Chapter 38 : Bacteriophage Therapy and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bacteriophage Therapy and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap38-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap38-2.gif


This chapter discusses efforts to exploit -specific bacteriophages to reduce the numbers of and colonizing poultry and contaminating poultry meat products. All the phages reported by investigators in two studies had icosahedral heads and long contractile tails that were classified as members of the . Two phages with head diameters of 140.6 and 143.8 nm and large genome sizes of 320 kb were classified as group I. Five phages classified into group II had average head diameters of 99 nm and average genome sizes of 184 kb. A fourth phage had an icosahedral head that was classified as morphotype B1 of the , while a fifth phage had an icosahedral head with a short tail of morphotype C1 in the . phages on the skin of retail chicken portions have been recovered at levels of 2 X 103 PFU/10 cm and this study found that phage could be isolated from chicken skin only when detectable levels of their host were also present. The spontaneous production of CampMu bacteriophages after bacteriophage therapy is of concern because Mu bacteriophages are potential agents of mutation. Attempts to utilize bacteriophage, initially for typing purposes and more recently for their biocontrol potential, have led to a greater awareness of the role that phage play in the complex ecology of . It should be noted that bacteriophage can shape the evolution of genomes as they do in other bacterial genera.

Citation: Connerton I, Connerton P, Barrow P, Seal B, Atterbury R. 2008. Bacteriophage Therapy and , p 679-693. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch38
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Transmission electron micrographs of bacteriophage. (A) Bacteriophage CP8 used for phage therapy trials ( ). (B) Bacteriophage CP220 empty capsid after DNA insertion. (C) Bacteriophage NCTC 12677, which is one of the large phage used for phage typing ( ). (D) Bacteriophage CampMu observed by ).

Citation: Connerton I, Connerton P, Barrow P, Seal B, Atterbury R. 2008. Bacteriophage Therapy and , p 679-693. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Comparison of different phage/host combinations in cecal contents, 48 h after phage was administered to precolonized chickens ( ≥ 5 birds per sample point) together with controls. A single log 7 PFU dose was administered to the treatment group at 25 days of age. Adapted from and ).

