Chapter 19 : Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap19-2.gif


This chapter focuses on the proteic toxin-antitoxin (TA) systems. TA systems function as vitally important regulatory systems in bacteria and represent ideal targets for the development of novel antibiotic therapeutic agents. A broad mechanistic understanding of TA systems at physiological, biochemical, biophysical, and structural levels provides the scientific framework needed both for rational drug design and for elegant selection schemes using large pools of compounds. The proteins of chromosome-encoded TA systems (, , and ) from gram-negative bacteria, namely, CcdA-CcdB, Phd-Doc, ParD-ParE, YefM-YoeB, and one system from a plasmid from a G+ bacterium, have been studied in vitro with respect to their properties in solution and binding to DNA. The chapter summarizes the knowledge accumulated on these proteins. Pathogenic bacteria are subjected to an enormous selective pressure because of the indiscriminate overuse and misuse of broad-spectrum antibiotics. The recognition of the importance of protein-protein interactions within the cell has led to their investigation as targets for novel inhibitors. Here, the approaches that can be used for screening of inhibitors of protein-protein interactions are highlighted by recent research on the TA systems. The chapter focuses on two resonance energy transfer techniques, namely, fluorescent resonance energy transfer (FRET) and, especially, bioluminescence resonance energy transfer (BRET), since they have demonstrated to be highly useful for studying interactions between two proteins that have been shown to form complexes.

Citation: Alonso J, Balsa D, Cherny I, Christensen S, Espinosa M, Francuski D, Gazit E, Gerdes K, Hitchin E, Martín M, Nieto C, Overweg K, Pellicer T, Saenger W, Welfle H, Welfle K, Wells J. 2007. Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics, p 313-329. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 19.1
Figure 19.1

(Right) Three-dimensional structures of homodimeric toxins Kid and CcdB; α-helices are shown as spirals and β-strands are shown as arrows (7, 20; PDB codes 1VUB [ ] and 1M1F [ ]). The noncrystallographic twofold axes relating the monomers are vertical to the paper plane and indicated by ellipses, β-strands are numbered, N and C termini are labeled, and a and b mark the positions where loops are disordered and not seen in the electron density. (Left) The TA complex MazF-MazE-MazF (PDB code 1UB4 [ ]) has twofold crystallographic symmetry indicated by the ellipse in the center of MazE. The orientation of the two MazF is similar to that of CcdB and Kid in order to illustrate their structural homology. β-Strands of MazF and MazE are numbered, and α-helices of MazE are labeled α1 and α2; α-helices and loops of MazE are drawn darker than for MazF. The MazE C termini (one is labeled C) bind to the two MazF homodimers. The loop between β-strands β1 and β2 in MazF is disordered (labeled d) and not seen in the electron density. The sequence of α-helices and β-strands is β1-β2-α1-β3-β5-β6-α2-β7-α3 in Kid and MazF, and in CcdB α1 is shifted and located between β5 and β6. For MazE the sequence is β1-β2-α1-β3-β4-α2.

Citation: Alonso J, Balsa D, Cherny I, Christensen S, Espinosa M, Francuski D, Gazit E, Gerdes K, Hitchin E, Martín M, Nieto C, Overweg K, Pellicer T, Saenger W, Welfle H, Welfle K, Wells J. 2007. Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics, p 313-329. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.2
Figure 19.2

(Top) Topography of ε and ζ. α-Helices are indicated by circles and labeled a to c in ε and A to L in ζ. The polarity of β-strands (large numbers) is given by up and down pointing triangles, and small numbers mark positions in amino acid sequences. (Bottom) Three-dimensional dumbbell-shaped structure of complex εζ (PDB code 1gvn). α-Helices and β-strands are labeled as in the top panel. The noncrystallographic twofold axis relating εζ dimers in the heterotetrameric εζ complex is indicated by a vertical line; termini are labeled N, C, and C′.

Citation: Alonso J, Balsa D, Cherny I, Christensen S, Espinosa M, Francuski D, Gazit E, Gerdes K, Hitchin E, Martín M, Nieto C, Overweg K, Pellicer T, Saenger W, Welfle H, Welfle K, Wells J. 2007. Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics, p 313-329. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.3
Figure 19.3

Putative active site of ζ ( ). Functional amino acids are drawn and labeled, ATP and the essential Mg are modeled according to the structure of Cmp, and the binding site for the yet unknown substrate is indicated by an ellipse.

