Chapter 2 : Collective Traits in Pathogenic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Collective Traits in Pathogenic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap02-2.gif


This chapter focuses on how selection at the microbial level may lead to changes at the infection level and examines some predictions one can draw from evolutionary theory. The major motivation for this review stems from the fact that natural selection among microbes can potentially have two opposite outcomes on pathogenesis. Pathogenic bacteria use a chemical communication system, called quorum sensing, to regulate within- host density. The chapter reviews the effects of within-host selection; as predicted by theoretical models and as empirically observed. There are three reasons why an allele favored within a host may nevertheless not go to complete fixation in the population at large. The first reason is that a locally favored variant may have partially, or completely, lost the ability to disperse from its host. This may be a direct result of selection on dispersal: evolutionary ecology shows that dispersal tends to be locally counter selected. Second, a locally favored variant, V, may have lost (completely or partially) the ability to survive and/or replicate in environments other than in the focal host itself. The third mechanism is that a pathogen variant, V, may increase in frequency within a focal host but not fix globally because the traits favored by within host selective pressures are not those that maximize the total infective output.

Citation: André J, Baalen M. 2008. Collective Traits in Pathogenic Bacteria, p 13-20. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alizon, S., and, M. van Baalen. 2005. Emergence of a convex trade-off between transmission and virulence. Am. Nat. 165: E155E167.
2. Altes, H. K., and, V. A. A. Jansen. 2000. Intra-host competition between nef-defective escape mutants and wild-type human immunodeficiency virus type 1. Proc. R. Soc. London Ser. B 267: 183189.
3. Ancel Meyers, L.,, B. R. Levin,, A. R. Richardson, and, I. Stojiljkovic. 2003. Epidemiology, hypermutation, within-host evolution and the virulence of Neisseria meningitidis. Proc. R. Soc. London Ser. B 270: 16671677.
4. André, J. B.,, J. B. Ferdy, and, B. Godelle. 2003. Within-host parasite dynamics, emerging trade-off, and evolution of virulence with immune system. Evolution 57: 14891497.
5. André, J. B., and, B. Godelle. 2005. Multicellular organization in bacteria as a target for drug therapy. Ecol. Lett. 8: 800810.
6. Antia, R.,, B. R. Levin, and, R. M. May. 1994. Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am. Nat. 144: 457472.
7. Bonhoeffer, S., and, M. A. Nowak. 1994. Intra-host versus inter-host selection: viral strategies of immune function impairment. Proc. Natl. Acad. Sci. USA 91: 80628066.
8. Bremermann, H., and, J. Pickering. 1983. A game-theoretical model of parasite virulence. J. Theor. Biol. 100: 411426.
9. Brookfield, J. E. Y. 1998. Quorum sensing and group selection. Evolution 52: 12631269.
10. Brown, S. 1999. Cooperation and conflict in host-manipulating parasites. Proc. R. Soc. London Ser. B 266: 18991904.
11. Brown, S. P.,, M. E. Hochberg, and, B. T. Grenfell. 2002. Does multiple infection select for raised virulence? Trends Microbiol. 10: 401405.
12. Brown, S. P., and, R. A. Johnstone. 2001. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc. R. Soc. London Ser. B 268: 961965.
13. Combes, C. 1991. Ethological aspects of parasite transmission. Am. Nat. 138: 866880.
14. De Vos, D.,, M. De Chial,, C. Cochez,, S. Jansen,, B. Tummler,, J. M. Meyer, and, P. Cornelis. 2001. Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch. Microbiol. 175: 384388.
15. Ebert, D. 1998. Experimental evolution of parasites. Science 282: 14321435.
16. Eshel, I. 1977. Founder effect and evolution of altruistic traits—ecogenetical approach. Theor. Pop. Biol. 11: 410424.