Citation: Connerton I, Connerton P, Barrow P, Seal B, Atterbury R. 2008. Bacteriophage Therapy and , p 679-693. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ackermann, H. -W. 2003. Bacteriophage observations and evolution. Res. Microbiol. 154: 245251.
2. Ackermann, H. -W. 2006. Classification of bacteriophages, p. 816. In R. Calendar and, S. T. Abedon (ed.), The Bacteriophages. Oxford University Press, Oxford.
3. Ackermann, H. -W. 2007. 5500 phages examined in the electron microscope. Arch. Virol. 152: 227243.
4. Ackermann, H. -W. 2001. Frequency of morphological phage descriptions. Arch. Virol. 146: 843857.
5. Adams, M. H. (ed.). 1959. Bacteriophage. Interscience, New York.
6. Alexander, M. 1981. Why microbial predators and parasites do not eliminate their prey and hosts. Annu. Rev. Microbiol. 35: 113133.
7. Atterbury, R. J.,, P. L. Connerton,, C. E. Dodd,, C. E. Rees, and, I. F. Connerton. 2003a. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl. Environ. Microbiol. 69: 63026306.
8. Atterbury, R. J.,, P. L. Connerton,, C. E. Dodd,, C. E. Rees, and, I. F. Connerton. 2003b. Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl. Environ. Microbiol. 69: 45114518.
9. Atterbury, R.,, E. Dillon,, C. Swift,, P. Connerton,, J. Frost,, C. Dodd,, C. Rees, and, I. Connerton. 2005. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken caeca. Appl. Environ. Microbiol. 71: 48854887.
10. Avrain, L.,, C. Vernozy-Rozand, and, I. Kempf. 2004. Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens. J. Appl. Microbiol. 97: 134140.
11. Barrow, P. 2001. The use of bacteriophages for treatment and prevention of bacterial disease in animals and animal models of human infection. J. Chem. Techol. Biotechnol. 76: 677682.
12. Barrow, P.,, M. Lovell, and, A. Berchieri, Jr. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5: 294298.
13. Barton, C,, L. K. Ng,, S. D. Tyler, and, C. G. Clark. 2006. Temperate bacteriophages affect pulsed-field gel electrophoresis patterns of Campylobacter jejuni. J. Clin. Microbiol. 45: 386391.
14. Boyd, E. F., and, H. Brüssow. 2002. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10: 521529.
15. Bruynoghe, R., and, J. Maisin. 1921. Essais de thérapeutique au moyen du bacteriophage. C. R. Soc. Biol. 85: 11201121.
16. Bryner, J. H.,, A. E. Ritchie,, G. D. Booth, and, J. W. Foley. 1973. Lytic activity of vibrio phages on strains of Vibrio fetus isolated from man and animals. Appl. Microbiol. 26: 404409.
17. Bryner, J. H.,, A. E. Ritchie,, J. W. Foley, and, D. T. Berman. 1970. Isolation and characterization of a bacteriophage for Vibrio fetus. J. Virol. 6: 9499.
18. Bryner, J. H.,, A. E. Ritchie, and, J. W. Foley. 1982. Techniques for phage typing Campylobacter jejuni. p.5256. In D. G. Newell (ed.), Campylobacter: Epidemiology, Pathogenisis and Biochemistry, MTP Press, Lancaster, United Kingdom.
19. Bull, J. J.,, B. R. Levin,, T. Derouin,, N. Walker, and, C. A. Bloch. 2002. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2: 35.
20. Casjens, S. R. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Microbiol. 8: 451458.
21. Cheetham, B. F., and, M. E. Katz. 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18: 201208.
22. Connerton, P. L.,, C. M. Loc Carrillo,, C. Swift,, E. Dillon,, A. Scott,, C. E. Rees,, C. E. Dodd,, J. Frost, and, I. F. Connerton. 2004. Longitudinal study of Campylobacter jejuni bacteriophages and their hosts from broiler chickens. Appl. Environ. Microbiol. 70: 38773883.
23. Corry, J. E. L., and, H. I. Atabay. 2001. Poultry as a source of Campylobacter and related organisms. J. Appl. Microbiol. 90: 96S114S.
24. Coward, C.,, A. J. Grant,, C. Swift,, J. Philp,, R. Towler,, M. Heydarian,, J. A. Frost, and, D. J. Maskell. 2006. Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl. Environ. Microbiol. 72: 46384647.
25. Delbruck, M. 1940. The growth of bacteriophage and lysis of the host. J. Gen. Physiol. 23: 643660.
26. d’Hérelle, F. 1917. Sur un microbe invisible antagoniste des bac. dysentèriques. C. R. Acad. Sci. Paris 165: 373375.
27. El-Shibiny, A.,, P. L. Connerton, and, I. F. Connerton. 2007. Campylobacter succession in broiler chickens. Vet. Microbiol. 125: 323332.
28. El-Shibiny, A.,, P. L. Connerton, and, I. F. Connerton. 2005. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. Environ. Microbiol. 71: 12591266.
29. Fearnhead, P.,, N. Smith,, M. Barrigas,, A. Fox, and, N. French. 2005. Analysis of recombination in Campylobacter jejuni from MLST population data. J. Mol. Evol. 61: 333340.
30. Firehammer, B. D., and, M. Border. 1968. Isolation of temperate bacteriophages from Vibrio fetus. Am. J. Vet. Res. 29: 22292235.
