Chapter 8 : Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap08-2.gif


Human beings live in close association with vast numbers of microorganisms that are present on the skin, mouth, and gastrointestinal tract. Although the small bowel and stomach can become heavily colonized by pathogenic bacteria and yeasts under some circumstances, the colon is the principal region of bacterial colonization in the healthy gastrointestinal tract, owing to the antimicrobial effects of gastric acid and bile salts in the upper gut and the rapid passage of digestive materials that prevents microbial overgrowth. While the effects are often subtle, intestinal microorganisms exert their influence on the host in many ways. Culturing studies have shown that the microbiota comprises several hundred bacterial species, subspecies, and biotypes, and that some organisms occur in higher numbers than others, although about 40 species constitute approximately 99% of all isolates. Pathogenic bacteria invading the body are affected by, and deal with, mucus barriers in different ways. Ulcerative colitis (UC) is one of the two major forms of idiopathic inflammatory bowel disease, and is an acute and chronic disabling condition that is essentially incurable and treated primarily with anti-inflammatory drugs and steroids. Many reactions are known in which enzymes produced by intestinal microorganisms form carcinogens from dietary precursors. Fecal bile acids are also related to the risk of colon cancer, because they are converted to steroids by intestinal microorganisms, which have procarcinogenic properties.

Citation: Macfarlane G, Macfarlane S. 2008. Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications, p 73-83. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alberts, D. S.,, J. G. Einsphar,, D. L. Earnest,, M. F. Krutzsch,, P. Lin,, L. M. Hess,, D. K. Heddens,, D. J. Rore,, M. E. Martinez,, G. Salen, and, A. K. Batta. 2003. Fecal bile acid concentrations in a subpopulation of the wheat bran fiber colon polp trial. Can. Epidemiol. Biomark. Prev. 12: 197200.
2. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143169.
3. Borody, T. J.,, E. F. Warren,, S. M. Leis,, R. Surace,, O. Ashman, and, S. Siarkas. 2004. Bacteriotherapy using fecal flora: toying with human motions. J. Clin. Gastroenterol. 38: 475483.
4. Bradshaw, D. J.,, K. A. Homer,, P. D. Marsh, and, D. Beighton. 1994. Metabolic communication in oral microbial communities during growth on mucin. Microbiology 140: 34073412.
5. Calmels, S.,, H. Ohshima,, M. Crespi,, H. Leclerc,, C. Cattoen, and, H. Bartsch. 1987. N-nitrosamine formation by microorganisms isolated from human gastric juice and urine: biochemical studies on bacteria-catalysed nitrosation. IARC Sci. Publ. 84: 391395.
6. Campieri, M., and, P. Gionchetti. 1999. Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative? Gastroenterology 116: 12461260.
7. Child, M. W.,, A. Kennedy,, A. W. Walker,, B. Bahrami,, S. Macfarlane, and, G. T. Macfarlane. 2006. Studies on the effect of system retention time on bacterial populations colonising a three-stage continuous culture model of the human large gut using fluorescent in situ hybridisation techniques. FEMS Microbiol. Ecol. 55: 299310.
8. Cohen, M. B., and, R. A. Giannella. 1991. Bacterial infections: pathophysiology, clinical features and treatment, p. 395428. In S. F. Phillips,, J. H. Pemberton, and, R. G. Shorter, (ed.), The Large Intestine: Physiology, Pathophysiology and Disease. Raven Press, New York, NY.
9. Cohen, P. S.,, E. A. Wadolkowski, and, D. C. Laux. 1986. Adhesion of a human fecal Escherichia coli strain to a 50.5 KDal glycoprotein receptor present in mouse colonic mucus. Microecol. Ther. 16: 231241.
10. Croucher, S. C.,, A. P. Houston,, C. E. Bayliss, and, R. J. Turner. 1983. Bacterial populations associated with different regions of the human colon wall. Appl. Environ. Microbiol. 45: 10251033.
11. Cummings, J. H.,, S. A. Bingham,, K. W. Heaton, and, M. A. Eastwood. 1993. Fecal weight, colon cancer risk and dietary in-take of non-starch polysaccharides (dietary fiber). Gastroenterology 103: 17831789.
