Chapter 16 : Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap16-2.gif


This chapter provides an overview of dissemination mechanisms of genes coding for resistance to antibiotics. The emergence of antibiotic resistance determinants would not be as devastating if it were not for the inherent ability of bacteria to exchange genes at the cellular and molecular level. A plasmid genome database containing all sequenced plasmids was recently established. While plasmids participate in bacterial antibiotic resistance mainly by disseminating genes coding for drug resistance at the cellular level, other elements promote gene exchange at the molecular level. Integrative and conjugative elements (ICEs) encode diverse excision, recombination, and conjugation systems, in addition to specific functions, including resistance to antibiotics. The combination of dissemination at the cellular level through conjugation, natural transformation, transduction, with dissemination at the molecular level, and mutagenesis permits genes coding for antibiotic resistance to reach virtually all bacterial cells, resulting in a virtual elimination of barriers between types of bacteria. However, while the acquisition of resistance genes provides an advantage to the bacterial cells when in the presence of antibiotics, it has been shown that their presence comes with an associated fitness cost when the cells are growing in the absence of antibiotic selective pressure.

Citation: Tolmasky M. 2007. Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics, p 267-270. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch16

Key Concept Ranking

Mobile Genetic Elements
Integrative and Conjugative Elements
Genetic Elements
Insertion Sequences
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Actis, L. A.,, M. E. Tolmasky, and, J. H. Crosa. 1999. Bacterial plasmids: replication of extrachromosomal genetic elements encoding resistance to antimicrobial compounds. Front Biosci 4: D43- D62.
2. Andersson, D. I. 2003. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6: 452456.
3. Andersson, D. I., and, B. R. Levin. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489493.
4. Burrus, V., and, M. K. Waldor. 2004. Formation of SXT tandem arrays and SXT-R391 hybrids. J. Bacteriol. 186: 26362645.
5. Churchward, G. 2002. Conjugative transposons and related mobile elements, p. 177191. In N. Craig,, R. Craigie,, M. Gellert, and, A. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
6. Cohen, S. 1993. Bacterial plasmids: their extraordinary contribution to molecular genetics. Gene 135: 6776.
7. Colloms, S. D.,, R. McCulloch,, K. Grant,, L. Neilson, and, D. J. Sherratt. 1996. Xer-mediated site-specific recombination in vitro. EMBO J. 15: 11721181.
8. Craig, N.,, R. Craigie,, M. Gellert, and, A. Lambowitz (ed.). 2002. Mobile DNA II, 2nd ed. ASM Press, Washington, D.C.
9. Davies, J. 1997. Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found. Symp. 207: 1527.
10. Easter, C. L.,, H. Schwab, and, D. R. Helinski. 1998. Role of the parCBA operon of the broad-host-range plasmid RK2 in stable plasmid maintenance. J. Bacteriol. 180: 60236030.
11. Falkow, S.,, R. Citarella,, J. Wohlhieter, and, T. Watanabe. 1966. The molecular nature of R factors. J. Mol. Biol. 17: 102116.
12. Funnell, B., and, G. Phillips (ed.). 2004. Plasmid Biology. ASM Press, Washington, D.C.
13. Helinski, D.,, A. Toukdarian, and, R. Novick. 1996. Replication control and other stable maintenance mechanisms of plasmids, p. 22952324. In F. Neidhardt,, R. Curtis III,, J. Ingraham,, E. Lin,, K. Low,, B. Magasanik,, W. Rezikoff,, M. Riley,, M. Schaechter, and, H. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C.
14. Hochhut, B.,, Y. Lotfi,, D. Mazel,, S. M. Faruque,, R. Woodgate, and, M. K. Waldor. 2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45: 29913000.
15. Karchmer, A. W. 2004. Increased antibiotic resistance in respiratory tract pathogens: PROTEKT US—an update. Clin. Infect. Dis. 39(Suppl. 3): S142S150.
