Chapter 31 : Natural Competence and Transformation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Natural Competence and Transformation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap31-2.gif


Over 40 naturally competent bacterial species are known, and that number continues to grow. Almost all competent bacteria studied to date use components of the type II secretion/type IV pilus biogenesis family of proteins for transformation, with slight differences between the transformation machinery in each system. The two known exceptions are , which requires components of a type IV secretion/conjugation system for transformation, and , in which some strains use both type II-like and type IV-like secretion systems. Three different mechanisms may contribute to generating genetic diversity. The first is local sequence change such as nucleotide substitutions or small insertions or deletions of one or a few nucleotides. Another mechanism is DNA rearrangement, where related sequences in the genome undergo recombination to create novel fusion genes, and duplicate or delete DNA segments. Finally, diversity can be generated by horizontal acquisition of DNA through mechanisms such as natural transformation, conjugation, and transduction. Given the natural competence of most species, antibiotic resistance is probably spread in part through transformation. Several species of are naturally competent for transformation, including and . The candidate gene approach identified recombinase RecA as having a function in transformation. recA mutants were unable to be transformed to streptomycin resistance in three strains tested, 81-176, VC83, and 81-116. Modification of proteins by addition of an -linked glycan is due to the activity of a number of genes found in the locus.

Citation: Wiesner R, Dirita V. 2008. Natural Competence and Transformation in , p 559-570. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch31
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Conserved locus encoding type II secretion system genes from several strains of . See text for details.