12. Cummings, J. H.,, G. T. Macfarlane, and, S. Macfarlane. 2003. Intestinal bacteria and ulcerative colitis. Curr. Issues Intest. Microbiol. 4: 920.
13. Cummings, J. H., and, G. T. Macfarlane. 2002. Bacteria in the pathogenesis of colorectal cancer, p. 180191. In W. Scheppach and, M. Scheurlen (ed.), Exogenous Factors in Colonic Carcinogenesis. Kluwer Academic Publishers, Dordrecht, The Netherlands.
14. Cummings, J. H. 1987. Diet and transit through the gut. J. Plant Foods 3: 8395.
15. Dick, L. K.,, A. E. Bernhard,, T. J. Brodeur,, J. W. Santo Domingo,, J. M. Simpson,, S. P. Walters, and, K. G. Field. 2005. Host distributions of uncultivated Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbiol. 71: 31843191.
16. Dore, J.,, A. Sghir,, G. Hannequart-Gramet,, G. Corthier, and, P. Pochart. 1998. Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst. Appl. Microbiol. 21: 6571.
17. Edmiston, C. E., Jr.,, G. R. Avant, and, F. A. Wilson. 1982. Anaerobic bacterial populations on normal and diseased human biopsy tissue obtained at colonoscopy. Appl. Environ. Microbiol. 43: 11731181.
18. Farrell, R. J., and, J. T. LaMont. 2002. Microbial factors in inflammatory bowel disease. Gastroenterol. Clin. N. Am. 31: 4162.
19. Farrell, R. J., and, M. A. Peppercorn. 2002. Ulcerative colitis. Lancet 359: 331340.
20. Finegold, S. M.,, D. J. Flora,, H. R. Attlebury, and, L. V. Sutter. 1975. Fecal bacteriology of colonic polyp patients and control patients. Cancer Res. 35: 34073417.
21. Finegold, S. M.,, V. L. Sutter, and, G. E. Mathisen. 1983. Normal indigenous intestinal flora, p. 331. In D. J. Hentges (ed.), Human Intestinal Microflora in Health and Disease. Academic Press, London, United Kingdom.
22. Frey, J. C.,, J. M. Rothman,, A. N. Pell,, J. B. Nizeyi,, M. R. Cranfield, and, E. R. Angert. 2006. Fecal diversity in a wild gorilla. Appl. Environ. Microbiol. 72: 37883792.
23. Furrie, E.,, S. Macfarlane,, A. Kennedy,, J. H. Cummings,, S. V. Walsh,, D. A. O’Neil, and, G. T. Macfarlane. 2005. Synbiotic therapy ( Bifidobacterium longum/Synergy 1TM) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54: 242249.
24. Godoy, V. G.,, M. M. Dallas,, T. A. Russo, and, M. H. Malamy. 1993. A role for Bacteroides fragilis neuraminidase in bacterial growth in two model systems. Infect. Immun. 61: 44154426.
25. Gorbach, S. L., and, B. R. Goldin. 1990. The intestinal microflora and the colon cancer connection. Rev. Infect. Dis. 12: S252S261.
26. Hold, G.,, A. Schwiertz,, R. Aminov,, M. Blaut, and, H. J. Flint. 2003. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol. 69: 43204324.
27. Hopkins, M. J.,, R. Sharp, and, G. T. Macfarlane. 2001. Age and disease-related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance and community cellular fatty acid profiles. Gut 48: 198205.
28. Hoskins, L. C.,, E. T. Boulding,, T. A. Gerken,, V. R. Harouny, and, M. S. Kriaris. 1992. Mucin glycoprotein degradation by mucin oligosaccharide-degrading strains of human faecal bacteria. Characterisation of saccharide cleavage products and their potential role in nutritional support of larger faecal bacterial populations. Microbiol. Ecol. Health Dis. 5: 193207.
29. Langendijk, P. S.,, F. Schut,, G. Jansen,, C. Raangs,, G. R. Kamphuis,, M. H. Wilkinson, and, G. W. Welling. 1995. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61: 30693075.
30. Lee, F. D.,, A. Kraszewski,, J. Gordon,, J. G. Howie,, D. Mcseveney, and, W. A. Harland. 1971. Intestinal spirochaetosis. Gut 12: 126133.
31. Lee, S. G.,, K. Changsung, and, C. H. Young. 1997. Successful cultivation of a potentially pathogenic coccoid organism with trophism for gastric mucin. Infect. Immun. 65: 4954.
32. Linskens, R.,, X. W. Huijsdens,, P. H. M. Savelkoul,, C. M. J. E. Vandenbroucke-Grauls, and, S. G. M. Meuwissen. 2001. The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scand. J. Gastroenterol. 36: 2940.
33. Loftus, E. V.,, M. D. Silverstein,, W. J. Sandborn,, W. J. Tremaine,, W. S. Harmsen, and, A. R. Zinsmeister. 2000. Ulcerative colitis in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gut 46: 336343.
