Chapter 16 : Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap16-2.gif


Bacteriophages (so-called phages), viruses that infect bacteria, are the most abundant and varied biological group on the planet, with ~108 different phage species representing an estimated global population on the order of ~1031 viral particles. The field of phages as biotherapeutic agents has been rediscovered, as several experiments have demonstrated their potential for treatment of antibiotic-resistant bacteria, such as vancomycin-resistant Enterococcus faecium. In addition to the classical virulence factors described in prophages, the “genomic era” has revealed new pathogenicity factors linked to prophages. Several examples of antibiotic resistance genes spread by generalized or specialized transduction have been described. For instance, resistance to imipenem, aztreonam, and ceftazidime in Pseudomonas aeruginosa can be transduced by two phages, AP-2 and AP-12. Phages can also transduce resistance to chloramphenicol in E. coli, methicillin in Staphylococcus epidermidis, novobiocin or tetracycline in Staphylococcus aureus, or tetracycline and chloramphenicol in Actinobacillus actinomycetemcomitans. There are few examples of bacteriophages harboring antibiotic resistance genes. An interesting example is the presence of the ars operon in the skin element of Bacillus subtilis, which confers resistance to arsenate. One of the mechanisms of macrolide resistance found in streptococci is mediated by the proton-dependent efflux pump encoded by mef (A). Two main lines of research have been opened to find novel anti-infectives. The first is using lytic enzymes to weaken the bacterial cell wall of specific bacteria. The second line of research consists of using bacteriophages to design protein-like chemical compounds that arrest critical cellular processes.

Citation: Galán J. 2008. Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance, p 167-184. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Although phage and host are both striving for their own survival, they have opposite interests. Only in the lysogenic (prophage) stage do they have common interests because both need the other for different reasons.

Citation: Galán J. 2008. Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance, p 167-184. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abedon, S. T., and, J. T. LeJeune. 2005. Why bacteriophage encode exotoxins and other virulence factors. Evol. Bioinformat. Online 1: 97110.
2. Abshire, T. G.,, J. E. Brown, and, J. W. Ezzell. 2005. Production and validation of the use of gamma phage for identification of Bacillus anthracis. J. Clin. Microbiol. 43: 47804788.
3. Aziz, R. K.,, R. A. Edwards,, W. W. Taylor,, D. E. Low,, A. McGeer, and, M. Kotb. 2005. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J. Bacteriol. 187: 33113318.
4. Banks, D.,, S. B. Beres, and, J. M. Musser. 2002. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10: 515521.
5. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, S. B. Beres,, L. E. Philips,, J. M. Voyich, et al. 2004. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J. Infect. Dis. 190: 727738.
6. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, J. M. Martin, and, J. M. Musser. 2003. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. J. Infect. Dis. 188: 18981908.
7. Bardarov, S.,, S. Bardarov Jr.,, M. S. Pavelka Jr.,, V. Sambandamurthy,, M. Larsen,, J. Tufariello, et al. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 30073017.
8. Barondess, J. J., and, J. Beckwith. 1995. bor gene of phage lambda, involved in serum resistance encodes a widely conserved outer membrane lipoprotein. J. Bacteriol. 177: 12471253.
9. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2002. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184: 42594269.
10. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427: 7274.
11. Bensing, B. A.,, C. E. Rubens, and, P. M. Sullam. 2001. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect. Immun. 60: 61866192.
12. Beres, S. B.,, G. L. Sylva,, K. D. Barbian,, B. Lei,, J. S. Hoff,, N. D. Mammarella, et al. 2002. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 99: 1007810083.
13. Beres, S. B.,, G. L. Sylva,, D. E. Sturdevant,, C. N. Granville,, M. Liu,, S. M. Ricklefs, et al. 2004. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc. Natl. Acad. Sci. USA 101: 1183311838.
14. Beutin, L.,, U. H. Stroeher, and, P. A. Manning. 1993. Isolation of enterohemolysin (Ehly2)-associated sequences encoded on temperate phages of Escherichia coli. Gene 132: 9599.
15. Bik, E. M.,, A. E. Bunschoten,, R. D. Gouw, and, F. R. Mooi. 1995. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14: 209216.
