Chapter 4 : Mitochondrial Antiviral Signaling

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mitochondrial Antiviral Signaling, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap04-2.gif


This chapter discusses one's current knowledge of the properties of mitochondrial antiviral signaling (MAVS), its role in signaling, as well as its role in the in vivo host response to infection with RNA viruses. MAVS was discovered independently by four different groups, and so it is also called IPS-1, VISA, and Cardif. Importantly, the mitochondrial localization of MAVS is critical for it to induce interferons I (IFN-I). The chapter provides a more detailed description of tumor receptor associated factor (TRAF) and their role in the retinoic acid-inducible gene I (RIG-I)/melanoma differentiation associated gene 5 (MDA-5) pathway. The mitochondrial localization of MAVS is crucial for antiviral signaling because removal of the C-terminal mitochondrial targeting domain (TM) of MAVS abolishes its ability to induce IFNs. The chapter summarizes the current knowledge of MAVS signaling, and points out some outstanding questions that demand further dissection. In summary, an outline that emerges from the recent studies is that MAVS activates IKB kinase (IKK) and TBK1 through TRAF proteins as well as several kinase adaptors. To date, two studies have examined the activation of adaptive immune parameters in MAVS mice. It is now well established that MAVS serves as an essential signaling adaptor in the cytosolic antiviral signaling pathway.

Citation: Bhoj V, Chen Z. 2009. Mitochondrial Antiviral Signaling, p 39-50. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Mammalian immune systems employ TLRs and RLRs in order to detect viral nucleic acids. TLRs 3, 7/8, and 9 bind to viral dsRNA, ssRNA, and CpG DNA within endosomes. Upon engagement, these receptors signal through TRIF (TLR3) or MyD88 (TLR7/8 and TLR9) to activate the transcription factors NF-κB, IRF3/7, and ATF-2/c-Jun. These activated factors enter the nucleus and induce the transcription of antiviral genes including IFN-β. Alternatively, viral dsRNA and uncapped 5′-triphosphate RNA in the cytosol are detected by the RNA helicases (RLRs) RIG-I and MDA-5, respectively. Once bound to their ligands, these receptors transmit an activation signal to their common adaptor, MAVS, located on the mitochondrial surface. MAVS relays the signal to ultimately activate NF-κB, IRF3/7, and ATF-2/c-Jun, also resulting in antiviral gene induction.

Citation: Bhoj V, Chen Z. 2009. Mitochondrial Antiviral Signaling, p 39-50. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The functional domains of MAVS. (A) The MAVS protein contains an N-terminal CARD domain, which is thought to interact with RLRs. Amino acids 103 to 173 contain an abundance of prolines termed a PRR. The C terminus contains a single-pass TM domain, which localizes the protein to the outer mitochondrial membrane with the N terminus facing the cytosol. (B) Evolutionary conservation of the MAVS CARD domain. An alignment of CARD domains of MAVS from several species reveals a high degree of evolutionary conservation of this region. (C) Evolutionary conservation of the mitochondrial TM domain of MAVS and its similarity to the TM domain of the Bcl-2 family members Bcl-2 and Bcl-xL.

Citation: Bhoj V, Chen Z. 2009. Mitochondrial Antiviral Signaling, p 39-50. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

MAVS transmits activation signals from RLRs to activate NF-κB and IRF3, resulting in transcription of IFN-β. RIG-I and MDA-5 bind viral RNA containing 5′-triphosphate and dsRNA, respectively, in the cytosol. The ligand-bound receptors then interact with MAVS through CARD-CARD interactions. MAVS subsequently binds to the adaptors TRAF6 and TRAF3. TRAF6 then activates the IKK complex, leading to the phosphorylation of IκB. IκB is then ubiquitinated and degraded by the proteasome, releasing NF-κB from inhibition. NF-κB translocates to the nucleus to induce genes including IFN-β. TRAF3 induces the activation of the IKK-related kinases TBK1 and IKK-ε, which, in turn, phosphorylate IRF3. Phosphorylated IRF3 forms a homodimer, which enters the nucleus to form an enhanceosome complex together with NF-κB to induce IFN-β transcription.

