Chapter 25 : -Linked Protein Glycosylation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

-Linked Protein Glycosylation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap25-2.gif


-linked protein glycosylation is the most common type of protein modification in eukaryotes and is the topic of this chapter. The chapter demonstrates that the glycome is an excellent toolbox for glycobiologists to understand the fundamentals of this pathway, to develop new techniques for glycobiology, and to exploit this pathway for novel diagnostics and therapeutics. A section summarizes the -linked proteins identified so far and provides further information on the roles for the posttranslational modification in which involves in cellular function. The importance of CjaA for the in vivo survival of has recently been shown in chicken colonization studies: birds immunized with an avirulent strain of expressing plasmid-borne showed reduced colonization. In addition, gene clusters corresponding to the -linked protein glycosylation pathway were shown to be present in various isolates of , RM2100, RM3195, subsp. 269.97, RM2228, ATCC BAA-381, 525.92, 13826, and subsp. 82-40, demonstrating that this pathway and potentially the bacillosamine-containing heptasaccharide are conserved among all species. provides researchers with an excellent model system because this organism has both well-characterized -linked and -linked protein glycosylation systems.

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Schematic pathway of -linked protein glycosylation at the plasma membrane of . The assembly of a heptasaccharide takes place on the lipid bactoprenylpyrophosphate at the cytoplasmic side of the membrane by the glycosyltransferases PglC, PglA, PglJ, PglH, and PglI. UDP-bacillosamine is synthesized from UDP-GlcNAc by PglF, PglE, and PglD. The ABC-transporter PglK mediates the translocation of the lipid-linked heptasaccharide across the membrane. The oligosaccharyltransferase catalyzes the transfer of the heptasaccharide from the lipid carrier to selected asparagine residues on nascent polypeptide chains. This pathway is encoded by the operon shown below, with the gene encoding the oligosaccharyltransferase highlighted.

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Summary of biological effects caused by disruption of protein -glycosylation in .

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Genetic organization of gene orthologs in Proteobacteria. The commonality of the conserved gene clusters in Delta- and Epsilonproteobacteria is shown. Orthologs of Cj1119c–1132c from NCTC 11168 (NC_002163) were identified by the blastp or tblastx algorithm (http://www.ncbi.nlm.nih.gov/). The arrows indicate the transcriptional orientations of the genes; gaps between genes are indicated by either the number of open reading frames () or slashed lines indicating orthologs that were found elsewhere in the chromosome. The genes are conserved in all species examined, including subsp. 269.97 (NC-009707), RM2228 (NZ_AAFL00000000), RM2100 (NZ_AAFK00000000), RM3195 (NZ_AAFJ00000000), ATCC BAA-381 (NC_009714), 525.92 (NC_009715), 13826 (NZ_AAQZ00000000), and subsp. 82-40 (NC_008599). gene orthologs were also found in the related Epsilonproteobacteria: DSZM 1740 (NC_005090), sp. NBC37-1 (NC_009663), sp. SB55-2 (NC_009662), and in the Deltaproteobacterium G20 (NC_007519). Genes encoding the essential oligosaccharyltransferse PglB are depicted in black. Biosynthetic Pgl enzymes (Gne, PglE (E), PglF (F), PglD (D)), glycosyltransferases (PglA (A), PglJ (J), PglH (H), PglI (I), PglC (C)), and the flanking gene products PglG (G) and WlaA were designated according to their orthologs in NCTC 11168 or as glycosyltransferase if no homology to any NCTC 11168 Pgl glycosyltransferase was found. PglC orthologs in sp. NBC37-1 and sp. SB55-2 are indicated with a question mark because other proteins with a higher percentage identity (ID) to PglC of NCTC 11168 can be found in the genome of both species. Note that the PglF ortholog protein in subsp. 269.97 is annotated as a pseudogene that might be due to a sequencing error in the unfinished genome sequencing project. Orthologs to putative ABC-type transporters that show low homologies to PglK (K) of NCTC 11168 are indicated by a question mark.

