Chapter 14 : Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap14-2.gif


This chapter briefly describes the nodulation process and some of the quorum-sensing regulatory systems that rhizobia use to monitor their population density. Conjugation is common among , and there are very strong selection pressures to optimize growth in the rhizosphere and nodulation competitiveness. The regulation of gene transfer by quorum-sensing regulation is common among rhizobia. Individual rhizobial strains can contain up to four different LuxI-type acyl-homoserine lactone (AHL) synthases and associated regulators plus several other LuxR-type regulators lacking dedicated AHL synthases. Mutations in and delayed and decreased the growth rate of ; because such altered growth was not observed in or mutants, this suggests that different sets of genes are induced via this quorum-sensing regulon in these two species. Bradyoxetin activity was found in extracts of all α-proteobacteria tested. This suggests that compounds similar to bradyoxetin may play an important role, not only in rhizobial symbiosis, but also in other plant- and animal-bacterial interactions. Elegant studies by researchers suggest that quorum sensing modulates both intra- and inter-species cell-cell communications. It was demonstrated that the halogenated furanones modulate LuxR activity through accelerated degradation of the transcriptional activator, rather than by blocking or displacing the binding of the AHL signal. Another potential way to interfere with quorum sensing is through the degradation or inactivation of the AHL signal molecules.

Citation: Downie J, González J. 2008. Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling, p 213-232. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Arrangement of plasmid transfer and replication genes in different plasmids in the The characterized genes involved in plasmid replication , conjugation and regulation of conjugation are shown. The and genes on pRL8JI are in the opposite orientation to those in the other strains. The and genes have not been sequenced on pRL1JI and pRme41 but are probably present. The and genes are not present on pRL7JI.

Citation: Downie J, González J. 2008. Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling, p 213-232. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Model for recipient-induced transfer of plasmid pRL1JI from bv. . BisR is activated by CinI-made 3-OH-C-HSL from potential recipients (i), resulting in the induction of expression. The induction of (ii) and the resulting TraI-made AHLs induce a positive feedback loop (iii), causing high-level expression of the operon; the plasmid-replication operon is induced in parallel with the operon. Premature accumulation of TraR is avoided by the expression of the TraR anti-activator TraM (iv). BisR, produced when pRL1JI is present, represses expression (v), thereby preventing 3-OH-C-HSL activation of TraR in pRL1JI-containing strains. The repression of and induction of by BisR enable the pRL1JI donor to respond to CinI-made 3-OH-CHSL from potential recipients. Figure adapted from Danino et al. ( ) with permission from Blackwell Publishing.

Citation: Downie J, González J. 2008. Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling, p 213-232. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Amemura, A.,, T. Harada,, M. Abe, and, S. Higashi. 1983. Structural studies of the acidic polysaccharide from Rhizobium trifolii 4S. Carbohydrate Res. 115: 165174.
2. Appleby, C. A. 1984. Leghemoglobin and Rhizobium respiration. Ann. Rev. Plant Physiol. Plant Mol. Biol. 35: 443478.
3. Baldani, J. I.,, R. W. Weaver,, M. F. Hynes, and, B. D. Eardly. 1992. Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl. Environ. Microbiol. 58: 23082314.
4. Bartsev, A. V.,, W. J. Deakin,, N. M. Boukli,, C. B. McAlvin,, G. Stacey,, P. Malnoe,, W. J. Broughton, and, C. Staehelin. 2004. NopL, an effector protein of Rhizobium sp NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134: 871879.
5. Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109: 421424.
6. Breedveld, M. W.,, H. C. Cremers,, M. Batley,, M. A. Posthumus,, L. P. Zevenhuizen,, C. A. Wijffelman, and, A. J. Zehnder. 1993. Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J. Bacteriol. 175: 750757.
7. Brelles-Marino, G.,, and E. J. Bedmar. 2001. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria. J. Biotechnol. 91: 197209.
8. Brencic, A.,, and S. C. Winans. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69: 155194.
9. Brewin, N. J. 2004. Plant cell wall remodelling in the Rhizobium-legume symbiosis. Crit. Rev. Plant Sci. 23: 293316.
10. Burn, J.,, L. Rossen, and, A. W. B. Johnston. 1987. Four classes of mutations in the nodD gene of Rhizobium leguminosarum biovar viciae that affect its ability to autoregulate and or activate other nod genes in the presence of flavonoid Inducers. Genes Dev. 1: 456464.
11. Canter Cremers, H. C.,, K. Stevens,, B. J. Lugtenberg,, C. A. Wijffelman,, M. Batley,, J. W. Redmond,, M. W. Breedveld, and, L. P. Zevenhuizen. 1991. Unusual structure of the exopolysaccharide of Rhizobium leguminosarum bv. viciae strain 248. Carbohydrate Res. 218: 185200.
12. Cantero, L.,, J. M. Palacios,, T. Ruiz-Argueso, and, J. Imperial. 2006. Proteomic analysis of quorum sensing in Rhizobium leguminosarum biovar viciae UPM791. Proteomics 6: S97S106.
13. Cha, C.,, P. Gao,, Y. C. Chen,, P. D. Shaw, and, S. K. Farrand. 1998. Production of acylhomoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 11: 11191129.
14. Chen, W. M.,, L. Moulin,, C. Bontemps,, P. Vandamme,, G. Bena, and, C. Boivin-Masson. 2003. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J. Bacteriol. 185: 72667272.
15. Chen, X. C.,, J. Feng,, B. H. Hou,, F. Q. Li,, Q. Li, and, G. F. Hong. 2005. Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res. 33: 25402548.
16. Cheng, H. P.,, and G. C. Walker. 1998. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180: 51835191.
17. Cubo, M. T.,, A. Economou,, G. Murphy,, A. W. Johnston, and, J. A. Downie. 1992. Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J. Bacteriol. 174: 40264035.
18. Daniels, R.,, D. E. De Vos,, J. Desair,, G. Raedschelders,, E. Luyten,, V. Rosemeyer,, C. Verreth,, E. Schoeters,, J. Vanderleyden, and, J. Michiels. 2002. The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J. Biol. Chem. 277: 462468.
19. Daniels, R.,, S. Reynaert,, H. Hoekstra,, C. Verreth,, J. Janssens,, K. Braeken,, M. Fauvart,, S. Beullens,, C. Heusdens,, I. Lambrichts,, D. E. De Vos,, J. Vanderleyden,, J. Vermant, and, J. Michiels. 2006. Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc. Natl. Acad. Sci. USA 103: 1496514970.
20. Daniels, R.,, J. Vanderleyden, and, J. Michiels. 2004. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 28: 261289.
21. Danino, V. E.,, A. Wilkinson,, A. Edwards, and, J. A. Downie. 2003. Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol. Microbiol. 50: 511525.
22. Deakin, W. J.,, C. Marie,, M. M. Saad,, H. B. Krishnan, and, W. J. Broughton. 2005. NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp strain NGR234. Mol. Plant-Microbe Interact. 18: 499507.
23. Denison, R. F.,, and E. T. Kiers. 2004. Lifestyle alternatives for rhizobia:mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol. Lett. 237: 187193.
24. Dibb, N. J.,, J. A. Downie, and, N. J. Brewin. 1984. Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum. J. Bacteriol. 158: 621627.
25. Dong, Y. H.,, L. H. Wang,, J. L. Xu,, H. B. Zhang,, X. F. Zhang, and, L. H. Zhang. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813817.
26. Dong, Y. H.,, J. L. Xu,, X. Z. Li, and, L. H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 35263531.
27. Downie, J. A. 1998. Functions of rhizobial nodulation genes, p. 387–402. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer, Dordrecht, The Netherlands.
28. Downie, J. A. 2005. Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules. Curr. Biol. 15: R196R198.
29. Dunn, A. K.,, and J. Handelsman. 2002. Toward an understanding of microbial communities through analysis of communication networks. Antonie Van Leeuwenhoek. 81: 565574.
30. Farrand, S. K. 1998. Conjugal plasmids and their transfer, p. 199–233. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, The Netherlands.
31. Feng, J.,, Q. Li,, H. L. Hu,, X. C. Chen, and, G. F. Hong. 2003. Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res. 31: 31433156.
32. Finnie, C.,, N. M. Hartley,, K. C. Findlay, and, J. A. Downie. 1997. The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Mol. Microbiol. 25: 135146.
33. Fisher, R. F.,, and S. R. Long. 1993. Interactions of NodD at the nod box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J. Mol. Biol. 233: 336348.
34. Fraysse, N.,, F. Couderc, and, V. Poinsot. 2003. Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur. J. Biochem. 270: 13651380.
35. Freiberg, C.,, R. Fellay,, A. Bairoch,, W. J. Broughton,, A. Rosenthal, and, X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394401.
36. Fuqua, C.,, M. Burbea, and, S. C. Winans. 1995. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J. Bacteriol. 177: 13671373.
37. Fuqua, C.,, M. R. Parsek, and, E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439468.
38. Gage, D. J. 2002. Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol. 184: 70427046.
39. Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68: 280300.
40. Galibert, F.,, T. M. Finan,, S. R. Long,, A. Pühler,, P. Abola,, F. Ampe,, F. Barloy-Hubler,, M. J. Barnett,, A. Becker,, P. Boistard,, G. Bothe,, M. Boutry,, L. Bowser,, J. Buhrmester,, E. Cadieu,, D. Capela,, P. Chain,, A. Cowie,, R. W. Davis,, S. Dreano,, N. A. Federspiel,, R. F. Fisher,, S. Gloux,, T. Godrie,, A. Goffeau,, B. Golding,, J. Gouzy,, M. Gurjal,, I. Hernandez-Lucas,, A. Hong,, L. Huizar,, R. W. Hyman,, T. Jones,, D. Kahn,, M. L. Kahn,, S. Kalman,, D. H. Keating,, E. Kiss,, C. Komp,, V. Lelaure,, D. Masuy,, C. Palm,, M. C. Peck,, T. M. Pohl,, D. Portetelle,, B. Purnelle,, U. Ramsperger,, R. Surzycki,, P. Thebault,, M. Vandenbol,, F. J. Vorholter,, S. Weidner,, D. H. Wells,, K. Wong,, K. C. Yeh, and, J. Batut. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668672.
41. Gao, M.,, H. Chen,, A. Eberhard,, M. R. Gronquist,, J. B. Robinson,, B. G. Rolfe, and, W. D. Bauer. 2005. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J. Bacteriol. 187: 79317944.
42. Gao, Y. J.,, Z. T. Zhong,, K. J. Sun,, H. Wang, and, J. Zhu. 2006. The quorum-sensing system in a plant bacterium Mesorhizobium huakuii affects growth rate and symbiotic nodulation. Plant Soil 286: 5360.
43. Giraud, E.,, L. Moulin,, D. Vallenet,, V. Barbe,, E. Cytryn,, J. C. Avarre,, M. Jaubert,, D. Simon,, F. Cartieaux,, Y. Prin,, G. Bena,, L. Hannibal,, J. Fardoux,, M. Kojadinovic,, L. Vuillet,, A. Lajus,, S. Cruveiller,, Z. Rouy,, S. Mangenot,, B. Segurens,, C. Dossat,, W. L. Franck,, W. S. Chang,, E. Saunders,, D. Bruce,, P. Richardson,, P. Normand,, B. Dreyfus,, D. Pignol,, G. Stacey,, D. Emerich,, A. Vermeglio,, C. Medigue, and, M. Sadowsky. 2007. Legumes symbioses: absence of nod genes in photosynthetic Bradyrhizobia. Science 316: 13071312.