31. Fletcher, R., and, H. Bertschinger. 1964. A method of isolation of Vibrio coli from swine faecal material by selective filtration. Zentralbl. Veterinaeromed. B 11: 169174.
32. Fletcher, R. D. 1968. Activity and morphology of Vibrio coli phage. Am. J. Vet. Res. 26: 361364.
33. Fouts, D. E,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3: e15.
34. Frost, J. A.,, J. M. Kramer, and, S. A. Gillanders. 1999. Phage typing of Campylobacter jejuni and Campylobacter coli and its use as an adjunct to serotyping. Epidemiol. Infect. 123: 4755.
35. Gaynor, E.,, S. Cawthraw,, G. Manning,, J. MacKichan,, S. Falkow, and, D. Newell. 2004. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol. 186: 503517.
36. Gibson, J.,, C. Fitzgerald, and, R. Owen. 1995. Comparison of PFGE, ribotyping and phage-typing in the epidemiological analysis of Campylobacter jejuni serotype HS2 infections. Epidemiol. Infect. 115: 215225.
37. Goode, A.,, V. Allen, and, P. Barrow. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69: 50325036.
38. Grajewski, B. A.,, J. W. Kusek, and, H. M. Gelfand. 1985. Development of a bacteriophage typing system for Campylobacter jejuni and Campylobacter coli. J. Clin. Microbiol. 22: 1318.
39. Greer, G. 2005. Bacteriophage control of food-borne bacteria. J. Food Prot. 68: 11021111.
40. Hendrix, R. W.,, M. C. Smith,, R. N. Burns,, M. E. Ford, and, G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96: 21922197.
41. Hopkins, K. L.,, M. Desai,, J. A. Frost,, J. Stanley, and, J. M. Logan. 2004. Fluorescent amplified fragment length polymorphism genotyping of Campylobacter jejuni and Campylobacter coli strains and its relationship with host specificity, serotyping, and phage typing J. Clin. Microbiol. 42: 22935.
42. Hudson, J.,, C. Billington,, G. Carey-Smith, and, G. Greening. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426437.
43. Huff, W. E.,, G. R. Huff,, N. C. Rath,, J. M. Balog, and, A. M. Donoghue. 2002a. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci. 81: 148691.
44. Huff, W. E.,, G. R. Huff,, N. C. Rath,, J. M. Balog, and, A. M. Donoghue. 2003. Bacteriophage treatment of a severe Escherichia coli respiratory infection in broiler chickens. Avian Dis. 47: 13991405.
45. Huff, W. E.,, G. R. Huff,, N. C. Rath,, J. M. Balog,, H. Xie,, P. A. Moore, Jr., and, A. M. Donoghue. 2002b. Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult. Sci. 81: 437441.
46. James, C.,, S. J. James,, N. Hannay,, G. Purnell,, C. Barbedo-Pinto,, H. Yaman,, M. Araujo,, M. L. Gonzalez,, J. Calvo,, M. Howell, and, J. E. Corry. 2007. Decontamination of poultry carcasses using steam or hot water in combination with rapid cooling, chilling or freezing of carcass surfaces. Int. J. Food Microbiol. 114: 195203.
47. Joerger, R. D. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640647.
48. Jones, M. A.,, K. L. Marston,, C. Woodall,, D. Maskell,, D. Linton,, B. Wren, and, P. A. Barrow. 2004. Adaptation of Campylobacter jejuni NCTC11168 to high level colonization of the avian gastro-intestinal tract; capsule production is required for colonization. Infect. Immun. 72: 376976.
49. Jorgensen, F.,, R. Bailey,, S. Williams,, P. Henderson,, D. Wareing,, F. Bolton,, J. Frost,, L. Ward, and, T. Humphrey. 2002. Prevalence and numbers of Salmonella and Campylobacter spp. On raw, whole chickens in relation to sampling methods. Int. J. Food Microbiol. 76: 151164.
50. Kennedy, J., and, G. Bitton. 1987. Bacteriophages in foods, p. 289316. In G. Bitton,, G. Gerba, and, S. Goyal, (ed.) Phage Ecology. John Wiley and Sons, New York.
51. Khakhria, R., and, H. Lior. 1992. Extended phage-typing scheme for Campylobacter jejuni and Campylobacter coli. Epidemiol. Infect. 108: 40314.
52. Koo, J.,, D. L. Marshall, and, A. DePaola. 2001. Antacid increases survival of Vibrio vulnificus and Vibrio vulnificus phage in a gastrointestinal model. Appl. Environ. Microbiol. 67: 28952902.
53. Kudva, I. T.,, S. Jelacic,, P. I. Tarr,, P. Youderian, and, C. J. Hovde. 1999. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl. Environ. Microbiol. 65: 37673773.
54. Kutter, E., and, A. Sulakvelidze (ed.). 2005. Bacteriophages: Biology and Applications. CRC Press, Boca Raton, FL.
55. Lang, L. H. 2006. FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131: 1370.
56. Lawrence, J. G.,, G. F. Hatfull, and, R. W. Hendrix. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184: 48914905.
57. Leverentz, B.,, W. Conway,, Z. Alavidze,, W. Janisiewicz,, Y. Fuchs,, M. Camp,, E. Chighkadze, and, A. Sulakvelidze. 2001. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J. Food Prot. 64: 11161121.