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alaimo, C.,, I. Catrein,, L. Morf,, C. L. Marolda,, N. Callewaert,, M. A. Valvano,, M. F. Feldman, and, M. Aebi. 2006. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J. 25: 967976.
2. Bacon, D. J.,, R. A. Alm,, D. H. Burr,, L. Hu,, D. J. Kopecko,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 2000. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect. Immun. 68: 43844390.
3. Bernatchez, S.,, C. M. Szymanski,, N. Ishiyama,, J. Li,, H. C. Jarrell,, P. C. Lau,, A. M. Berghuis,, N. M. Young, and, W. W. Wakarchuk. 2005. A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J. Biol. Chem. 280: 47924802.
4. Carrillo, C. D.,, E. Taboada,, J. H. Nash,, P. Lanthier,, J. Kelly,, P. C. Lau,, R. Verhulp,, O. Mykytczuk,, J. Sy,, W. A. Findlay,, K. Amoako,, S. Gomis,, P. Willson,, J. W. Austin,, A. Potter,, L. Babiuk,, B. Allan, and, C. M. Szymanski. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279: 2032720338.
5. Creuzenet, C. 2004. Characterization of CJ1293, a new UDP-GlcNAc C6 dehydratase from Campylobacter jejuni. FEBS Lett. 559: 136140.
6. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher, and, B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11: 17061715.
7. Feldman, M. F.,, M. Wacker,, M. Hernandez,, P. G. Hitchen,, C. L. Marolda,, M. Kowarik,, H. R. Morris,, A. Dell,, M. A. Valvano, and, M. Aebi. 2005. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 102: 30163021.
8. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3: 114.
9. Fry, B. N.,, V. Korolik,, J. A. ten Brinke,, M. T. Pennings,, R. Zalm,, B. J. Teunis,, P. J. Coloe, and, B. A. van der Zeijst. 1998. The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology 144 (Pt. 8): 20492061.
10. Gabius, H.-J., and, F. Sinowatz. 1998. Preface. Acta Anat. 161 (1–4): 6.
11. Gemmill, T. R. and, R. B. Trimble. 1999. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426: 227237.
12. Glover, K. J.,, E. Weerapana,, M. M. Chen, and, B. Imperiali. 2006. Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transfer-ase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 45: 53435350.
13. Glover, K. J.,, E. Weerapana, and, B. Imperiali. 2005a. Glycosyl donor biosynthesis for prokaryotic N-linked glycosylation: in vitro assembly of an undecaprenylpyrophosphate-linked heptasaccharide. Proc. Natl. Acad. Sci. USA 102: 1425514259.
14. Glover, K. J.,, E. Weerapana, and, B. Imperiali. 2005b. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102: 1425514259.
15. Glover, K. J.,, E. Weerapana,, S. Numao, and, B. Imperiali. 2005c. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem. Biol. 12: 13111315.
16. Goon, S.,, J. F. Kelly,, S. M. Logan,, C. P. Ewing, and, P. Guerry. 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50: 659671.
17. Gundogdu, O.,, S. D. Bentley,, M. T. Holden,, J. Parkhill,, N. Dorrell, and, B. W. Wren. 2007. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8: 162.
18. Hanover, J. A., and, W. J. Lennarz. 1979. The topological orientation of N,N′-diacetylchitobiosylpyrophosphoryldolichol in artificial and natural membranes. J. Biol. Chem. 254: 92379246.
19. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52: 471484.
20. Hofreuter, D.,, S. Odenbreit, and, R. Haas. 2001. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41: 379391.
21. Hofreuter, D.,, S. Odenbreit,, G. Henke, and, R. Haas. 1998. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol. Microbiol. 28: 10271038.