16. Bille, E.,, J. R. Zahar,, A. Perrin,, S. Morelle,, P. Kriz,, K. A. Jolley, et al. 2005. A chromosomally integrated bacteriophage in invasive meningococci. J. Exp. Med. 201: 19051913.
17. Biswas, B.,, S. Adhya,, P. Washart,, B. Paul,, A. N. Trostel,, B. Powell, et al. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204210.
18. Blahova, J.,, M. Hupkova,, M. Babalova,, V. Krcmery, and, V. Schafer. 1993. Transduction of resistance to imipenem, aztreonam and ceftazidime in nosocomial strains of Pseudomonas aeruginosa by wild-type phages. Acta Virol. 37: 429436.
19. Blanchard, T. J.,, S. M. Poston, and, P. J. Reynolds. 1986. Recipient characteristics in the transduction of methicillin resistance in Staphylococcus epidermidis. Antimicrob. Agent Chemother. 29: 539541.
20. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 14531474.
21. Bossi, L.,, J. A. Fuentes,, G. Mora, and, N. Figueroa-Bossi. 2003. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185: 64676471.
22. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. NY Acad. Sci. 354: 484490.
23. Boyd, E. F., and, H. Brüssow. 2002. Common themes among bacteriophage-encoded virulence genes and diversity among the bacteriophages involved. Trends Microbiol. 10: 521529.
24. Boyd, E. F.,, A. J. Heilpern, and, M. K. Waldor. 2000. Molecular analyses of a putative CTXφ precursor and evidence for independent acquisition of distinct CTXφs by toxigenic Vibrio cholerae. J. Bacteriol. 182: 55305538.
25. Breitbart, M., and, F. Rohwer. 2005. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13: 278284.
26. Breitbart, M.,, B. Felts,, S. Kelley,, J. M. Mahaffy,, J. Nulton,, P. Salamon, and, F. Rohwer. 2004. Diversity and population structure of a near-shore marine-sediment viral community. Proc. Biol. Sci. 271: 565574.
27. Breitbart, M.,, P. Salamon,, B. Andresen,, J. M. Mahaffy,, A. M. Segall,, D. Mead, et al. 2002. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 99: 1425014255.
28. Brenciani, A.,, K. K. Ojo,, A. Monachetti,, S. Menzo,, M. C. Roberts,, P. E. Varaldo, et al. 2004. Distribution and molecular analysis of mef (A)-containing elements in tetracycline-susceptible and -resistant Streptococcus pyogenes clinical isolates with efflux-mediated erythromycin resistance. J. Antimicrob. Chemother. 54: 991998.
29. Broudy, T. B.,, V. Pancholi, and, V. A. Fischetti. 2001. Induction of lysogenic bacteriophage and phage-associated toxin from group a streptococci during coculture with human pharyngeal cells. Infect. Immun. 69: 14401443.
30. Brown, J. E., and, W. B. Cherry. 1995. Specific identification of Bacillus anthracis by means of a variant bacteriophage. J. Infect. Dis. 96: 3439.
31. Brüggemann, H. 2005. Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity. Curr. Opin. Microbiol. 8: 601605.
32. Brüssow, H.,, C. Canchaya, and, W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560602.
33. Brüssow, H., and, R. W. Hendrix. 2002. Phage genomics: small is beautiful. Cell 108: 1316.
34. Canchaya, C.,, G. Fournous, and, H. Brüssow. 2004. The impact of prophages on bacterial chromosomes. Mol. Microbiol. 53: 918.
35. Canchaya, C.,, G. Fournous,, S. Chibani-Chennoufi,, M. L. Dillmann, and, H. Brüssow. 2003. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6: 417424.
36. Cantón, R.,, A. Oliver,, T. M. Coque,, M. C. Varela,, J. C. Pérez-Díaz, and, F. Baquero. 2002. Epidemiology of extended-spectrum β-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12-year period. J. Clin. Microbiol. 40: 12371243.
37. Casjens, S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49: 277300.
38. Cerdeño-Tárraga, A. M.,, A. Efstratiou,, L. G. Dover,, M. T. G. Holden,, M. Pallen,, S. D. Bentley, et al. 2003. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. 31: 65166523.
39. Cerquetti, M. C., and, A. M. Hooke. 1993. Vi I phage for generalized transduction of Salmonella typhi. J. Bacteriol. 175: 52945296.