Citation: Wiesner R, Dirita V. 2008. Natural Competence and Transformation in , p 559-570. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmed, H. I.,, G. Manning,, T. M. Wassenaar,, S. Cawthraw, and, D. G. Newell. 2002. Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology 148: 12031212.
2. Alm, R. A.,, P. Guerry, and, T. J. Trust. 1993. Significance of duplicated flagellin genes in Campylobacter. J. Mol. Biol. 230: 359363.
3. Ando, T.,, D. A. Israel,, K. Kusugami, and, M. J. Blaser. 1999. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J. Bacteriol. 181: 55725580.
4. Arber, W. 2000 Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol. Rev. 24: 17.
5. Assalkhou, R.,, S. Balasingham,, R. F. Collins,, S. A. Frye,, T. Davidsen,, A. V. Benam,, M. Bjørås,, J. P. Derrick, and, T. Tønjum. The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153: 15931603.
6. Bacon, D. J.,, R. A. Alm,, D. H. Burr,, L. Hu,, D. J. Kopecko,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 2000. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect. Immun. 68: 43844390.
7. Bacon, D. J.,, R. A. Alm,, L. Hu,, T. E. Hickey,, C. P. Ewing,, R. A. Batchelor,, T. J. Trust, and, P. Guerry. 2002. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun. 70: 62426250.
8. Blaser, M. J.,, G. P. Perez,, P. F. Smith,, C. Patton,, F. C. Tenover,, A. J. Lastovica, and, W. I. Wang. 1986. Extraintestinal Campylobacter jejuni and Campylobacter coli infections: host factors and strain characteristics. J. Infect. Dis. 153: 552559.
9. Campbell, E. A.,, S. Y. Choi, and, H. R. Masure. 1998. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol. Microbiol. 27: 929939.
10. Cascales, E., and, P. J. Christie. 2003. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1: 137149.
11. Chen, I.,, P. J. Christie, and, D. Dubnau. 2005. The ins and outs of DNA transfer in bacteria. Science 310: 14561460.
12. Chen, I., and, D. Dubnau. 2003. DNA transport during transformation. Front. Biosci. 8: s544s556.
13. Collins, R. F.,, M. Saleem, and, J. P. Derrick. 2007. Purification and three-dimensional electron microscopy structure of the Neisseria meningitidis type IV pilus biogenesis protein PilG. J. Bacteriol. 189: 63896396.
14. Danner, D. B.,, R. A. Deich,, K. L. Sisco, and, H. O. Smith. 1980. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11: 311318.
15. de Boer, P.,, J. A. Wagenaar,, R. P. Achterberg,, J. P. Putten,, L. M. Schouls, and, B. Duim. 2002. Generation of Campylobacter jejuni genetic diversity in vivo. Mol. Microbiol. 44: 351359.
16. Dingle, K. E.,, F. M. Colles,, D. R. Wareing,, R. Ure,, A. J. Fox,, F. E. Bolton,, H. J. Bootsma,, R. J. Willems,, R. Urwin, and, M. C. Maiden. 2001. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39: 1423.
17. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al-Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher, and, B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11: 17061715.
18. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 217244.
19. Dubnau, D. 1991a. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55: 395424.
20. Dubnau, D. 1991b. The regulation of genetic competence in Bacillus subtilis. Mol. Microbiol. 5: 1118.
21. Edmonds, P.,, B. M. Hall,, W. R. Edwards, and, K. M. Hartline. 1992. Presence of methylated adenine in GATC sequences in chromosomal DNAs from Campylobacter species. J. Bacteriol. 174: 81568157.
22. Engberg, J.,, F. M. Aarestrup,, D. E. Taylor,, P. Gerner-Smidt, and, I. Nachamkin. 2001. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg. Infect. Dis. 7: 2434.
23. Enright, M., and, B. G. Spratt. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with seriou invasive disease. Microbiology 144: 30493060.
24. Filloux, A. 2004. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694: 163179.
25. Florin, I., and, F. Antillon. 1992. Production of enterotoxin and cytotoxin in Campylobacter jejuni strains isolated in Costa Rica. J. Med. Microbiol. 37: 2229.
26. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005a. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3: e15.
27. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005b. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3: 7285.
28. Fry, B. N.,, S. Feng,, Y. Y. Chen,, D. G. Newell,, P. J. Coloe, and, V. Korolik. 2000. The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect. Immun. 68: 25942601.
29. Goodman, S. D., and, J. J. Scocca. 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 85: 69826986.
30. Guerry, P.,, P. M. Pope,, D. H. Burr,, J. Leifer,, S. W. Joseph, and, A. L. Bourgeois. 1994. Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infect. Immun. 62: 426432.
31. Hahn, J.,, B. Maier,, B. J. Haijema,, M. Sheetz, and, D. Dubnau. 2005. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell 122: 5971.
32. Hanninen, M. L.,, M. Hakkinen, and, H. Rautelin. 1999. Stability of related human and chicken Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65: 22722275.
33. Harrington, C. S.,, F. M. Thomson-Carter, and, P. E. Carter. 1997. Evidence for recombination in the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme. J. Clin. Microbiol. 35: 23862392.