22. Holmes, K.,, F. Mulholland,, B. M. Pearson,, C. Pin,, J. McNicholl-Kennedy,, J. M. Ketley, and, J. M. Wells. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151: 243257.
23. Jennings, M. P.,, M. Virji,, D. Evans,, V. Foster,, Y. N. Srikhanta,, L. Steeghs,, L. P. van der, and, E. R. Moxon. 1998. Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol. Microbiol. 29: 975984.
24. Jones, M. A.,, K. L. Marston,, C. A. Woodall,, D. J. Maskell,, D. Linton,, A. V. Karlyshev,, N. Dorrell,, B. W. Wren, and, P. A. Barrow. 2004. Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect. Immun. 72: 37693776.
25. Kakuda, T., and, V. J. DiRita. 2006. Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect. Immun. 74: 47154723.
26. Karlyshev, A. V.,, P. Everest,, D. Linton,, S. Cawthraw,, D. G. Newell, and, B. W. Wren. 2004. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150: 19571964.
27. Kelleher, D. J., and, R. Gilmore. 1994. The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J. Biol. Chem. 269: 1290812917.
28. Kelly, J.,, H. Jarrell,, L. Millar,, L. Tessier,, L. M. Fiori,, P. C. Lau,, B. Allan, and, C. M. Szymanski. 2006. Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188: 24272434.
29. Kowarik, M.,, S. Numao,, M. F. Feldman,, B. L. Schulz,, N. Callewaert,, E. Kiermaier,, I. Catrein, and, M. Aebi. 2006a. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314: 11481150.
30. Kowarik, M.,, N. M. Young,, S. Numao,, B. L. Schulz,, I. Hug,, N. Callewaert,, D. C. Mills,, D. C. Watson,, M. Hernandez,, J. F. Kelly,, M. Wacker, and, M. Aebi. 2006b. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25: 19571966.
31. Larsen, J. C.,, C. Szymanski, and, P. Guerry. 2004. N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J. Bacteriol. 186: 65086514.
32. Leon-Kempis, M. R.,, E. Guccione,, F. Mulholland,, M. P. Williamson, and, D. J. Kelly. 2006. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol. Microbiol. 60: 12621275.
33. Leonard, E. E.,, T. Takata,, M. J. Blaser,, S. Falkow,, L. S. Tompkins, and, E. C. Gaynor. 2003. Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187: 691694.
34. Linton, D.,, E. Allan,, A. V. Karlyshev,, A. D. Cronshaw, and, B. W. Wren. 2002. Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol. 43: 497508.
35. Linton, D.,, N. Dorrell,, P. G. Hitchen,, S. Amber,, A. V. Karlyshev,, H. R. Morris,, A. Dell,, M. A. Valvano,, M. Aebi, and, B. W. Wren. 2005. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol. Microbiol. 55: 16951703.
36. Liu, X.,, D. J. McNally,, H. Nothaft,, C. M. Szymanski,, J. R. Brisson, and, J. Li. 2006. Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria. Anal. Chem. 78: 60816087.
37. McCloskey, M. A., and, F. A. Troy. 1980. Paramagnetic isoprenoid carrier lipids. 2. Dispersion and dynamics in lipid membranes. Biochemistry 19: 20612066.
38. Menon, A. K. 1995. Flippases. Trends Cell Biol. 5: 355360.
39. Miller, W. G.,, A. H. Bates,, S. T. Horn,, M. T. Brandl,, M. R. Wachtel, and, R. E. Mandrell. 2000. Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new gfp, yfp, and cfp marker plasmids. Appl. Environ. Microbiol. 66: 54265436.
40. Muller, A.,, G. H. Thomas,, R. Horler,, J. A. Brannigan,, E. Blagova,, V. M. Levdikov,, M. J. Fogg,, K. S. Wilson, and, A. J. Wilkinson. 2005. An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extra-cytoplasmic solute receptor protein. Mol. Microbiol. 57: 143155.
41. Naikare, H.,, K. Palyada,, R. Panciera,, D. Marlow, and, A. Stintzi. 2006. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect. Immun. 74: 54335444.