16. Kim, C.,, J. Y. Cha,, H. Yan,, S. B. Vakulenko, and, S. Mobashery. 2006. Hydrolysis of ATP by aminoglycoside 3′-phosphotransferases: an unexpected cost to bacteria for harboring an antibiotic resistance enzyme. J. Biol. Chem. 281: 69646969.
17. Lederberg, J. 1952. Cell genetics and hereditary symbiosis. Physiol. Rev. 32: 403430.
18. Lederberg, J., and, E. Tatum. 1946. Gene recombination in Escherichia coli. Nature 158: 558.
19. Levy, S. 2002. The Antibiotic Paradox. How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd ed. Perseus Publishing, Cambridge, Mass.
20. Liebert, C. A.,, R. M. Hall, and, A. O. Summers. 1999. Trans-poson Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63: 507522.
21. Luo, N.,, S. Pereira,, O. Sahin,, J. Lin,, S. Huang,, L. Michel, and, Q. Zhang. 2005. Enhanced in vivo fitness of fluoro-quinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 102: 541546.
22. Mazel, D.,, B. Dychinco,, V. Webb, and, J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605608.
23. Mølbak, L.,, A. Tett,, D. Ussery,, K. Wall,, S. Turner,, M. Balley, and, D. Field. 2003. The plasmid genome database. Microbiology 149: 30433045.
24. Pembroke, J.,, C. MacMahon, and, B. McGrath. 2002. The role of conjugative tranposons in Enterobacteriaceae. Cell. Mol. Life Sci. 59: 20552064.
25. Recchia, G., and, D. Sherratt. 2002. Gene acquisition in bacteria by integron-mediated site-specific recombination, p. 162176. In N. Craig,, R. Craigie,, M. Gellert, and, A. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
26. Rice, L. 2002. Association of different mobile elements to generate novel integrative elements. Cell. Mol. Life Sci. 59: 20232032.
27. Rowe-Magnus, D.,, A. Guerot,, P. Ploncard,, B. Dychinco, and, J. Davies. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA 98: 652657.
28. Rowe-Magnus, D., and, D. Mazel. 1999. Resistance gene capture. Curr. Opin. Microbiol. 2: 483488.
29. Rownd, R.,, N. Nakaya, and, A. Nakamura. 1966. Molecular nature of the drug-resistance fators of the Enterobacteriaceae. J. Mol. Biol. 17: 376393.
30. Salyers, A., and, N. Shoemaker. 1997. Conjugative tran-sposons, p. 8999. In K. Setlow (ed.), Genetic Engineering, vol. 19. Plenum Press, New York, N.Y.
31. Sander, P.,, B. Springer,, T. Prammananan,, A. Sturmfels,, M. Kappler,, M. Pletschette, and, E. C. Bottger. 2002. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents. Chemother. 46: 12041211.
32. Sherratt, D.,, P. Dyson,, M. Boocock,, L. Brown,, D. Summers,, G. Stewart, and, P. Chan. 1984. Site-specific recombination in transposition and plasmid stability. Cold Spring Harb. Symp. Quant. Biol. 49: 227233.
33. Smolinski, M.,, M. Hamburg, and, J. Lederberg (ed.). 2003. Microbial Threats to Health; Emergence, Detection, and Response. The National Academies Press, Washington, D.C.
34. Stokes, M., and, R. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3: 16691683.
35. Summers, D. 1996. The Biology of Plasmids. Blackwell Science Ltd., Oxford, United Kingdom.
36. Summers, D. K., and, D. J. Sherratt. 1984. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36: 10971103.
37. Tenover, F. C. 2001. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin. Infect. Dis. 33(Suppl. 3): S108S115.
38. Watanabe, T., and, T. Fukasawa. 1962. Episome-mediated transfer of drug resistance in Enterobacteriaceae IV. Interactions between resistance transfer factor and F-factor in Escherichia coli K-12. J. Bacteriol. 83: 727735.
39. Watanabe, T., and, T. Fukasawa. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J. Bacteriol. 81: 669678.
40. Weber, J. T., and, P. Courvalin. 2005. An emptying quiver: antimicrobial drugs and resistance. Emerg. Infect. Dis. 11: 791793.
41. Zinder, N., and, J. Lederberg. 1952. Genetic exchange in Salmonella. J. Bacteriol. 64: 679699.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error