40. Chen, Y.,, I. Golding,, S. Sawai,, L. Guo, and, E. C. Cox. 2005. Population fitnesss and regulation of Escherichia coli genes by bacterial virues. PLoS Biol. 3: e259.
41. Chibani-Chennoufi, S.,, A. Bruttin,, M. L. Dillmann, and, H. Brüssow. 2004. Phage-host interaction: an ecological perspective. J. Bacteriol. 186: 36773686.
42. Cochetti, I.,, M. Vecchi,, M. Mingoia,, E. Tili,, M. R. Catania,, A. Manzin, et al. 2005. Molecular characterization of pneumococci with efflux-mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob. Agents Chemother. 49: 49995006.
43. Coombes, B. K.,, M. E. Wickham,, N. F. Brown,, S. Lemire,, L. Bossi,, W. W. L. Hsiao, et al. 2005. Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar typhimurium with autonomous expression from its associated phage. J. Mol. Biol. 348: 817830.
44. D’Ercole, S.,, D. Petrelli,, M. Prenna,, C. Zampaloni,, M. R. Catania,, S. Ripa, et al. 2005. Distribution of mef(A)-containing genetic elements in erythromycin-resistant isolates of Streptococcus pyogenes from Italy. Clin. Microbiol. Infect. 11: 927930.
45. Daubin, V., and, H. Ochman. 2004. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14: 10361042.
46. Daubin, V.,, E. Lerat, and, G. Perrière. 2003. The source of laterally transferred genes in bacterial genomes. Genome Biol. 4: R57.
47. De Marini, D. M., and, B. K. Lawrance. 1992. Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks. Mutat. Res. 267: 117.
48. Desiere, F.,, S. Luchini,, C. Canchaya,, M. Ventura, and, H. Brüsow. 2002. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Leeuwenhoek 82: 7391.
49. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Ferretti, and, H. Brüssow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. J. Virol. 288: 325341.
50. Díaz, E.,, R. López, and, J. L. García. 1992. EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype. J. Bacteriol. 174: 55165525.
51. Dodd, I. B.,, K. E. Shearwin, and, J. B. Egan. 2005. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15: 145152.
52. Doulatov, S.,, A. Hodes,, L. Dai,, N. Mandhana,, M. Liu,, R. Deora,, R. W. Simons,, S. Zimmerly, and, J. F. Miller. 2004. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431: 476481.
53. Dziejman, M.,, E. Balon,, D. Boyd,, C. M. Fraser,, J. F. Heidelberg, and, J. J. Mekalanos. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99: 15561561.
54. Edwards, R. A., and, F. Rohwer. 2005. Viral metagenomics. Nat. Rev. Microbiol. 3: 504510.
55. Eklund, M. W.,, F. T. Poysky,, S. M. Reed, and, C. A. Smitth. 1971. Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172: 480482.
56. Entenza, J. M.,, J. M. Loeffler,, D. Grandgirard,, V. A. Fischetti, and, P. Moreillon. 2005. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents Chemother. 49: 47894792.
57. Faruque, S. M.,, Asadulghani, M., N. Saha,, A. R. Alim,, M. J. Albert,, K. M. Islam, et al. 1998. Induction of the lysogenic phage encoding cholera toxin in naturally occurring strains of toxigenic Vibrio cholerae O1 and O139. Infect. Immun. 66: 37523757.
58. Faruque, S. M.,, M. Kamruzzaman,, D. A. Asadulghani,, D. A., Sack,, J. J. Mekalanos, and, G. B. Nair. 2003. CTXφ-independent production of the RS1 satellite phage by Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100: 12801285.
59. Figueroa-Bossi, N., and, Bossi L. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33: 167176.
60. Figueroa-Bossi, N.,, S. Uzzau,, D. Maloriol, and, L. Bossi. 2001. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol. 39: 260272.
61. Filée, J.,, P. Forterre, and, J. Laurent. 2003. The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Res. Microbiol. 154: 237243.
62. Fischetti, V. A. 2005. Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol. 13: 491496.
63. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496512.
64. Frobisher, M., and, J. Brown. 1927. Transmissible toxicogenicity of streptococci. Bull. Johns Hopkins Hosp. 41: 167173.