Citation: Alonso J, Balsa D, Cherny I, Christensen S, Espinosa M, Francuski D, Gazit E, Gerdes K, Hitchin E, Martín M, Nieto C, Overweg K, Pellicer T, Saenger W, Welfle H, Welfle K, Wells J. 2007. Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics, p 313-329. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agrafiotis, D. K.,, J. C. Myslik, and, F. R. Salemme. 1999. Advances in diversity profiling and combinatorial series design. Mol. Divers. 4: 122.
2. Arai, R.,, H. Nakagawa,, K. Tsumoto,, W. Mahoney,, I. Kumagai,, H. Ueda, and, T. Nagamune. 2001. Demon stration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer. Anal. Biochem. 289: 7781.
3. Babcock, G. J.,, M. Farzan, and, J. Sodroski. 2003. Ligand-independent dimerization of CXCT4, a principal HIV co-receptor. J. Biol. Chem. 278: 33783385.
4. Baler, R. 2001. Clockless yeast and the gears of the clock: how do they mesh? J. Biol. Rhythms 16: 516522.
5. Bartlett, J. G.,, R. F. Breiman,, L. Mandell, and, T. M. File. 1998. Community-acquired pneumonia in adults: guidelines for management. Clin. Infect. Dis. 26: 811838.
6. Bernard, P., and, M. Couturier. 1992. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226: 735745.
7. Bernard, P.,, K. E. Kezdy,, L. van Melderen,, L. Steyaert,, L. Wyns,, M. L. Pato,, P. N. Higgins, and, M. Couturier. 1993. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J. Mol. Biol. 234: 534541.
8. Boute, N.,, R. Jockers, and, T. Issad. 2002. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 23: 351354.
9. Camacho, A. G.,, R. Misselwitz,, J. Behlke,, S. Ayora,, K. Welfle,, A. Meinhart,, B. Lara,, W. Saenger,, H. Welfle, and, J. C. Alonso. 2002. In vitro and in vivo stability of the epsi-lon2zeta2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system. Biol. Chem. 383: 17011713.
10. Ceglowski, P.,, A. Boitsov,, S. Chai, and, J. C. Alonso. 1993. Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene 136: 112.
11. Cherny, I., and, E. Gazit. 2004. The YefM antitoxin defines a family of natively unfolded proteins: implications as a novel antibacterial target. J. Biol. Chem. 279: 82528261.
12. Cherny, I.,, L. Rockah, and, E. Gazit. 2005. The YoeB toxin is a folded protein that forms a physical complex with the unfolded YefM antitoxin: implications for a structural-based differential stability of toxin-antitoxin systems. J. Biol. Chem. 280: 3006330072.
13. Christensen, S. K.,, G. Maenhauf-Michel,, N. Mine,, S. Gothesman,, K. Gerdes, and, L. Van Melderen. 2004. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM- yoeB toxin-antitoxin system. Mol. Microbiol. 51: 17051717.
14. Christensen, S. K., and, K. Gerdes. 2004. Delayed-relaxed response explained by hyperactivation of RelE. Mol. Micro-biol. 53: 587597.
15. Christensen, S. K., and, K. Gerdes. 2003. RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48: 13891400.
16. Christensen, S. K.,, M. Mikkelsen,, K. Pedersen, and, K. Gerdes. 2001. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc. Natl. Acad. Sci. USA 98: 1432814333.
17. Christensen, S. K.,, K. Pedersen,, F. G. Hansen, and, K. Gerdes. 2003. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J. Mol. Biol. 332: 809819.
18. Christensen-Dalsgaard, M., and, K. Gerdes. 2006. Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol. Microbiol. 62: 397411.
19. Condon, C. 2006. Shutdown decay of mRNA. Mol. Micro-biol. 61: 573583.
20. Couturier, M.,, M. Bahassiel, and, L. van Melderen. 1998. Bacterial death by gyrase poisoning. Trends Microbiol. 6: 269275.
21. Dao-Thi, M.-H.,, D. Charlier,, R. Loris,, D. Maes,, J. Messens,, L. Wyns, and, J. Backmann. 2002. Intricate interactions within the ccd plasmid addiction system. J. Biol. Chem. 277: 37333742.
22. Dao-Thi, M.-H.,, J. Messens,, L. Wyns, and, J. Backmann. 2000. The thermodynamic stability of the proteins of the ccd plasmid addiction system. J. Mol. Biol. 299: 13731386.