34. Hofreuter, D.,, S. Odenbreit, and, R. Haas. 2001. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41: 379391.
35. Hofreuter, D.,, S. Odenbreit,, G. Henke, and, R. Haas. 1998. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol. Microbiol. 28: 10271038.
36. Hofreuter, D.,, J. Tsai,, R. O. Watson,, V. Novik,, B. Altman,, M. Benitez,, C. Clark,, C. Perbost,, T. Jarvie,, L. Du, and, J. E. Galan. 2006. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun. 74: 46944707.
37. Holmes, E. C.,, R. Urwin, and, M. C. Maiden. 1999. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol. 16: 741749.
38. Inamine, G. S., and, D. Dubnau. 1995. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J. Bacteriol. 177: 30453051.
39. Jeon, B., and, Q. Zhang. 2007. Cj0011c, a periplasmic single- and double-stranded DNA binding protein, contributes to natural transformation in Campylobacter jejuni. J. Bacteriol. 189: 73997407.
40. Johnson, T. L.,, J. Abendroth,, W. G. Hol, and, M. Sandkvist. 2006. Type II secretion: from structure to function. FEMS Microbiol. Lett. 255: 175186.
41. Karudapuram, S.,, X. Zhao, and, G. J. Barcak. 1995. DNA sequence and characterization of Haemophilus influenzae dprA +, a gene required for chromosomal but not plasmid DNA transformation. J. Bacteriol. 177: 32353240.
42. Korolik, V.,, M. R. Alderton,, S. C. Smith,, J. Chang, and, P. J. Coloe. 1998. Isolation and molecular analysis of colonising and noncolonising strains of Campylobacter jejuni and Campylobacter coli following experimental infection of young chickens. Vet. Microbiol. 60: 239249.
43. Kramer, N.,, J. Hahn, and, D. Dubnau. 2007. Multiple interactions among the competence proteins of Bacillus subtilis. Mol. Microbiol. 65: 454464.
44. Labigne-Roussel, A.,, J. Harel, and, L. Tompkins. 1987. Gene transfer from Escherichia coli to Campylobacter species: development of shuttle vectors for genetic analysis of Campylobacter jejuni. J. Bacteriol. 169: 53205323.
45. Larsen, J. C.,, C. Szymanski, and, P. Guerry. 2004. N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J. Bacteriol. 186: 65086514.
46. Leonard, E. E.,, T. Takata,, M. J. Blaser,, S. Falkow,, L. Tompkins, and, E. C. Gaynor. 2003. Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187: 691694.
47. Lindblom, G. B.,, L. E. Cervantes,, E. Sjogren,, B. Kaijser, and, G. Ruiz-Palacios. 1990. Adherence enterotoxigenicity invasiveness and serogroups in Campylobacter jejuni, Campylobacter coli, and Campylobacter laridis. APMIS 98: 179184.
48. Linton, D.,, A. V. Karlyshev,, P. G. Hitchen,, H. R. Morris,, A. Dell,, N. A. Gregson, and, B. W. Wren. 2000. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol. Microbiol. 35: 11201134.
49. Lior, H.,, D. L. Woodward,, J. A. Edgar,, L. J. Laroche, and, P. Gill. 1982. Serotyping of Campylobacter jejuni by slide agglutination based on heat-labile antigenic factors. J. Clin. Microbiol. 15: 761768.
50. Londono-Vallejo, J. A., and, D. Dubnau. 1993. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol. Microbiol. 9: 119131.
51. Lorenz, M. G., and, W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563602.
52. McDermott, P. F.,, S. M. Bodeis,, L. L. English,, D. G. White,, R. D. Walker,, S. Zhao,, S. Simjee, and, D. D. Wagner. 2002. Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J. Infect. Dis. 185: 837840.
53. McFarland, B. A., and, S. D. Neill. 1992. Profiles of toxin production by thermophilic Campylobacter of animal origin. Vet. Microbiol. 30: 257266.
54. Miller, J. F.,, W. J. Dower, and, L. S. Tompkins. 1988. High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc. Natl. Acad. Sci. USA 85: 856860.
55. Mortier-Barriere, I.,, M. Velten,, P. Dupaigne,, N. Mirouze,, O. Pietrement,, S. McGovern,, G. Fichant,, B. Martin,, P. Noirot,, E. Le Cam,, P. Polard, and, J. P. Claverys. 2007. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130: 824836.
56. Nuijten, P. J. M.,, A. J. G. van den Berg,, I. Formentini,, B. A. M. van der Zeijst, and, A. A. C. Jacobs. 2000. DNA rearrangements in the flagellin locus of an flaA mutant of Campylobacter jejuni during colonization of chicken ceca. Infect. Immun. 68: 71377140.
57. Odenbreit, S.,, J. Puls,, B. Sedlmaier,, E. Gerland,, W. Fischer, and, R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 14971500.
58. Palmen, R.,, B. Vosman,, P. Buijsman,, C. K. Breek, and, K. J. Hellingwerf. 1993. Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J. Gen. Microbiol. 139: 295305.
59. Peabody, C. R.,, Y. J. Chung,, M. R. Yen,, D. Vidal-Ingigliardi,, A. P. Pugsley, and, M. H. Saier,, Jr. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149: 30513072.
60. Pearson, B. M.,, C. Pin,, J. Wright,, K. I’Anson,, T. Humphrey, and, J. M. Wells. 2003. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554: 224230.
61. Penner, J. L., and, J. N. Hennessy. 1980. Passive hemagglutination technique for serotyping Campylobacter fetus subsp. jejuni on the basis of soluble heat-stable antigens. J. Clin. Microbiol. 12: 732737.
62. Planet, P. J.,, S. C. Kachlany,, R. DeSalle, and, D. H. Figurski. 2001. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl. Acad. Sci. USA 98: 25032508.
63. Poly, F.,, D. Threadgill, and, A. Stintzi. 2005. Genomic diversity in Campylobacter jejuni: identification of C. jejuni 81-176-specific genes. J. Clin. Microbiol. 43: 23302338.