34. Macfarlane, G. T., and, J. H. Cummings. 1991. The colonic flora, fermentation and large bowel digestive function, p. 5159. In S. F. Phillips,, J. H. Pemberton, and, R. G. Shorter (ed.), The Large Intestine: Physiology, Pathophysiology and Disease. Raven Press, New York, NY.
35. Macfarlane, G. T.,, G. R. Gibson,, B. S. Drasar, and, J. H. Cummings. 1995. Metabolic significance of the colonic microflora, p. 249274. In R. Whitehead (ed.), Gastrointestinal and Oesophageal Physiology. Churchill Livingstone, Edinburgh, United Kingdom.
36. Macfarlane, G. T., and, G. R. Gibson. 1995. Bacterial infections and diarrhea, p. 201226. In Gibson G. R., and, G. T. Macfarlane (ed.) Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology. CRC Press, Boca Raton, FL.
37. Macfarlane, G. T., and, G. R. Gibson. 1991. Formation of glycoprotein degrading enzymes by Bacteroides fragilis. FEMS Microbiol. Lett. 77: 289294.
38. Macfarlane, G. T., and, G. R. Gibson. 1994. Metabolic activities of the normal colonic flora, p. 1752. In S. A. W. Gibson (ed.) Human Health: The Contribution of Microorganisms. Springer Verlag, London, United Kingdom.
39. Macfarlane, G. T.,, S. Hay, and, G. R. Gibson. 1989. Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. J. Appl. Bacteriol. 66: 407417.
40. Macfarlane, G. T.,, S. Macfarlane, and, R. Sharp. 1997. Differential expression of virulence determinants in Clostridium septicum in relation to growth on mucin and the swarm cell cycle. Biosci. Microbiol. 16: 28.
41. Macfarlane, S.,, E. Furrie,, J. H. Cummings, and, G. T. Macfarlane. 2004. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis. 38: 16901699.
42. Macfarlane, S.,, M. E. Quigley,, M. J. Hopkins,, D. F. Newton, and, G. T. Macfarlane. 1998. Effect of retention time on polysaccharide degradation by mixed populations of human colonic bacteria studied under multi-substrate limiting conditions in a three-stage compound continuous culture system. FEMS Microbiol. Ecol. 26: 231243.
43. Mantle, M.,, L. Basaraba,, S. C. Peacock, and, D. G. Gall. 1989. Binding of Yersinia enterocolitica to rabbit brush border membranes, mucus, and mucin. Infect. Immun. 57: 32923299.
44. Marteau, P.,, P. Rochart,, J. Dore,, C. Bera-Maillet,, A. Bernalier, and, G. Corthier. 2001. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67: 49394942.
45. Mayberry, J. F.,, K. C. Ballantyne,, J. D. Hardcastle,, C. Mangham, and, G. Pye. 1989. Epidemiological study of asymptomatic inflammatory bowel disease: the identification of cases during a screening programme for colorectal cancer. Gut 30: 481483.
46. McBain, A. J., and, G. T. Macfarlane. 1998. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J. Med. Microbiol. 47: 407416.
47. Meijer-Severs, G. J., and, E. Van Santen. 1986. Variations in the anaerobic faecal flora of ten healthy human volunteers with special reference to the Bacteroides fragilis group and Clostridium difficile. Z. Bakteriol. Mikrobiol. Hyg. 261: 4352.
48. Milner, J. A., and, R. Sellwood. 1994. Chemotactic response to mucin by Serpulina hyodysenteriae and other porcine spiro-chetes: potential role in intestinal colonization. Infect. Immun. 62: 40954099.
49. Montgomery, S. M.,, D. L. Morris,, N. P. Thompson,, J. Subhani,, R. E. Pounder, and, A. J. Wakefield. 1998. Prevalence of inflammatory bowel disease in British 26 year olds: national longitudinal birth cohort. Br. Med. J. 316: 10581059.
50. Moore, W. E. C., and, L. V. Holdeman. 1974. Human fecal flora. The normal flora of 20 Japanese-Hawaiians. Appl. Environ. Microbiol. 27: 961969.
51. Nelson, D. P., and, L. J. Mata. 1970. Bacterial flora associated with the human gastrointestinal mucosa. Gastroenterology 58: 5661.
52. O’May, G. A.,, N. Reynolds,, A. R. Smith,, A. Kennedy, and, G. T. Macfarlane. 2005. Effect of pH and antibiotics on microbial overgrowth in the stomach and duodenum of patients undergoing percutaneous endoscopic gastrostomy feeding. J. Clin. Microbiol. 43: 30593065.
53. Op den Camp, H. J. M.,, A. Oosterhof, and, J. H. Veerkamp. 1985. Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect. Immun. 47: 332334.