23. de la Hoz, A. B.,, F. Pratto,, R. Misselwitz,, C. Speck,, W. Weihofen,, K. Welfle,, W. Saenger,, H. Welfle, and, J. C. Alonso. 2004. Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. Nucleic Acids Res. 32: 31363147.
24. Dostál, L.,, R. Misselwitz,, S. Laettig,, J. C. Alonso, and, H. Welfle. 2003. Raman spectroscopy of regulatory protein Omega from Streptococcus pyogenes plasmid pSM19035 and complexes with operator DNA. Spectroscopy 17: 435445.
25. Dostál, L.,, F. Pratto,, J. C. Alonso, and, H. Welfle. Binding of regulatory protein Omega from Streptococcus pyogenes plasmid pSM19035 to direct and inverted 7-base pair repeats of operator DNA. J. Raman Spectrosc. in press.
26. Eidne, K. A.,, K. M. Kroeger, and, A. V. Hanyaloglu. 2002. Application of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol. Metabol. 13: 415421.
27. Engelberg-Kulka, H., and, G. Glaser. 1999. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53: 4370.
28. Gazit, E., and, R. T. Sauer. 1999. The Doc toxin and the Phd antidote proteins of the bacteriophage P1 plasmid addiction system form a heterotrimeric complex. J. Biol. Chem. 274: 1681316818.
29. Gazit, E., and, R. T. Sauer. 1999. Stability and DNA binding of the Phd protein of the phage P1 plasmid addiction system. J. Biol. Chem. 274: 26522657.
30. Gerdes, K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182: 561572.
31. Gerdes, K.,, S. Ayora,, I. Canosa,, P. Ceglowski,, R. Díaz-Orejas,, T. Franch,, A. P. Gultyaev,, R. Bugge Jensen,, I. Kobayashi,, C. Macpherson,, D. Summers,, C. M. Thomas, and, U. Zielenkiewicz. 2000. Bacterial plasmids and gene spread, p. 4985. In C. M. Thomas (ed.), The Horizontal Gene Pool. Harwood Academic Publishers, Amsterdam, The Netherlands.
32. Gerdes, K.,, K. S. Christensen, and, A. Lobner-Olensen. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3: 371382.
33. Gerdes, K.,, A. P. Gultyaev,, T. Franch,, K. Pedersen, and, N. D. Mikkelsen. 1997. Antisense RNA-regulated programmed cell death. Annu. Rev. Genet. 31: 131.
34. Germain-Desprez, D.,, M. Bazinet,, M. Bouvier, and, M. Aubry. 2003. Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. J. Biol. Chem. 278: 2236722373.
35. Gotfredsen, M., and, K. Gerdes. 1998. The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol. Microbiol. 29: 10651076.
36. Grady, R., and, F. Hayes. 2003. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol. 47: 14191432.
37. Gronlund, H., and, K. Gerdes. 1999. Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J. Mol. Biol. 285: 14011415.
38. Hargreaves, D.,, S. Santos-Sierra,, R. Giraldo,, R. Sabariegos-Jareño,, G. de la Cueva-Méndez,, R. Boelens,, R. Díaz-Orejas, and, J. B. Rafferty. 2002. Structural and functional analysis of the Kid toxin protein from E. coli plasmid R1. Structure 10: 14251433.
39. Huttner, K. M., and, C. L. Bevins. 1999. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res. 45: 785794.
40. Issad, T.,, N. Boute, and, K. Pernet. 2002. A homologous assay to monitor the activity of the insulin receptor using bioluminescence resonance energy transfer. Biochem. Pharmacol. 64: 813817.
41. Izard, T., and, J. Ellis. 2000. The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism. EMBO J. 11: 26902700.
42. Jensen, R. B., and, K. Gerdes. 1995. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17: 205210.
43. Jiang, Y.,, J. Pogliano,, D. R. Helinski, and, I. Konieczny. 2002. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44: 971979.
44. Johnson, E. P.,, A. R. Ström, and, D. R. Helinski. 1996. Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J. Bacteriol. 178: 14201429.
45. Kamada, K., and, F. Hanaoka. 2005. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol. Cell 19: 497509.
