Campylobacter species. Appl. Environ. Microbiol. 66: 19.
67. Yan, W.,, N. Chang, and, D. E. Taylor. 1991. Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. J. Infect. Dis. 163: 10681072.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error