42. Nita-Lazar, M.,, M. Wacker,, B. Schegg,, S. Amber, and, M. Aebi. 2005. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15: 361367.
43. Olivier, N. B.,, M. M. Chen,, J. R. Behr, and, B. Imperiali. 2006. In vitro biosynthesis of UDP-N,N′-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45: 1365913669.
44. Palyada, K.,, D. Threadgill, and, A. Stintzi. 2004. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol. 186: 47144729.
45. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665668.
46. Pawelec, D.,, J. Jakubowska-Mroz, and, E. K. Jagusztyn-Krynicka. 1998. Campylobacter jejuni 72Dz/92 cjaC gene coding 28 kDa immunopositive protein, a homolog of the solute-binding components of the ABC transport system. Lett. Appl. Microbiol. 26: 6976.
47. Pearson, B. M.,, C. Pin,, J. Wright,, K. I’Anson,, T. Humphrey, and, J. M. Wells. 2003. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554: 224230.
48. Pei, Z.,, C. Burucoa,, B. Grignon,, S. Baqar,, X. Z. Huang,, D. J. Kopecko,, A. L. Bourgeois,, J. L. Fauchere, and, M. J. Blaser. 1998. Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect. Immun. 66: 938943.
49. Pei, Z. H.,, R. T. Ellison, III, and, M. J. Blaser. 1991. Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J. Biol. Chem. 266: 1636316369.
50. Power, P. M.,, L. F. Roddam,, M. Dieckelmann,, Y. N. Srikhanta,, Y. C. Tan,, A. W. Berrington, and, M. P. Jennings. 2000. Genetic characterization of pilin glycosylation in Neisseria meningitidis. Microbiology 146: 967979.
51. Rangarajan, E. S.,, S. Bhatia,, D. C. Watson,, C. Munger,, M. Cygler,, A. Matte, and, N. M. Young. 2007. Structural context for protein N-glycosylation in bacteria: the structure of PEB3, an adhesin from Campylobacter jejuni. Protein Sci. 16: 990995.
52. Ridley, K. A.,, J. D. Rock,, Y. Li, and, J. M. Ketley. 2006. Heme utilization in Campylobacter jejuni. J. Bacteriol. 188: 78627875.
53. Schirm, M.,, I. C. Schoenhofen,, S. M. Logan,, K. C. Waldron, and, P. Thibault. 2005. Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal. Chem. 77: 77747782.
54. Schoenhofen, I. C.,, D. J. McNally,, J. R. Brisson, and, S. M. Logan. 2006a. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP- N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16: 8C14C.
55. Schoenhofen, I. C.,, D. J. McNally,, E. Vinogradov,, D. Whitfield,, N. M. Young,, S. Dick,, W. W. Wakarchuk,, J. R. Brisson, and, S. M. Logan. 2006b. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281: 723732.
56. St Michael, F.,, C. M. Szymanski,, J. Li,, K. H. Chan,, N. H. Khieu,, S. Larocque,, W. W. Wakarchuk,, J. R. Brisson, and, M. A. Monteiro. 2002. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem. 269: 51195136.
57. Stimson, E.,, M. Virji,, K. Makepeace,, A. Dell,, H. R. Morris,, G. Payne,, J. R. Saunders,, M. P. Jennings,, S. Barker,, M. Panico,, I. Blench, and, R. E. Moxon. 1995. Meningococcal pilin: a glyco-protein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17: 12011214.
58. Stintzi, A. 2003. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 185: 20092016.
59. Stintzi, A.,, D. Marlow,, K. Palyada,, H. Naikare,, R. Panciera,, L. Whitworth, and, C. Clarke. 2005. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect. Immun. 73: 17971810.
60. Szymanski, C. M.,, D. H. Burr, and, P. Guerry. 2002. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun. 70: 22422244.