44. Givskov, M.,, R. de Nys,, M. Manefield,, L. Gram,, R. Maximilien,, L. Eberl,, S. Molin,, P. D. Steinberg, and, S. Kjelleberg. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178: 66186622.
45. Glazebrook, J.,, and G. C. Walker. 1989. A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661672.
46. Glenn, S. A.,, N. Gurich,, M. A. Feeney, and, J. E. González. 2007. The ExpR/Sin quorum sensing system controls succinoglycan production in Sinorhizobium meliloti. J. Bacteriol. 189: 70777088.
47. González, J. E.,, and M. M. Marketon. 2003. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev. 67: 574592.
48. González, J. E.,, B. L. Reuhs, and, G. C. Walker. 1996. Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA 93: 86368641.
49. González, V.,, R. I. Santamaria,, P. Bustos,, I. Hernandez-González,, A. Medrano-Soto,, G. Moreno-Hagelsieb,, S. C. Janga,, M. A. Ramirez,, V. Jimenez-Jacinto,, J. Collado-Vides, and, G. Davila. 2006. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc. Natl. Acad. Sci. USA 103: 38343839.
50. Gray, K. M.,, J. P. Pearson,, J. A. Downie,, B. E. Boboye, and, E. P. Greenberg. 1996. Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 178: 372376.
51. He, X. S.,, W. Chang,, D. L. Pierce,, L. O. Seib,, J. Wagner, and, C. Fuqua. 2003. Quorum sensing in Rhizobium sp strain NGR234 regulates conjugal transfer ( tra) gene expression and influences growth rate. J. Bacteriol. 185: 809822.
52. Hoang, H. H.,, A. Becker, and, J. E. González. 2004. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J. Bacteriol. 186: 54605472.
53. John, M.,, H. Rohrig,, J. Schmidt,, U. Wieneke, and, J. Schell. 1993. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc. Natl. Acad. Sci. USA 90: 625629.
54. Johnston, A. W.,, J. L. Beynon,, A. V. Buchanan-Wollaston,, S. M. Setchell,, P. R. Hirsch, and, J. E. Beringer. 1978. High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature 276: 634636.
55. Johnston, A. W. B.,, G. Hombrecher,, N. J. Brewin, and, M. C. Cooper. 1982. Two transmissible plasmids in Rhizobium leguminosarum strain 300. J. Gen. Microbiol. 128: 8593.
56. Kaneko, T.,, Y. Nakamura,, S. Sato,, E. Asamizu,, T. Kato,, S. Sasamoto,, A. Watanabe,, K. Idesawa,, A. Ishikawa,, K. Kawashima,, T. Kimura,, Y. Kishida,, C. Kiyokawa,, M. Kohara,, M. Matsumoto,, A. Matsuno,, Y. Mochizuki,, S. Nakayama,, N. Nakazaki,, S. Shimpo,, M. Sugimoto,, C. Takeuchi,, M. Yamada, and, S. Tabata. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7: 331338.
57. Kaneko, T.,, Y. Nakamura,, S. Sato,, K. Minamisawa,, T. Uchiumi,, S. Sasamoto,, A. Watanabe,, K. Idesawa,, M. Iriguchi,, K. Kawashima,, M. Kohara,, M. Matsumoto,, S. Shimpo,, H. Tsuruoka,, T. Wada,, M. Yamada, and, S. Tabata. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9: 189197.
58. Keshavan, N. D.,, P. K. Chowdhary,, D. C. Haines, and, J. E. González. 2005. l-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J. Bacteriol. 187: 84278436.
59. Laus, M. C.,, T. J. Logman,, A. A. Van Brussel,, R. W. Carlson,, P. Azadi,, M. Y. Gao, and, J. W. Kijne. 2004. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J. Bacteriol. 186: 66176625.
60. Leadbetter, J. R.,, and E. P. Greenberg. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 69216926.
61. Leigh, J. A.,, E. R. Signer, and, G. C. Walker. 1985. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA 82: 62316235.