Citation: Bhoj V, Chen Z. 2009. Mitochondrial Antiviral Signaling, p 39-50. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adhikari, A.,, M. Xu, and, Z. J. Chen. 2007. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26: 32143226.
2. Afdhal, N. H. 2004. The natural history of hepatitis C. Semin, Liver Dis. 24(Suppl. 2): 38.
3. Bowie, A. G., and, K. A. Fitzgerald. 2007. RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol. 28: 147150.
4. Chariot, A.,, A. Leonardi,, J. Muller,, M. Bonif,, K. Brown, and, U. Siebenlist. 2002. Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J. Biol. Chem. 277: 3702937036.
5. Chen, Z.,, Y. Benureau,, R. Rijnbrand,, J. Yi,, T. Wang,, L. Warter,, R. E. Lanford,, S. A. Weinman,, S. M. Lemon,, A. Martin, and, K. Li. 2007. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J. Virol. 81: 964976.
6. Chen, Z. J. Ubiquitin signalling in the NF-kappaB pathway. 2005. Nat. Cell. Biol. 7: 758765.
7. Chung, J. Y.,, Y. C. Park,, H. Ye, and, H. Wu. 2002. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell. Sci. 115: 679688.
8. Cory, S., and, J. M. Adams. 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2: 647656.
9. Egger, D., and, K. Bienz. 2005. Intracellular location and translocation of silent and active poliovirus replication complexes. J. Gen. Virol. 86: 707718.
10. Franzini-Armstrong, C. 2007. ER-mitochondria communication. How privileged? Physiology (Bethesda) 22: 261268.
11. Fritz, J. H.,, R. L. Ferrero,, D. J. Philpott, and, S. E. Girardin. 2006. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7: 12501257.
12. Fujita, F.,, Y. Taniguchi,, T. Kato,, Y. Narita,, A. Furuya,, T. Ogawa,, H. Sakurai,, T. Joh,, M. Itoh,, M. Delhase,, M. Karin, and, M. Nakanishi. 2003. Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. Mol. Cell. Biol. 23: 77807793.
13. Gack, M. U.,, Y. C. Shin,, C. H. Joo,, T. Urano,, C. Liang,, L. Sun,, O. Takeuchi,, S. Akira,, Z. Chen,, S. Inoue, and, J. U. Jung. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916920.
14. Giacomello, M.,, I. Drago,, P. Pizzo, and, T. Pozzan. 2007. Mitochondrial Ca 2+ as a key regulator of cell life and death. Cell Death Differ. 14: 12671274.
15. Gitlin, L.,, W. Barchet,, S. Gilfillan,, M. Cella,, B. Beutler,, R. A. Flavell,, M. S. Diamond, and, M. Colonna. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103: 84598464.
16. Guo, B., and, G. Cheng. 2007. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282: 1181711826.
17. Hacker, H., and, M. Karin. 2006. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006: re13.
18. Hornung, V.,, J. Ellegast,, S. Kim,, K. Brzozka,, A. Jung,, H. Kato,, H. Poeck,, S. Akira,, K. K. Conzelmann,, M. Schlee,, S. Endres, and, G. Hartmann. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314: 994997.
19. Inohara, N.,, M. Chamaillard,, C. McDonald, and, G. Nunez. 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74: 355383.
20. Jackson, W. T.,, T. H. Giddings, Jr.,, M. P. Taylor,, S. Mulinyawe,, M. Rabinovitch,, R. R. Kopito, and, K. Kirkegaard. 2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3: e156.
21. Jung, A.,, H. Kato,, Y. Kumagai,, H. Kumar,, T. Kawai,, O. Takeuchi, and, S. Akira. 2008. Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces cytotoxic T cell response via MyD88. J. Virol. 82: 196206.
22. Kato, H.,, S. Sato,, M. Yoneyama,, M. Yamamoto,, S. Uematsu,, K. Matsui,, T. Tsujimura,, K. Takeda,, T. Fujita,, O. Takeuchi, and, S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23: 1928.
23. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101105.
24. Kawai, T., and, S. Akira. 2006. TLR signaling. Cell Death Differ. 13: 816825.
25. Kawai, T.,, K. Takahashi,, S. Sato,, C. Coban,, H. Kumar,, H. Kato,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6: 981988.
26. Kay, B. K.,, M. P. Williamson, and, M. Sudol. 2000. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14: 231241.
27. Koyama, S.,, K. J. Ishii,, H. Kumar,, T. Tanimoto,, C. Coban,, S. Uematsu,, T. Kawai, and, S. Akira. 2007. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179: 47114720.
28. Kumagai, Y.,, O. Takeuchi,, H. Kato,, H. Kumar,, K. Matsui,, E. Morii,, K. Aozasa,, T. Kawai, and, S. Akira. 2007. Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27: 240252.