65. Gamage, S. D.,, A. K. Patton,, J. F. Hanson, and, A. A. Weiss. 2004. Diversity and host range of shiga toxin-encoding phage. Infect. Immun. 72: 71317139.
66. Gay, K., and, D. S. Stephens. 2001. Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae. J. Infect. Dis. 184: 5665.
67. Gill, D. M. 1982. Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 46: 8694.
68. Giovanetti, E.,, A. Brenciani,, R. Lupidi,, M. C. Roberts, and, P. E. Varaldo. 2003. Presence of the tet(O) gene in erythromycinand tetracycline-resistant strains of Streptococcus pyogenes and linkage with either the mef(A) or the erm(A) gene. Antimicrob. Agents Chemother. 47: 28442849.
69. Giovanetti, E.,, A. Brenciani,, M. Vecchi,, A. Manzin, and, P. E. Varaldo. 2005. Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes. J. Antimicrob. Chemother. 55: 445451.
70. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero, et al. 2001. Comparative genomics of Listeria species. Science 294: 849852.
71. Goerke, C.,, J. Koller, and, C. Wolz. 2006. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 50: 171177.
72. Goerke, C.,, S. M. Papenberg,, S. Dasbach,, K. Dietz,, R. Ziebach,, B. C. Kahl, et al. 2004. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J. Infect. Dis. 189: 724734.
73. Gonzalez, M. D.,, C. A. Lichtensteiger,, R. Caughlan, and, E. R. Vimr. 2002. Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis Biovar orientalis. J. Bacteriol. 184: 60506055.
74. Goshorn, S. C., and, P. M. Schlievert. 1989. Bacteriophage association of streptococcal pyrogenic exotoxin type C. J. Bacteriol. 171: 30683073.
75. Goubel, W.,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones, et al. 2001. Comparative genomics of Listeria species. Science 294: 849852.
76. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson, et al. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477483.
77. Hendrix, R. W.,, G. F. Hatfull, and, M. C. M. Smith. 2003. Bacteriophages with tails: chasing their origins and evolution. Res. Microbiol. 154: 253257.
78. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull, and, S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504508.
79. Hendrix, R. W.,, M. C. M. Smith,, R. N. Burns,, M. E. Ford, and, G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proc. Natl. Acad. Sci. USA 96: 21922197.
80. Hens, D. K.,, N. C. Chatterjee, and, R. Kumar. 2006. New temperate DNA phage BcP15 acts as a drug resistance vector. Arch. Virol. 151: 13451353.
81. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton, and, D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400403.
82. Ho, T. D., and, J. M. Slauch. 2001. Characterization of grvA, an antivirulence gene on the gifsy-2 phage in Salmonella enterica serovar Typhimurium. J. Bacteriol. 183: 611620.
83. Hooper, L. V., and, J. I. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science 292: 11151118.
84. Hoskins, J.,, W. E. Alborn, Jr.,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff, et al. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183: 57095717.
85. Hsiao, W. W. L.,, K. Ung,, D. Aeschliman,, J. Bryan,, B. B. Finlay, and, F. S. L. Brinkman. 2005. Evidence of a large novel gene pool associated with prokaryotic genomic islands. PloS Genet. 18: 1:e62.
86. Huang, A.,, J. Friesen, and, J. L. Brunton. 1987. Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli. J. Bacteriol. 169: 43084312.
87. Huber, K. E., and, M. K. Waldor. 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417: 656659.
88. Hyder, S. L., and, M. M. Streitfeld. 1978. Transfer of erythromycin resistance from clinically isolated lysogenic strains of Streptococcus pyogenes via their endogenous phage. J. Infect. Dis. 138: 281286.
89. Hynes, W. L., and, J. J. Ferretti. 1989. Sequence analysis and expression in Escherichia coli of the hyaluronidase gene of Streptococcus pyogenes bacteriophage H4489A. Infect. Immun. 57: 533539.
90. Iandolo, J. J.,, V. Worrell,, K. H. Groicher,, Y. Qian,, R. Tian,, S. Kenton, et al. 2002. Comparative analysis of the genomes of the temperate bacteriophages φ11, φ12 and φ13 of Staphylococcus aureus 8325. Gene 289: 109118.