58. Levin, B., and, J. Bull. 1996. Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147: 881898.
59. Loc Carrillo, C. M.,, R. J. Atterbury,, A. El-Shibiny,, P. L. Conner-ton,, E. Dillon,, A. Scott, and, I. F. Connerton. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71: 65546563.
60. Loc Carrillo, C. M.,, P. L. Connerton,, T. Pearson, and, I. F. Connerton. 2007. Free-range layer chickens as a source of Campylobacter bacteriophage. Antonie Van Leeuwenhoek 92: 275284.
61. Logan, S.,, J. Kelly,, P. Thibault,, C. Ewing, and, P. Guerry. 2002. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 2: 587597.
62. McCrea, B.,, K. Tonooka,, C. Van Worth,, E. Atwill, and, J. Schrader. 2006. Colonizing capability of Campylobacter jejuni genotypes from low-prevalence avian species in broiler chickens. J. Food Prot. 69: 417420.
63. Murphy, C.,, C. Carroll, and, K. Jordan. 2006. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100: 623632.
64. Nachamkin, I.,, X. H. Yang, and, N. J. Stern. 1993. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl. Environ. Microbiol. 59: 12691273.
65. Nelson, D. 2004. Phage taxonomy: we agree to disagree. J. Bacteriol. 186: 70297031.
66. Newell, D., and, C. Fearnley. 2003. Sources of Campylobacter colonisation in broiler chickens. Appl. Environ. Microbiol. 69: 43434351.
67. Newell, D., and, J. Wagenaar. 2000. Poultry infections and their control at farm level, p. 497509 In I. Nachamkin, and, M. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
68. Parker, C. T.,, B. Quinones,, W. G. Miller,, S. T. Horn, and, R. E. Mandrell. 2006. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol. 44: 41254135.
69. Parkhill, J.,, B. Wren,, K. Mungall,, J. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. Karlyshev,, S. Moule,, M. Pallen,, C. Penn,, M. Quail,, M. Rajandream,, K. Rutherford,, A. van Vliet,, S. Whitehead, and, B. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665668.
70. Payne, R., and, V. Jansen. 2001. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol. 208: 3748.
71. Payne, R. J., and, V. A. Jansen. 2002. Evidence for a phage proliferation threshold? J. Virol. 76: 13123.
72. Payne, R. J., and, V. A. Jansen. 2003. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinet. 42: 315325.
73. Petersen, L., and, A. Wedderkopp. 2001. Evidence that certain clones of Campylobacter jejuni persist during successive broiler flock rotations. Appl. Environ. Microbiol. 67: 27392745.
74. Proux, C.,, D. van Sinderen,, J. Suarez,, P. Garcia,, V. Ladero,, G. F. Fitzgerald,, F. Desiere, and, H. Brussow. 2002. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J. Bacteriol. 184: 60266036.
75. Rabinovitch, A.,, I. Aviram, and, A. Zaritsky. 2003. Bacterial debris—an ecological mechanism for coexistence of bacteria and their viruses. J. Theor. Biol. 224: 377383.
76. Rees, C. E., and, C. E. Dodd. 2006. Phage for rapid detection and control of bacterial pathogens in food. Adv. Appl. Microbiol. 59: 159186.
77. Reynaud, A.,, L. Cloastre,, J. Bernard,, H. Laveran,, H. W. Ackermann,, D. Licois, and, B. Joly. 1992. Characteristics and diffusion in the rabbit of a phage for Escherichia coli O103. Attempts to use this phage for therapy. Vet. Microbiol. 30: 203212.
78. Ritchie, A. E.,, J. H. Bryner, and, J. W. Foley. 1983. Role of DNA bacteriophage in Campylobacter auto-agglutination. J. Med. Microbiol. 16: 333340.
79. Rohwer, F., and, R. Edwards. 2002. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184: 452935.
80. Rosenquist, H.,, N. L. Nielsen,, H. M. Sommer,, B. Norrung, and, B. B. Christensen. 2003. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 83: 87103.
81. Rudi, K.,, H. K. Hoidal,, T. Katla,, B. K. Johansen,, J. Nordal, and, K. S. Jakobsen. 2004. Direct real-time PCR quantification of Campylobacter jejuni in chicken fecal and cecal samples by integrated cell concentration and DNA purification. Appl. Environ. Microbiol. 70: 790797.
82. Sails, A. D.,, D. R. A. Wareing,, F. J. Bolton,, A. J. Fox, and, A. Curry. 1998. Characterisation of 16 Campylobacter jejuni and C. coli typing bacteriophages. J. Med. Microbiol. 47: 123128.
83. Salama, S.,, F. Bolton, and, D. Hutchinson. 1990. Application of a new phage typing scheme to campylobacters isolated during outbreaks. Epidemiol. Infect. 104: 405411.
84. Salama, S.,, F. J. Bolton, and, D. N. Hutchinson. 1989. Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett. Appl. Microbiol. 8: 57.