46. Kamada, K.,, F. Hanaoka, and, S. K. Burley. 2003. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11: 875884.
47. Kamphuis, M. B.,, A. M. J. J. Bonvin,, M. C. Monti,, M. Lemonnier,, A. Muñoz-Gómez,, R. H. H. van den Heuvel,, R. Díaz-Orejas, and, R. Boelens. 2006. Model for RNA binding and the catalytic site of the RNase Kid of the bacterial parD toxin-antitoxin system. J. Mol. Biol. 357: 115126.
48. Kamphuis, M. B.,, M. C. Monti,, R. H. H. van den Heuvel,, S. Santos-Sierra,, G. E. Folkers,, M. Lemonnier,, R. Díaz-Orejas,, A. J. R. Heck, and, R. Boelens. Interactions between the toxin Kid of the bacterial parD system and the antitoxins Kis and MazE. Proteins, in press.
49. Karzai, A. W.,, E. D. Roche, and, R. T. Sauer. 2000. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7: 449455.
50. Karzai, A. W.,, M. M. Susskind, and, R. T. Sauer. 1999. SmpB, a unique RNA-binding protein essential for peptide-tagging activity of SsrA (tmRNA). EMBO J. 18: 37933799.
51. Kirkpatrick, D. L.,, S. Watson, and, S. Ulhaq. 1999. Structure-cased drug design: combinatorial chemistry and molecular modeling. Comb. Chem. High Throughput Screen. 2: 211221.
52. Lawrence, J. G. 1999. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9: 642648.
53. Lehnherr, H., and, M. B. Yarmolinsky. 1995. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 32743277.
54. Lemonnier, M.,, S. Santos-Sierra,, C. Pardo-Abarrio, and, R. Díaz-Orejas. 2004. Identification of residues of the Kid toxin involved in autoregulation of the parD system. J. Bacteriol. 186: 240243.
55. Li, H.,, E. Ng,, S. Lee,, M. Kotaka,, S. Tsui,, C. Lee,, K. Fung, and, M. Waye. 2001. Protein-protein interaction of FHL3 with FHL2 and visualization of their interaction by green fluorescent proteins (GFP) two-fusion fluorescence resonance energy transfer (FRET). J. Cell. Biochem. 80: 293303.
56. Lioy, V. S.,, M. T. Martin,, A. G. Camacho,, R. Lurz,, H. Antelmann,, M. Hecker,, E. Hitchin,, Y. Ridge,, J. M. Wells, and, J. C. Alonso. 2006. pSM19035-encoded {zeta} toxin induces stasis followed by death in a subpopulation of cells. Microbiology 152: 23652379.
57. Loris, R.,, M.-H. Dao Thi,, L. Bahassi,, L. Van Melderen,, F. Poortmans,, R. Liddington,, M. Couturier, and, L. Wyns. 1999. Crystal structure of CcdB, a topoisomerase poison from E. coli. J. Mol. Biol. 285: 16671677.
58. Madl, T.,, L. van Melderen,, N. Mine,, M. Respondek,, M. Oberer,, W. Keller,, L. Khatai, and, K. Zangger. 2006. Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. J. Mol. Biol. 364: 170185.
59. Magnuson, R.,, H. Lehnherr,, G. Mukhopadhyay, and, M. B. Yarmolinsky. 1996. Autoregulation of the plasmid addiction operon of bacteriophage P1. J. Biol. Chem. 271: 1870518710.
60. Maki, S.,, S. Takiguchi,, T. Miki, and, T. Horiuchi. 1992. Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. J. Biol. Chem. 267: 1224412251.
61. Marianovsky, I.,, E. Aizenman,, H. Engelberg-Kulka, and, G. Glaser. 2001. The regulation of the Escherichia coli mazEF promoter involves an unusual palindrome. J. Biol. Chem. 276: 59755984.
62. Masuda, Y.,, K. Miyakawa,, Y. Nishimura, and, E. Ohtsubo. 1993. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J. Bacteriol. 175: 68506856.
63. Mattison, K.,, J. S. Wilbur,, M. So, and, R. G. Brennan. 2006. Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing Pin Domains and ribbon-helix-helix motifs. J. Biol. Chem 281: 3794237951.
64. Meinhart, A.,, J. C. Alonso,, N. Strater, and, W. Saenger. 2003. Crystal structure of the plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta and inacti-vation by epsilon 2 zeta 2 complex formation. Proc. Natl. Acad. Sci. USA 100: 16611666.
65. Mercier, J. F.,, A. Salahpour,, S. Angers,, A. Breit, and, M. Bouvier. 2002. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277: 4492544931.
66. Miki, T.,, J. A. Park,, K. Nagao,, N. Murayama, and, T. Hori-uchi. 1992. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD ( ccdB) product growth inhibition. J. Mol. Biol. 225: 3952.
67. Misselwitz, R.,, A. B. de la Hoz,, S. Ayora,, K. Welfle,, J. Behlke,, K. Murayama,, W. Saenger,, J. C. Alonso, and, H. Welfle. 2001. Stability and DNA-binding properties of the omega regulator protein from the broad-host range Streptococcus pyogenes plasmid pSM19035. FEBS Lett. 505: 436440.
68. Mitchell, T., and, G. A. Showell. 2001. Design strategies for building drug-like chemical libraries. Curr. Opin. Drug Discov. Devel. 4: 314318.
69. Mitenhuber, G. 1999. Occurrence of mazEF-like antitoxin-toxin systems in bacteria. J. Mol. Microbiol. Biotechnol. 1: 295302.
70. Muñoz-Gomez, A. J.,, S. Santos-Sierra,, A. Berzal-Herranz,, M. Lemonnier, and, R. Diaz-Orejas. 2004. Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin. FEBS Lett. 567: 316320.
71. Nieto, C.,, I. Cherny,, S. K. Khoo,, M. García de Lacoba,, W. T. Chan,, C. C. Yeo,, E. Gazit, and, M. Espinosa. 27 October 2006. The yefM-yoeB toxin-antitoxin systems of Escherichia coli and Streptococcus pneumoniae: functional and structural correlation. J. Bacteriol. doi:10.1128/JB. 01130–06.
72. Nieto, C.,, T. Pellicer,, D. Balsa,, S. K. Christensen,, K. Gerdes, and, M. Espinosa. 2006. The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Mol. Microbiol. 59: 12801296.
73. Nyström, T. 1999. Starvation, cessation of growth and bacterial aging. Curr. Opin. Microbiol. 2: 214219.
74. Oberer, M.,, H. Lindner,, O. Glatter,, C. Kratky, and, W. Keller. 1999. Thermodynamic properties and DNA binding of the ParD protein from the broad host-range plasmid RK2/RP4 killing system. Biol. Chem. 380: 14131420.
75. Oberer, M.,, K. Zangger,, S. Prytulla, and, W. Keller. 2002. The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA binding proteins. Biochem. J. 361: 4147.
76. Obregón, V.,, P. García,, E. García,, A. Fenoll,, R. López, and, J. L. García. 2002. Molecular peculiarities of the lytA gene isolated from clinical pneumococcal strains that are bile insoluble. J. Clin. Microbiol. 40: 25452554.
77. Ogura, T., and, S. Hiraga. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA 80: 47844788.
78. Pabo, C. O., and, R. T. Sauer. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61: 10531095.
79. Pallares, R.,, P. F. Viladrich,, J. Linares,, C. Cabellos, and, F. Gudiol. 2000. Impact of antibiotic resistance on chemotherapy for pneumococcal infections, p. 157168. In A. Tomasz (ed.), Streptococcus pneumoniae. Mary Ann Liebert Inc. Publishers, New York, N.Y.
80. Pandey, D. P., and, K. Gerdes. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33: 966976.
81. Pedersen, K.,, S. K. Christensen, and, K. Gerdes. 2002. Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol. Microbiol. 45: 501510.
82. Pedersen, K.,, A. V. Zavialov,, M. Y. Pavlov,, J. Elf,, K. Gerdes, and, M. Ehrenberg. 2003. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112: 131140.
83. Rawlings, D. E. 1999. Proteic toxin-antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pass system of pTF-FC2. FEMS Microbiol. Lett. 176: 269277.
84. Roberts, R. C.,, C. Spangler, and, D. R. Helinski. 1993. Characteristics and significance of DNA binding activity of plasmid stabilization protein ParD from the broad-host-range plasmid RK2. J. Biol. Chem. 268: 2710927117.
85. Ruiz-Echevarría, M. J.,, A. Berzal-Herranz,, K. Gerdes, and, R. Díaz-Orejas. 1991. The kis and kid genes of the parD maintenance system of plasmid R1 form an operon that is autoregulated at the level of transcription by the co-ordinated action of the Kis and Kid proteins. Mol. Microbiol. 5: 26852693.