91. Iguchi, A.,, S. Iyoda,, J. Terajima,, H. Watanabe, and, R. Osawa. 2006. Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli O157:H7 chromosome. Gene 372: 199207.
92. Ikebe, T.,, A. Wada,, Y. Inagaki,, K. Sugama,, R. Suzuki,, D. Tanaka, et al. 2002. Dissemination of the phage-associated novel superantigen gene speL in recent invasive and noninvasive Streptococcus pyogenes M3/T3 isolates in Japan. Infect. Immun. 70: 32273233.
93. Inoue, K., and, H. Iida. 1971. Phage-conversion of toxigenicity in Clostridium botulinum types C and D. Jpn. J. Med. Sci. Biol. 24: 5356.
94. Jiang, S. C., and, J. H. Paul. 1998. Gene transfer by transduction in the marine environment Appl. Environ. 64: 27802787.
95. Jones, M. E.,, J. A. Karlowsky,, D. C. Draghi,, C. Thornsberry,, D. F. Sahm, and, D. Nathwani. 2003. Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int. J. Antimicrob. Agent. 22: 406419.
96. Just, I., and, R. Gerhard. 2004. Large clostridial cytotoxins. Rev. Physiol. Biochem. Pharmacol. 152: 2347.
97. Kaneko, J.,, T. Kimura,, S. Narita,, T. Tomita, and, Y. Kamio. 1998. Complete nucleotide sequence and molecular characterization of the temperature staphylococcal bacterophage φPVL carrying Panton-Valentine leukocidin genes. Gene 215: 5767.
98. Kaper, J. B.,, J. P. Nataro, and, H. L. T. Mobley. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123140.
99. Karaolis, D. K. R.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper, and, P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 31343139.
100. Kawai, M.,, I. Uchiyama, and, I. Kobayashi. 2005. Genome comparison in silico in Neisseria suggests integration of filamentous bacteriophages by their own transposase. DNA Res. 12: 389401.
101. Kovach, M. E.,, M. D. Shaffer, and, K. M. Peterson. 1996. A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142: 21652174.
102. Kunkel, B.,, R. Losick, and, P. Stagier. 1990. The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4: 525535.
103. Kwan, T.,, J. Liu,, M. DuBow,, P. Gros, and, J. Pelletier. 2005. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102: 51745179.
104. Lawrence, J. G.,, R. W. Hendrix, and, S. Casjens. 2001. Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9: 535540.
105. Lazarevic, V.,, A. Düsterhöft,, B. Soldo,, H. Hilbert,, C. Mauëll, and, D. Karamata. 1999. Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPβc2. Microbiology 145: 10551067.
106. Levin, B. R., and, J. J. Bull. 2004. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2: 166173.
107. Lin, L.,, R. Bitner, and, G. Edlin. 1977. Increased reproductive fitness of Escherichia coli lambda lysogens. J. Virol. 21: 554559.
108. Lindsay, J. A., and, M. T. Holden. 2006. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics 2: 116.
109. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina, and, R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527543.
110. Liu, J.,, M. Dehbi,, G. Moeck,, F. Arhin,, P. Bauda,, D. Bergeron, et al. 2004. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22: 185191.
111. Loeffler, J. M., and, V. A. Fischetti. 2003. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Infect. Immun. 47: 375377.
112. Lucchini, S.,, F. Desiere, and, H. Brüssow. 1999. Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J. Virol. 73: 86478656.
113. Maiques, E.,, C. Úbeda,, S. Campoy,, N. Salvador,, I. Lasa,, R. P. Novick, et al. 2006. β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J. Bacteriol. 188: 27262729.
114. Marimón, J. M.,, A. Valiente,, M. Ercibengoa,, J. M. GarcíaArenzana, and, E. Pérez-Trallero. 2005. Erythromycin resistance and genetic elements carrying macrolide efflux genes in Streptococcus agalactiae. Antimicrob. Agents Chemother. 49: 50695074.
115. Masui, S.,, H. Kuroiwa,, T. Sasaki,, M. Inui,, T. Kuroiwa, and, H. Ishikawa. 2001. Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem. Biophys. Res. Commun. 283: 10991104.
116. McDonough, M. A., and, J. R. