Chapter 9 : Evolution of Bacterial Opportunistic Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Evolution of Bacterial Opportunistic Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap09-2.gif


Opportunistic pathogens are particularly important at hospitals, as they are significantly responsible for nosocomial infections. In trying to understand the underlying reasons for the acquisition and evolution of virulence of opportunistic pathogens, this chapter addresses two topics. The first one is to know whether the environment where they grow during infection is changing through time and thus forcing their evolution. In other words, during infection, the infected patient is both the habitat and the food source of the infecting bacteria. The second topic addressed is the mechanisms of evolution, which allow bacteria that usually do not infect humans to produce a disease in sick people. The study of Pseudomonas aeruginosa isolates from chronic and acute infections has demonstrated that transition to chronicity involves an increase in the ability to form biofilms and a concomitant reduction in the expression of the type III secretion system. This transition does not consist of phenotypic changes, but consists of the accumulation of adaptive mutations during the in-host evolution of this bacterial opportunistic pathogen. Concerning bacterial-protozoa interactions as forces shaping the evolution of bacterial opportunistic pathogens, it is important to recall that protozoa are major grazers of bacteria in natural environments. If natural nonclinical environments are relevant for the evolution of bacterial opportunistic pathogens, modifications of these environments can also produce changes in bacterial populations.

Citation: Martínez J. 2008. Evolution of Bacterial Opportunistic Pathogens, p 85-91. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Achtman, M.,, G. Morelli,, P. Zhu, et al. 2004. Microevolution and history of the plague bacillus, Yersinia pestis. Proc. Natl. Acad. Sci. USA 101: 1783717842.
2. Achtman, M.,, K. Zurth,, G. Morelli,, G. Torrea,, A. Guiyoule, and, E Carniel. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 96: 1404314048.
3. Alonso, A.,, F. Rojo, and, J. L. Martinez. 1999. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ. Microbiol. 1: 421430.
4. Alonso, A.,, P. Sanchez, and, J. L. Martinez. 2001. Environmental selection of antibiotic resistance genes. Environ. Microbiol. 3: 19.
5. Andersson, D. I., and, B. R. Levin. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489493.
6. Berg, G.,, L. Eberl, and, A. Hartmann. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7: 16731685.
7. Bergogne-Berezin, E.,, D. Decre, and, M. L. Joly-Guillou. 1993. Opportunistic nosocomial multiply resistant bacterial infections—their treatment and prevention. J. Antimicrob. Chemo ther. 32 (Suppl A): 3947.
8. Bjorkman, J.,, I. Nagaev,, O. G. Berg, and, D. Hughes, and, D. I. Andersson. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 14791482.
9. Brown, P. 1999. Opportunistic pathogens in hospitals—all change please. Microbiol. Today 26: 106108.
10. Costerton, J. W. 2001. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 9: 5052.
11. Davies, J. E. 1997. Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found. Symp. 207: 1527 (discussion 2735).
12. Dobrindt, U.,, B. Hochhut,, U. Hentschel, and, J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2: 414424.
13. Enne, V. I.,, D. M. Livermore,, P. Stephens, and, L. M. Hall. 2001. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357: 13251328.
14. Ernst, R. K.,, D. A. D’Argenio,, J. K. Ichikawa, et al. 2003. Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ. Microbiol. 5: 13411349.
15. Farrington, M.,, C. Redpath,, C. Trundle,, S. Coomber, and, N. M. Brown. Winning the battle but losing the war: methicillin-resistant Staphylococcus aureus (MRSA) infection at a teaching hospital. Q. J. Med. 91: 539548.
16. Foght, J. M.,, D. W. Westlake,, W. M. Johnson, and, H. F. Ridgway. 1996. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142: 23332340.
17. Gao, L. Y.,, O. S. Harb, and, Y. Abu Kwaik. 1997. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect. Immun. 65: 47384746.
18. Govan, J. R., and, V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539574.
19. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379433.
20. Jain, M.,, D. Ramirez,, R. Seshadri, et al. 2004. Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J. Clin. Microbiol. 42: 52295237.
21. Kaplan, J. E.,, G. Roselle, and, K. Sepkowitz. 1998. Opportunistic infections in immunodeficient populations. Emerg. Infect. Dis. 4: 421422.
22. Levin, B. R., and, R. Antia. 2001. Why we don’t get sick: the within-host population dynamics of bacterial infections. Science 292: 11121115.
23. Liang, X.,, X. Q. Pham,, M. V Olson, and, S. Lory. 2001. Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J. Bacteriol. 183: 843853.
24. Linares, J. F.,, J. A. Lopez,, E. Camafeita,, J. P. Albar,, F. Rojo, and, J. L. Martinez. 2005. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J. Bacteriol. 187: 13841391.
25. Luo, N.,, S. Pereira,, O. Sahin, et al. 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 102: 541546.
26. Mahajan-Miklos, S.,, L. G. Rahme, and, F. M. Ausubel. 2000. Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol. 37: 981988.
27. Martinez, J. L., and, F. Baquero. 2002. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15: 647679.
28. Morales, G.,, L. Wiehlmann,, P. Gudowius, et al. Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. J. Bacteriol. 186: 42284237.
29. Morris, A.,, J. D. Kellner, and, D. E. Low. 1998. The superbugs: evolution, dissemination and fitness. Curr. Opin. Microbiol. 1: 524529.
30. Oliveira, D. C.,, A. Tomasz, and, H. de Lencastre. 2002. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect. Dis. 2: 180189.
31. Pirnay, J. P.,, S. Matthijs,, H. Colak, et al. 2005. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ. Microbiol. 7: 969980.
32. Quinn, J. P. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clin. Infect. Dis. 27 (Suppl. 1): S117S124.
33. Rahme, L. G.,, F. M. Ausubel,, H. Cao, et al. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA 97: 88158821.
34. Rahme, L. G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins, and, F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 18991902.
35. Romling, U.,, K. D. Schmidt, and, B. Tummler. 1997. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J. Mol. Biol. 271: 386404.
36. Romling, U.,, J. Wingender,, H. Muller, and, B. Tummler. 1994. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microbiol. 60: 17341738.
37. Sanchez, P.,, J. F. Linares,, B. Ruiz-Diez, et al. 2002. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother. 50: 657664.
38. Schmidt, H., and, M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17: 1456.
39. Singh, N. 2003. Impact of current transplantation practices on the changing epidemiology of infections in transplant recipients. Lancet Infect. Dis. 3: 156161.
40. Sixou, J. L.,, O. de Medeiros-Batista, and, M. Bonnaure-Mallet. 1996. Modifications of the microflora of the oral cavity arising during immunosuppressive chemotherapy. Eur. J. Cancer B Oral Oncol. 32B: 306310.
41. Snelling, W. J.,, J. E. Moore,, J. P. McKenna,, D. M. Lecky, and, J. S. Dooley. 2006. Bacterial-protozoa interactions; an update on the role of these phenomena play towards human illness. Microbes Infect. 8: 578587.
42. Swartz, M. N. Hospital-acquired infections: diseases with increasingly limited therapies. Proc. Natl. Acad. Sci. USA 91: 24202427.
43. Vincent, J. L.,, D. J. Bihari,, P. M. Suter, et al. 1995. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 274: 639644.
44. Weitere, M.,, T. Bergfeld,, S. A. Rice,, C. Matz, and, S. Kjelleberg. 2005. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ. Microbiol. 7: 15931601.
45. Wolfgang, M. C.,, B. R. Kulasekara,, X. Liang, et al. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 84848489.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error