17. Ewald, P. W. 1994. Evolution of Infectious Disease. Oxford, United Kingdom: Oxford University Press.
18. Frank, S. A. 1992. A kin selection model for the evolution of virulence. Proc. R. Soc. London Ser. B 250: 195197.
19. Frank, S. A. 1996. Models of parasite virulence. Q. Rev. Biol. 71: 3778.
20. Ganusov, V. V.,, C. T. Bergstrom, and, R. Antia. 2002. Within-host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56: 213223.
21. Gilchrist, M., and, A. Sasaki. 2002. Modeling host-parasite coevolution: a nested approach based on mechanistic models. J. Theor. Biol. 218: 289308.
22. Giraud, A.,, I. Matic,, O. Tenaillon,, A. Clara,, M. Radman,, M. Fons, and, F. Taddei. 2001. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291: 26062608.
23. Gooding, L. R. 1992. Virus proteins that counteract host immune defenses. Cell 71: 57.
24. Katze, M. G.,, Y. P. He, and, M. Gale. 2002. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2: 675687.
25. Levin, B. R., and, J. J. Bull. 1994. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 2: 7681.
26. Moore, J. 1984. Parasites that change the behavior of their host. Sci. Am. 250: 108115.
27. Nowak, M. A.,, R. M. Anderson,, A. R. McLean,, T. F. W. Wolfs,, J. Goudsmit, and, R. M. May. 1991. Antigenic diversity thresholds and the development of AIDS. Science 254: 963969.
28. Nowak, M. A., and, R. M. May. 1994. Superinfection and the evolution of parasite virulence. Proc. R. Soc. London Ser. B 255: 8189.
29. Olivieri, I.,, Y. Michalakis, and, P. H. Gouyon. 1995. Metapopulation genetics and the evolution of dispersal. Am. Nat. 146: 202228.
30. Paul, R. E. L.,, T. Lafond,, C. D. M. Muller-Graf,, S. Nithiuthai,, P. T. Brey, and, J. C. Koella. 2004. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections. BMC Evol. Biol. 4: 30.
31. Read, A. F., and, L. H. Taylor. 2001. The ecology of genetically diverse infections. Science 292: 10991102.
32. Sasaki, A., and, Y. Iwasa. 1991. Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles. Theor. Pop. Biol. 39: 201239.
33. Schjørring, S., and, J. C. Koella. 2003. Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc. R. Soc. London Ser. B 270: 189193.
34. Thomas, F.,, K. Mete,, S. Helluy,, F. Santalla,, O. Verneau,, T. de Meeus,, F. Cézilly, et al. 1997. Hitch-hiker parasites or how to benefit from the strategy of another parasite. Evolution 51: 13161318.
35. Turner, P. E., and, L. Chao. 1999. Prisoner’s dilemma in an RNA virus. Nature 398: 441443.
36. van Baalen, M., and, M. W. Sabelis. 1995a. The dynamics of multiple infection and the evolution of virulence. Am. Nat. 146: 881910.
37. van Baalen, M., and, M. W. Sabelis. 1995b. The scope for virulence management: a comment on Ewald’s view on the evolution of virulence. Trends Microbiol. 3: 414416 (discussion 416417).
38. West, S. A., and, A. Buckling. 2003. Cooperation, virulence and siderophore production in bacterial parasites. Proc. R. Soc. London Ser. B 270: 3744.
39. West, S. A.,, A. S. Griffin,, A. Gardnero, and, S. P. Diggle. 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4: 597607.
40. Williams, P.,, M. Camara,, A. Hardman,, S. Swift,, D. Milton,, V. J. Hope,, K. Winzer, et al. 2000. Quorum sensing and the population-dependent control of virulence. Philos. Trans. R. Soc. London Ser. B 355: 667680.
41. Wilson, M.,, R. McNab, and, B. Henderson. 2002. Bacterial Disease Mechanisms: An Introduction to Cellular Microbiology. Cambridge University Press, Cambridge, United Kingdom.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error