29. Kumar, H.,, T. Kawai,, H. Kato,, S. Sato,, K. Takahashi,, C. Coban,, M. Yamamoto,, S. Uematsu,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203: 17951803.
30. Lee, M. S., and, Y. J. Kim. 2007. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76: 447480.
31. Li, X. D.,, L. Sun,, R. B. Seth,, G. Pineda, and, Z. J. Chen. 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA 102: 1771717722.
32. Marsden, V. S., and, A. Strasser. 2003. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21: 71105.
33. McBride, H. M.,, M. Neuspiel, and, S. Wasiak. 2006. Mitochondria: more than just a powerhouse. Curr. Biol. 16: R551R560.
34. McWhirter, S. M.,, B. R. tenOever, and, T. Maniatis. 2005. Connecting mitochondria and innate immunity. Cell 122: 645647.
35. Meylan, E.,, J. Curran,, K. Hofmann,, D. Moradpour,, M. Binder,, R. Bartenschlager, and, J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 11671172.
36. Miller, D. J.,, M. D. Schwartz, and, P. Ahlquist. 2001. Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J. Virol. 75: 1166411676.
37. Moradpour, D.,, R. Gosert,, D. Egger,, F. Penin,, H. E. Blum, and, K. Bienz. Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antiviral Res. 60: 103109.
38. Novoa, R. R.,, G. Calderita,, R. Arranz,, J. Fontana,, H. Granzow, and, C. Risco. 2005. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell. 97: 147172.
39. Oganesyan, G.,, S. K. Saha,, B. Guo,, J. Q. He,, A. Shahangian,, B. Zarnegar,, A. Perry, and, G. Cheng. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439: 208211.
40. Park, H. H.,, Y. C. Lo,, S. C. Lin,, L. Wang,, J. K. Yang, and, H. Wu. 2007. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol. 25: 561586.
41. Pichlmair, A.,, O. Schulz,, C. P. Tan,, T. I. Naslund,, P. Liljestrom,, F. Weber, and, C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 9971001.
42. Pickart, C. M. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503533.
43. Pizzo, P., and, T. Pozzan. 2007. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol. 17: 511517.
44. Ryzhakov, G., and, F. Randow. 2007. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 26: 31803190.
45. Saha, S. K., and, G. Cheng. 2006. TRAF3: a new regulator of type I interferons. Cell Cycle 5: 804807.
46. Saha, S. K.,, E. M. Pietras,, J. Q. He,, J. R. Kang,, S. Y. Liu,, G. Oganesyan,, A. Shahangian,, B. Zarnegar,, T. L. Shiba,, Y. Wang, and, G. Cheng. 2006. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25: 32573263.
47. Saito, T.,, R. Hirai,, Y. M. Loo,, D. Owen,, C. L. Johnson,, S. C. Sinha,, S. Akira,, T. Fujita, and, M. Gale, Jr. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104: 582587.
48. Sasai, M.,, M. Shingai,, K. Funami,, M. Yoneyama,, T. Fujita,, M. Matsumoto, and, T. Seya. 2006. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J. Immunol. 177: 86768683.
49. Seth, R. B.,, L. Sun, and, Z. J. Chen. 2006. Antiviral innate immunity pathways. Cell Res. 16: 141147.
50. Seth, R. B.,, L. Sun,, C. K. Ea, and, Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669682.
51. Shepard, C. W.,, L. Finelli, and, M. J. Alter. 2005. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5: 558567.
52. Stark, G. R.,, I. M. Kerr,, B. R. Williams,, R. H. Silverman, and, R. D. Schreiber. 1998. How cells respond to interferons. Annu. Rev. Biochem. 67: 227264.
53. Sun, Q.,, L. Sun,, H. H. Liu,, X. Chen,, R. B. Seth,, J. Forman, and, Z. J. Chen. 2006. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24: 633642.
54. Xia, Z. P., and, Z. J. Chen. 2005. TRAF2: a double-edged sword? Sci. STKE 2005: pe7.
55. Xu, L. G.,, Y. Y. Wang,, K. J. Han,, L. Y. Li,, Z. Zhai, and, H. B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19: 727740.
56. Yang, Y.,, Y. Liang,, L. Qu,, Z. Chen,, M. Yi,, K. Li, and, S. M. Lemon. 2007. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl. Acad. Sci. USA 104: 72537258.
57. Zhao, T.,, L. Yang,, Q. Sun,, M. Arguello,, D. W. Ballard,, J. Hiscott, and, R. Lin. 2007. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat. Immunol. 8: 592600.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error