64. Poly, F.,, D. Threadgill, and, A. Stintzi. 2004. Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons. J. Bacteriol. 186: 47814795.
65. Provvedi, R., and, D. Dubnau. 1999. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31: 271280.
66. Redfield, R. 1993. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J. Hered. 84: 400404.
67. Redfield, R. J. 1988. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119: 213221.
68. Redfield, R. J.,, M. R. Schrag, and, A. M. Dean. 1997. The evolution of bacterial transformation: sex with poor relations. Genetics 146: 2738.
69. Sandkvist, M. 2001a. Type II secretion and pathogenesis. Infect. Immun. 69: 35233535.
70. Sandkvist, M. 2001b. Biology of type II secretion. Mol. Microbiol. 40: 271283.
71. Schouls, L. M.,, S. Reulen,, B. Duim,, J. A. Wagenaar,, R. J. Willems,, K. E. Dingle,, F. M. Colles, and, J. D. Van Embden. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J. Clin. Microbiol. 41: 1526.
72. Scott, A. E.,, A. R. Timms,, P. L. Connerton,, C. Loc Carrillo,, K. Adzfa Radzum, and, I. F. Connerton. 2007. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog. 3: e119.
73. Smeets, L. C.,, J. J. Bijlsma,, E. J. Kuipers,, C. M. Vandenbroucke-Grauls, and, J. G. Kusters. 2000. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 27: 99102.
74. Smith, H. O.,, D. B. Danner, and, R. A. Deich. 1981. Genetic transformation. Ann. Rev. Biochem. 50: 4168.
75. Smith, H. O.,, J. F. Tomb,, B. A. Dougherty,, R. D. Fleischmann, and, J. C. Venter. 1995. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269: 538540.
76. Smith, K. E.,, J. M. Besser,, C. W. Hedburg,, F. T. Leano,, J. B. Bender,, J. H. Wicklund,, B. P. Johnson,, K. A. Moore, and, M. T. Osterholm. 1999. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. N. Engl. J. Med. 340: 15251532.
77. Stewart, G. J., and, C. A. Carlson. 1986. The biology of natural transformation. Ann. Rev. Microbiol. 40: 211235.
78. Suerbaum, S.,, M. Lohrengel,, A. Sonnevend,, F. Ruberg, and, M. Kist. 2001. Allelic diversity and recombination in Campylobacter jejuni. J. Bacteriol. 183: 25532559.
79. Szymanski, C. M.,, S. M. Logan,, D. Linton, and, B. W. Wren. 2003. Campylobacter—a tale of two protein glycosylation systems. Trends Microbiol. 11: 233238.
80. Taboada, E. N.,, R. R. Acedillo,, C. D. Carrillo,, W. A. Findlay,, D. T. Medeiros,, O. L. Mykytczuk,, M. J. Roberts,, C. A. Valencia,, J. M. Farber, and, J. H. E. Nash. 2004. Large-scale comparative genomics meta-analysis of Campylobacter jejuni reveals low level of genome plasticity. J. Clin. Microbiol. 42: 45664576.
81. Takata, T.,, T. Ando,, D. A. Israel,, T. M. Wassenaar, and, M. J. Blaser. 2005. Role of dprA in transformation of Campylobacter jejuni. FEMS Microbiol. Lett. 252: 161168.
82. Tonjum, T.,, N. E. Freitag,, E. Namork, and, M. Koomey. 1995. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol. Microbiol. 16: 451464.
83. Tortosa, P., and, D. Dubnau. 1999. Competence for transformation: a matter of taste. Curr. Opin. Microbiol. 2: 588592.
84. Vignon, G.,, R. Kohler,, E. Larquet,, S. Giroux,, M. C. Prevost,, P. Roux, and, A. P. Pugsley 2003. Type IV–like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185: 34163428.
85. Wang, Y.,, S. D. Goodman,, R. J. Redfield, and, C. Chen. 2002. Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans. J. Bacteriol. 184: 34423449.
86. Wang, Y., and, D. E. Taylor. 1990. Natural transformation in Campylobacter species. J. Bacteriol. 172: 949955.
87. Wassenaar, T. M.,, N. M. C. Bleumink-Pluym,, D. G. Newell,, P. J. M. Nuijten, and, B. A. M. van der Zeijst. 1994. Differential flagellin expression in a flaA flaB + mutant of Campylobacter jejuni. Infect. Immun. 62: 39013906.
88. Wassenaar, T. M.,, B. N. Fry, and, B. A. van der Zeijst. 1993. Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132: 131135.
89. Wassenaar, T. M.,, B. N. Fry, and, B. A. M. van der Zeijst. 1995. Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. Microbiology 141: 95101.
90. Wiesner, R. S.,, D. R. Hendrixson, and, V. J. DiRita. 2003. Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J. Bacteriol. 185: 54085418.
91. Wilson, D. L.,, J. A. Bell,, V. B. Young,, S. R. Wilder,, L. S. Mansfield, and, J. E. Linz. 2003. Variation of the natural transformation frequency of Campylobacter jejuni in liquid shake culture. Microbiology 149: 36033615.
92. Wolfgang, M.,, J. P. van Putten,, S. F. Hayes,, D. Dorward, and, M. Koomey. 2000. Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBOJ. 19: 64086418.
93. Wooldridge, K. G., and, J. M. Ketley. 1997. Campylobacter-host cell interactions. Trends Microbiol. 5: 96102.
94. Zhang, Y. X.,, K. Perry,, V. A. Vinci,, K. Powell,, W. P. C. Stemmer, and, S. B. del Cardayre. 2002. Genome shuffling leads to rapid phenotypic improvements in bacteria. Nature 415: 644646.


Generic image for table
Table 1.

Conserved proteins associated with transformation in naturally competent bacteria

Citation: Wiesner R, Dirita V. 2008. Natural Competence and Transformation in , p 559-570. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch31

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error