85. Schouls, L.,, S. Reulen,, B. Duim,, J. Wagenaar,, R. Willems,, K. Dingle,, F. Colles, and, J. van Embden. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing and short repeat sequencing: strain diversity, host range and recombination. J. Clin. Microbiol. 41: 1526.
86. Scott, A. E.,, A. R. Timms,, P. L. Connerton,, A. El-Shibiny, and, I. F. Connerton. 2007a. Bacteriophage influence Campylobacter jejuni types populating broiler chickens. Environ. Microbiol. 9: 23412353.
87. Scott, A. E.,, A. R. Timms,, P. L. Connerton,, C. Loc Carrillo,, K. A. Radzum, and, I. F. Connerton. 2007b. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog. 3: e119.
88. Shreeve, J. E.,, M. Toszeghy,, A. Ridley, and, D. G. Newell. 2002. The carry-over of Campylobacter isolates between sequential poultry flocks. Avian Dis. 46: 378385.
89. Sklar, I. B., and, R. D. Joerger. 2001. Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Saf. 21: 1530.
90. Smith, H. W., and, M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Microbiol. 128: 307318.
91. Smith, H. W.,, M. B. Huggins, and, K. M. Shaw. 1987a. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J. Gen. Microbiol. 133: 11111126.
92. Smith, H. W.,, M. B. Huggins, and, K. M. Shaw. 1987b. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J. Gen. Microbiol. 133: 11271135.
93. Stern, N. J.,, K. L. Hiett,, G. A. Alfredsson,, K. G. Kristinsson,, J. Reiersen,, H. Hardardottir,, H. Briem,, E. Gunnarsson,, F. Georgsson,, R. Lowman,, E. Berndtson,, A. M Lammerding.,, G. M. Paoli, and, M. T. Musgrove. 2003. Campylobacter spp. in Icelandic poultry operations and human disease. Epidemiol. Infect. 130: 2332.
94. Stone, R. 2002. Stalin’s forgotten cure. Science 298: 728731.
95. Sulakvelidze, A.,, Z. Alavidze, and, J. G. Morris, Jr. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45: 649659.
96. Sulakvelidze, A., and, P. Barrow. 2005. Phage therapy in animals and agribusiness, p. 335380. In E. Kutter, and, A. Sulakvelidze (eds.), Bacteriophages: Biology and Applications. CRC Press, Boca Raton, FL.
97. Summers, W. C. 2001. Bacteriophage therapy. Annu. Rev. Microbiol. 55: 437451.
98. Thibault, P.,, S. M. Logan,, J. F. Kelly,, J-R. Brisson,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 2001. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276: 3486234870.
99. Tsuei, A. C.,, G. V. Carey-Smith,, J. A. Hudson,, C. Billington, and, J. A. Heinemann. 2007. Prevalence and numbers of coliphages and Campylobacter jejuni bacteriophages in New Zealand foods. Int. J. Food Microbiol. 116: 1215.
100. Twort, F. W. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet ii: 12411243.
101. van den Ende, P. 1973. Predator prey interactions in continuous culture. Science 181: 562564.
102. Wagenaar, J.,, M. van Bergen,, M. Mueller,, T. Wassenaar, and, R. Carlton. 2005. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol. 109: 275283.
103. Wassenaar, T. M.,, B. A. van der Zeijst,, R. Ayling, and, D. G. Newell. 1993. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of Flagellin A expression. J. Gen. Microbiol. 139: 11711175.
104. Weld, R. J.,, C. Butts, and, J. A Heinemann. 2004. Models of phage growth and their applicability to phage therapy. J. Theor. Biol. 227: 111.
105. Wiggins, B. A., and, M. Alexander. 1985. Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl. Environ. Microbiol. 49: 1923.
106. Zhilenkov, E. L.,, V. M. Popova,, D. V. Popov,, L. Y. Zavalsky,, E. A. Svetoch,, N. J. Stern, and, B. S. Seal. 2006. The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture. Virol. J. 3: 50.
107. Zhilenkov, E. L.,, V. M. Popova,, M. E. Zhilenkov,, E. A. Svetoch,, N. J. Stern, and, B. S. Seal. 2004. Isolation and preliminary characterization of bacteriophage that infect Campylobacter jejuni. ASM Conf. New Phage Biol. Key Biscayne, FL.


Generic image for table
Table 1.

Advantages and disadvantages of bacteriophage therapy over conventional antimicrobial treatments

Citation: Connerton I, Connerton P, Barrow P, Seal B, Atterbury R. 2008. Bacteriophage Therapy and , p 679-693. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch38
Generic image for table
Table 2.

Practical considerations for phage therapy

Citation: Connerton I, Connerton P, Barrow P, Seal B, Atterbury R. 2008. Bacteriophage Therapy and , p 679-693. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch38
Generic image for table
Table 3.

Comparison of the effect of different phage/host combinations

Citation: Connerton I, Connerton P, Barrow P, Seal B, Atterbury R. 2008. Bacteriophage Therapy and , p 679-693. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch38

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error