86. Ruiz-Echevarría, M. J.,, G. de Torrontegui,, G. Giménez-Gallego, and, R. Diaz-Orejas. 1991. Structural and functional comparison between the stability systems parD of plasmid R1 and ccd of plasmid F. Mol. Gen. Genet. 225: 355362.
87. Ruiz-Echevarría, M. J.,, G. Giménez-Gallego,, R. Sabariegos-Jareño, and, R. Díaz-Orejas. 1995. Kid, a small protein of the parD stability system of plasmid R1 is an inhibitor of DNA replication acting at the initiation of DNA synthesis. J. Mol. Biol. 247: 568577.
88. Salyers, A., and, C. F. Amabile-Cuevas. 1997. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41: 23212325.
89. Sambrook, J., and, D. W. Russell. 2001. Protein interaction technologies, chapter 18. In Molecular Cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
90. Selvin, P. R. 2000. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7: 730734.
91. Shann, F. 1990. Modern vaccines. Pneumococcus and influenza. Lancet 335: 898901.
92. Smith, A. S., and, D. Rawlings. 1997. The poison-antidote stability system of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2. Mol. Microbiol. 26: 961970.
93. Stahura, F. L.,, L. Xue,, J. W. Godden, and, J. Bajorath. 2002. Methods for compound selection focussed on hits and application in drug discovery. J. Mol. Graph. Model. 20: 439446.
94. Takagi, H.,, Y. Kakuta,, T. Okada,, M. Yao,, I. Tanaka, and, M. Kimura. 2005. Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nat. Struct. Mol. Biol. 12: 327331.
95. Tam, J. E., and, B. C. Kline. 1989. The F plasmid ccd autore-pressor is a complex of CcdA and CcdB proteins. Mol. Gen. Genet. 219: 2632.
96. Tian, Q. B.,, M. Ohnishi,, A. Tabuchi, and, Y. Terawaki. 1996. A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem. Biophys. Res. Commun. 220: 280284.
97. Van Melderen, L.,, M.-H. Dao Thi,, P. Lecchi,, S. Gottesman,, M. Couturier, and, M. R. Maurizi. 1996. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J. Biol. Chem. 271: 2773027738.
98. Weihofen, W. A.,, A. Cicek,, F. Pratto,, J. C. Alonso, and, W. Saenger. 2006. Structures of omega repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Res 34: 14501458.
99. Welfl e, K.,, F. Pratto,, R. Misselwitz,, J. Behlke,, J. C. Alonso, and, H. Welfle. 2005. Role of the N-terminal region and of beta-sheet residue Thr29 on the activity of the Omega2 global regulator from the broad-host range Streptococcus pyogenes plasmid pSM19035. Biol. Chem. 386: 881894.
100. Whitney, C. G. 2000. Vaccination against pneumococcal disease: current questions and future opportunities. BioMed Central 1: 7.
101. Xu, Y.,, A. Kanauchi,, A. G. von Arnim,, D. W. Piston, and, C. J. Johnson. 2003. Bioluminescence resonance energy transfer (BRET): a new technique for monitoring protein-protein interactions in living cells. Methods Enzymol. 360: 289301.
102. Xu, Y.,, D. W. Piston, and, C. J. Johnson. 1999. A bioluminescence energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96: 151156.
103. Zavialov, A. V.,, L. Mora,, R. H. Buckingham, and, M. Ehren-berg. 2002. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10: 789798.
104. Zhang, Y.,, J. Zhang,, K. P. Hoeflich,, M. Ikura, and, M. Inouye. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12: 913923.
105. Zielenkiewicz, U., and, P. Ceglowski. 2001. Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim. Polon. 48: 10031023.
106. Zielenkiewicz, U., and, P. Ceglowski. 2005. The toxin-antitoxin system of the streptococcal plasmid pSM19035. J. Bacteriol. 187: 60946105.


Generic image for table
Table 19.1

TA systems identified on plasmids and chromosomes

Citation: Alonso J, Balsa D, Cherny I, Christensen S, Espinosa M, Francuski D, Gazit E, Gerdes K, Hitchin E, Martín M, Nieto C, Overweg K, Pellicer T, Saenger W, Welfle H, Welfle K, Wells J. 2007. Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics, p 313-329. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error