62. Lithgow, J. K.,, A. Wilkinson,, A. Hardman,, B. Rodelas,, F. Wisniewski-Dye,, P. Williams, and, J. A. Downie. 2000. The regulatory locus c inRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol. 37: 8197.
63. Lodwig, E. M.,, A. H. Hosie,, A. Bourdes,, K. Findlay,, D. Allaway,, R. Karunakaran,, J. A. Downie, and, P. S. Poole. 2003. Amino-acid cycling drives nitrogen fixation in the legume- Rhizobium symbiosis. Nature 422: 722726.
64. Loh, J.,, D. P. Lohar,, B. Andersen, and, G. Stacey. 2002. A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J. Bacteriol. 184: 17591766.
65. Loh, J.,, E. A. Pierson,, L. S. Pierson, 3rd,, G. Stacey, and, A. Chatterjee. 2002. Quorum sensing in plant-associated bacteria. Curr. Opin. Plant Biol. 5: 285290.
66. Loh, J.,, and G. Stacey. 2003. Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl. Environ. Microbiol. 69: 1017.
67. Loh, J. T.,, and G. Stacey. 2001. Feedback regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol. 41: 13571364.
68. Loh, J. T.,, J. P. Yuen-Tsai,, M. G. Stacey,, D. Lohar,, A. Welborn, and, G. Stacey. 2001. Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol. 42: 3746.
69. Luo, Z. Q.,, Y. Qin, and, S. K. Farrand. 2000. The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. J. Biol. Chem. 275: 77137722.
70. Madsen, E. B.,, L. H. Madsen,, S. Radutoiu,, M. Olbryt,, M. Rakwalska,, K. Szczyglowski,, S. Sato,, T. Kaneko,, S. Tabata,, N. Sandal, and, J. Stougaard. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425: 637640.
71. Manefield, M.,, T. B. Rasmussen,, M. Henzter,, J. B. Andersen,, P. Steinberg,, S. Kjelleberg, and, M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148: 11191127.
72. Marie, C.,, W. J. Deakin,, T. Ojanen-Reuhs,, E. Diallo,, B. Reuhs,, W. J. Broughton, and, X. Perret. 2004. TtsI, a key regulator of Rhizobium species, NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol. Plant-Microbe Interact. 17: 958966.
73. Marie, C.,, W. J. Deakin,, V. Viprey,, J. Kopcinska,, W. Golinowski,, H. B. Krishnan,, X. Perret, and, W. J. Broughton. 2003. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol. Plant-Microbe Interact. 16: 743751.
74. Marketon, M. M.,, S. A. Glenn,, A. Eberhard, and, J. E. González. 2003. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 185: 325331.
75. Marketon, M. M.,, and J. E. González. 2002. Identification of two quorum-sensing systems in Sinorhizobium meliloti. J. Bacteriol. 184: 34663475.
76. Marketon, M. M.,, M. R. Gronquist,, A. Eberhard, and, J. E. González. 2002. Characterization of the Sinorhizobium meliloti sinR/ sinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol. 184: 56865695.
77. Matthysse, A. G.,, and J. W. Kijne. 1998. Attachment of Rhizobiaceae to plant cells, p. 135–249. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer Academic, Dordrecht, The Netherlands.
78. McAnulla, C.,, A. Edwards,, M. Sanchez-Contreras,, R. G. Sawers, and, J. A. Downie. 2007. Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology 153: 20742082.
79. Mercado-Blanco, J.,, and N. Toro. 1996. Plasmids in rhizobia: the role of nonsymbiotic plasmids. Mol. Plant-Microbe Interact. 9: 535545.
80. Mergaert, P.,, M. Ferro,, W. Dhaeze,, M. Van Montagu,, M. Holsters, and, J. C. Prome. 1997. Nod factors of Azorhizobium caulinodans strain ORS571 can be glycosylated with an arabinosyl group, a fucosyl group, or both. Mol. Plant-Microbe Interact. 10: 683687.