61. Szymanski, C. M.,, S. Goon,, B. Allan, and, P. Guerry. 2005. Protein glycosylation in Campylobacter, p. 259273. In J. M. Ketley and, M. E. Konkel (ed.), Campylobacter: Molecular and Cellular Biology. Horizon Bioscience, Norwich, United Kingdom.
62. Szymanski, C. M.,, F. S. Michael,, H. C. Jarrell,, J. Li,, M. Gilbert,, S. Larocque,, E. Vinogradov, and, J. R. Brisson. 2003. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem. 278: 2450924520.
63. Szymanski, C. M.,, R. Yao,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 1999. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32: 10221030.
64. Taboada, E. N.,, R. R. Acedillo,, C. D. Carrillo,, W. A. Findlay,, D. T. Medeiros,, O. L. Mykytczuk,, M. J. Roberts,, C. A. Valencia,, J. M. Farber, and, J. H. Nash. 2004. Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J. Clin. Microbiol. 42: 45664576.
65. van Vliet, A. H.,, K. G. Wooldridge, and, J. M. Ketley. 1998. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J. Bacteriol. 180: 52915298.
66. Vijayakumar, S.,, A. Merkx-Jacques,, D. B. Ratnayake,, I. Gryski,, R. K. Obhi,, S. Houle,, C. M. Dozois, and, C. Creuzenet. 2006. Cj1121c, a novel UDP-4-keto-6-deoxy-GlcNAc C-4 aminotrans ferase essential for protein glycosylation and virulence in Campylobacter jejuni. J. Biol. Chem. 281: 2773327743.
67. Wacker, M.,, M. F. Feldman,, N. Callewaert,, M. Kowarik,, B. R. Clarke,, N. L. Pohl,, M. Hernandez,, E. D. Vines,, M. A. Valvano,, C. Whitfield, and, M. Aebi. 2006. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA 103: 70887093.
68. Wacker, M.,, D. Linton,, P. G. Hitchen,, M. Nita-Lazar,, S. M. Haslam,, S. J. North,, M. Panico,, H. R. Morris,, A. Dell,, B. W. Wren, and, M. Aebi. 2002. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298: 17901793.
69. Weerapana, E.,, K. J. Glover,, M. M. Chen, and, B. Imperiali. 2005. Investigating bacterial N-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J. Am. Chem. Soc. 127: 1376613767.
70. Weerapana, E., and, B. Imperiali. 2006. Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16: 91R101R.
71. Wyszynska, A.,, A. Raczko,, M. Lis, and, E. K. Jagusztyn-Krynicka. 2004. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 22: 13791389.
72. Wyszynska, A.,, K. Tomczyk, and, E. K. Jagusztyn-Krynicka. 2007. Comparison of the localization and post-translational modification of Campylobacter coli CjaC and its homolog from Campylobacter jejuni, Cj0734c/HisJ. Acta Biochim. Pol. 54: 143150.
73. Yan, Q., and, W. J. Lennarz. 2002. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J. Biol. Chem. 277: 4769247700.
74. Yao, R.,, D. H. Burr,, P. Doig,, T. J. Trust,, H. Niu, and, P. Guerry. 1994. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol. Microbiol. 14: 883893.
75. Young, N. M.,, J. R. Brisson,, J. Kelly,, D. C. Watson,, L. Tessier,, P. H. Lanthier,, H. C. Jarrell,, N. Cadotte,, F. St Michael,, E. Aberg, and, C. M. Szymanski. 2002. Structure of the N-linked glycan present on multiple glycoproteins in the gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277: 4253042539.


Generic image for table
Table 1.

Putative N-linked glycoproteins

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25
Generic image for table
Table 2.

Transcriptional profiling of mutants

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25
Generic image for table
Table 3.

NTCT 11168 gene orthologs

Citation: Nothaft H, Amber S, Aebi M, Szymanski C. 2008. -Linked Protein Glycosylation in , p 447-469. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error