54. Pettipher, G. L., and, M. Latham. 1979. Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavifaciens. J. Gen. Microbiol. 110: 2938.
55. Piotrowski, J.,, A. Slomiany,, V. L. N. Murty,, Z. Fekete, and, B. L. Slomiany. 1991. Inhibition of Helicobacter pylori colonization by sulfated gastric mucin. Biochem. Interntl. 24: 749756.
56. Pullan, R. D.,, G. A. O. Thomas,, M. Rhodes,, R. G. Newcombe,, G. Williams,, A. Allen, and, J. Rhodes. 1994. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35: 353359.
57. Rozee, K. R.,, D. Cooper,, K. Lam, and, J. W. Costerton. 1982. Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl. Environ. Microbiol. 43: 14521463.
58. Savage, D. C. 1978. Factors involved in colonization of the gut epithelial surface. Am. J. Clin. Nutr. 31: S131S135.
59. Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31: 107133.
60. Schiffrin, E. J.,, D. Brassart,, A. L. Servin,, F. Rochat, and, A. Donnet-Hughes. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am. J. Clin. Nutr. 66: S15S20.
61. Schwan, A.,, S. Sjolin, and, U. Trottestam. 1983. Relapsing Clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. Lancet. 2: 845.
62. Sghir, A.,, G. Gramet,, A. Suau,, V. Rochet,, P. Pochart, and, J. Dore. 2000. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 22632266.
63. Sharp, R., and, C. J. Ziemer. 1999. Application of taxonomy and systematics to molecular techniques in intestinal microbiology, p. 167190. In G. R. Gibson, and, M. Roberfroid, (ed.), Colonic Microflora, Nutrition and Health. Chapman and Hall, London, United Kingdom.
64. Standiford, T. K.,, D. A. Arenberg,, J. M. Danforth,, S. L. Kunkel,, G. VanOtteren, and, R. M. Strieter. 1994. Lipoteichoic acid induces secretion of interleukin-8 from human blood monocytes: a cellular and molecular analysis. Infect. Immun. 62: 119125.
65. Sylvester, F. A.,, D. Philpott,, B. Gold,, A. Lastovica, and, J. F. Forstner. 1996. Adherence to lipids and intestinal mucin by a recently recognised human pathogen, Campylobacter upsaliensis. Infect. Immun. 64: 40604066.
66. Takeuchi, A.,, H. R. Jervis,, H. Nakazawa, and, D. M. Robinson. 1974. Spiral-shaped organisms on the surface colonic epithelium of the monkey and man. Am. J. Clin. Nutr. 27: 12871296.
67. Tannock, G. W., and, D. C. Savage. 1974. Influence of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect. Immunol. 9: 591598.
68. Taurog, J. D.,, J. A. Richardson,, J. T. Croft,, W. A. Simmons,, M. Zhou,, J. L. Fernandez-Sueiro,, E. Balish, and, R. E. Hammer. 1994. The germ free state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180: 23592364.
69. Van Tassell, R. L.,, D. G. Kingston, and, T. D. Wilkins. 1990. Metabolism of dietary genotoxins by the human colonic microflora; the fecapentaenes and heterocyclic amines. Mutat. Res. 238: 209221.
70. Victor, R. J.,, J. B. Kirsner, and, W. Palmer. 1950. Failure to induce ulcerative colitis experimentally with filtrates of feces and rectal mucosa. Gastroenterology 14: 398.
71. Wilson, L. M., and, G. T. Macfarlane. 1996. Cytotoxicity, adhesion and invasion of Clostridium septicum in cultured human epithelial cells (CACO-2, HEp-2): pathological significance of swarm cell differentiation. Anaerobe 2: 7179.


Generic image for table
Table 1.

Factors affecting the evolution of the human colonic microbiota a

Citation: Macfarlane G, Macfarlane S. 2008. Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications, p 73-83. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch8
Generic image for table
Table 2.

Summary of major bacterial infections of the human gastrointestinal tract

Citation: Macfarlane G, Macfarlane S. 2008. Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications, p 73-83. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch8
Generic image for table
Table 3.

Potential reasons for failure of antibiotic therapies in UC

Citation: Macfarlane G, Macfarlane S. 2008. Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications, p 73-83. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error