81. Mergaert, P.,, T. Uchiumi,, B. Alunni,, G. Evanno,, A. Cheron,, O. Catrice,, A. E. Mausset,, F. Barloy-Hubler,, F. Galibert,, A. Kondorosi, and, E. Kondorosi. 2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. USA 103: 52305235.
82. Miller, L. D.,, C. K. Yost,, M. F. Hynes, and, G. Alexandre. 2006. The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol. Microbiol. 63: 348362.
83. Miwa, H.,, J. Sun,, G. E. Oldroyd, and, J. A. Downie. 2006. Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J. 48: 883894.
84. Monahan-Giovanelli, H.,, C. A. Pinedo, and, D. J. Gage. 2006. Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium meliloti on Medicago truncatula. Plant Physiol. 140: 661670.
85. Morrison, N.,, and D. P. S. Verma. 1987. A block in endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins. Plant Mol. Biol. 9: 185196.
86. Niehaus, K.,, D. Kapp, and, A. M. Pühler. 1993. Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti. Planta 190: 415425.
87. O’Neill, M. A.,, A. G. Darvill, and, P. Albersheim. 1991. The degree of esterification and points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli are not related to host range. J. Biol. Chem. 266: 95499555.
88. Oldroyd, G. E.,, and J. A. Downie. 2004. Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell Biol. 5: 566576.
89. Oresnik, I. J.,, L. A. Pacarynuk,, S. A. P. O’Brien,, C. K. Yost, and, M. F. Hynes. 1998. Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant-Microbe Interact. 11: 11751185.
90. Pellock, B. J.,, H. P. Cheng, and, G. C. Walker. 2000. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccha-rides. J. Bacteriol. 182: 43104318.
91. Pellock, B. J.,, M. Teplitski,, R. P. Boinay,, W. D. Bauer, and, G. C. Walker. 2002. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol. 184: 50675076.
92. Perez-Mendoza, D.,, M. Lucas,, S. Munoz,, J. A. Herrera-Cervera,, J. Olivares,, F. de la Cruz, and, J. Sanjuan. 2006. The relaxase of the Rhizobium etli symbiotic plasmid shows nic site cis-acting preference. J. Bacteriol. 188: 74887499.
93. Perez-Mendoza, D.,, E. Sepulveda,, V. Pando,, S. Munoz,, J. Nogales,, J. Olivares,, M. J. Soto,, J. A. Herrera-Cervera,, D. Romero,, S. Brom, and, J. Sanjuan. 2005. Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J. Bacteriol. 187: 73417350.
94. Perret, X.,, C. Staehelin, and, W. J. Broughton. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64: 180201.
95. Piper, K. R.,, and S. K. Farrand. 2000. Quorum sensing but not autoinduction of Ti plasmid conjugal transfer requires control by the opine regulon and the antiactivator TraM. J. Bacteriol. 182: 10801088.
96. Piper, K. R.,, S. B. von Bodman,, I. Hwang, and, S. K. Farrand. 1999. Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium. Mol. Microbiol. 32: 10771089.
97. Pongsilp, N.,, E. W. Triplett, and, M. J. Sadowsky. 2005. Detection of homoserine lactone-like quorum sensing molecules in Bradyrhizobium strains. Curr. Microbiol. 51: 250254.
98. Poole, P.,, and D. Allaway. 2000. Carbon and nitrogen metabolism in Rhizobium. Adv. Microb. Physiol. 43: 117163.
99. Pueppke, S. G.,, and W. J. Broughton. 1999. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant-Microbe Interact. 12: 293318.
100. Ramey, B. E.,, M. Koutsoudis,, S. B. von Bodman, and, C. Fuqua. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7: 602609.
101. Ramsay, J. P.,, J. T. Sullivan,, G. S. Stuart,, I. L. Lamont, and, C. W. Ronson. 2006. Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol. Microbiol. 62: 723734.
102. Rodelas, B.,, J. K. Lithgow,, F. Wisniewski-Dye,, A. Hardman,, A. Wilkinson,, A. Economou,, P. Williams, and, J. A. Downie. 1999. Analysis of quorum-sensing-dependent control of rhizosphere-expressed ( rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol. 181: 38163823.
103. Rosemeyer, V.,, J. Michiels,, C. Verreth, and, J. Vanderleyden. 1998. luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol. 180: 815821.
104. Sanchez-Contreras, M.,, W. D. Bauer,, M. Gao,, J. B. Robinson, and, J. A. Downie. 2007. Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Phil. Trans. R. Soc. B 362: 11491163.
105. Sawada, H.,, L. D. Kuykendall, and, J. M. Young. 2003. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Appl. Microbiol. 49: 155179.
106. Schlaman, H. R. M.,, D. A. Phillips, and, K. E. 1998. Genetic organisation and transcriptional regulation of rhizobial nodulation genes, p. 361–386. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, The Netherlands.
107. Schripsema, J.,, K. E. E. deRudder,, T. B. van-Vliet,, P. P. Lankhorst,, E. deVroom,, J. W. Kijne, and, A. A. N. vanBrussel. 1996. Bacteriocin small of Rhizobium leguminosarium belongs to the class of N-acyl-1-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol. 178: 366371.
108. Sielberer, B. J.,, A. C. J. Timmers, and, A. M. C. Emons. 2005. Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. Mol. Plant-Microbe Interact. 18: 11951204.
109. Skorpil, P.,, M. M. Saad,, N. M. Boukli,, H. Kobayashi,, F. Ares-Orpel,, W. J. Broughton, and, W. J. Deakin. 2005. NopP, a phosphorylated effector of Rhizobium sp strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol. Microbiol. 57: 13041317.
110. Skorupska, A.,, M. Janczarek,, M. Marczak,, A. Mazur, and, J. Krol. 2006. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5: 7.
111. Sourjik, V.,, P. Muschler,, B. Scharf, and, R. Schmitt. 2000. VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium ( Rhizobium) meliloti. J. Bacteriol. 182: 782788.
112. Spaink, H. P. 2000. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol. 54: 257288.
113. Sullivan, J. T.,, H. N. Patrick,, W. L. Lowther,, D. B. Scott, and, C. W. Ronson. 1995. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl. Acad. Sci. USA 92: 89858989.
114. Sullivan, J. T.,, and C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-t RNA gene Proc. Natl. Acad. Sci. USA 95: 51455149.
115. Sullivan, J. T.,, J. R. Trzebiatowski,, R. W. Cruickshank,, J. Gouzy,, S. D. Brown,, R. M. Elliot,, D. J. Fleetwood,, N. G. McCallum,, U. Rossbach,, G. S. Stuart,, J. E. Weaver,, R. J. Webby,, F. J. de Bruijn, and, C. W. Ronson. 2002. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J. Bacteriol. 184: 30863095.
116. Sutton, J. M.,, E. J. Lea, and, J. A. Downie. 1994. The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc. Natl. Acad. Sci. USA 91: 99909994.
117. Teplitski, M.,, A. Eberhard,, M. R. Gronquist,, M. Gao,, J. B. Robinson, and W. D. Bauer. 2003. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch. Microbiol. 180: 494497.
118. Teplitski, M.,, J. B. Robinson, and, W. D. Bauer. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant–Microbe Interact. 13: 637648.
119. Thorne, S. H.,, and H. D. Williams. 1999. Cell density-dependent starvation survival of Rhizobium leguminosarum bv. phaseoli: identification of the role of an N-acyl homoserine lactone in adaptation to stationary-phase survival. J. Bacteriol. 181: 981990.
120. Truchet, G.,, P. Roche,, P. Lerouge,, J. Vasse,, S. Camut,, F. Debilly,, J. C. Prome, and, J. Denarie. 1991. Sulfated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670673.
121. Tun-Garrido, C.,, P. Bustos,, V. Gonzalez, and, S. Brom. 2003. Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J. Bacteriol. 185: 16811692.
122. Tzfira, T.,, and V. Citovsky. 2002. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12: 121129.
123. Udvardi, M. K.,, and D. A. Day. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 493523.
124. Urzainqui, A.,, and G. C. Walker. 1992. Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants. J. Bacteriol. 174: 34033406.
125. Vannini, A.,, C. Volpari, and, S. Di Marco. 2004. Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J. Biol. Chem. 279: 2429124296.
126. Vannini, A.,, C. Volpari,, C. Gargioli,, E. Muraglia,, R. Cortese,, R. De Francesco,, P. Neddermann, and, S. D. Marco. 2002. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 21: 43934401.
127. Walker, S. A.,, and J. A. Downie. 2000. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol. Plant-Microbe Interact. 13: 754762.
128. Wang, H.,, Z. T. G. Zhong,, T. Cai,, S. P. Li, and, J. Zhu. 2004. Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch. Microbiol. 182: 520525.
129. White, C. E.,, and S. C. Winans. 2007. Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Phil. Trans. R. Soc. Lond. B 362: 11351148.
130. Wielbo, J.,, A. Mazur,, J. Krol,, M. Marczak,, J. Kutkowska, and, A. Skorupska. 2004. Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Arch. Microbiol. 182: 331336.
131. Wilkinson, A.,, V. Danino,, F. Wisniewski-Dye,, J. K. Lithgow, and, J. A. Downie. 2002. N-acylhomoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J. Bacteriol. 184: 45104519.
132. Wisniewski-Dye, F.,, J. Jones,, S. R. Chhabra, and, J. A. Downie. 2002. raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J. Bacteriol. 184: 15971606.
133. Young, J. P. W.,, L. C. Crossman,, A. W. B. Johnston,, N. R. Thomson,, Z. F. Ghazoui,, K. H. Hull,, M. Wexler,, A. R. J. Curson,, J. D. Todd,, P. S. Poole,, T. H. Mauchline,, A. K. East,, M. A. Quail,, C. Churcher,, C. Arrow-smith,, I. Cherevach,, T. Chillingworth,, K. Clarke,, A. Cronin,, P. Davis,, A. Fraser,, Z. Hance,, H. Hauser,, K. Jagels,, S. Moule,, K. Mungall,, H. Norbertczak,, E. Rabbinowitsch,, M. Sanders,, M. Simmonds,, S. Whitehead, and, J. Parkhill. 2006. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7: R34. [Online.] http://genomebiology.com/2006/7/4/R34.
134. Yuen, J. P.-Y.,, and G. Stacey. 1996. Inhibition of nod gene expression in Bradyrhizobium japonicum by organic acids. Mol. Plant-Microbe Interact. 9: 424428.
135. Zhang, L. H. 2003. Quorum quenching and proactive host defense. Trends Plant Sci. 8: 238244.
136. Zhang, R. G.,, T. Pappas,, J. L. Brace,, P. C. Miller,, T. Oulmassov,, J. M. Molyneaux,, J. C. Anderson,, J. K. Bashkin,, S. C. Winans, and, A. Joachimiak. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971974.
137. Zheng, H.,, Z. Zhong,, X. Lai,, W. X. Chen,, S. Li, and, J. Zhu. 2006. A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J. Bacteriol. 188: 19431949.
138. Zheng, H. M.,, Z. T. Zhong,, X. Lai,, W. X. Chen,, S. P. Li, and, J. Zhu. 2006. A LuxR/ LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J. Bacteriol. 188: 19431949.
139. Zhu, J.,, and S. C. Winans. 1999. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl. Acad. Sci. USA 96: 48324837.
140. Zhu, J.,, and S. C. Winans. 2001. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl. Acad. Sci. USA 98: 15071512.


Generic image for table

Rhizobial quorum-sensing systems

Citation: Downie J, González J. 2008. Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling, p 213-232. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error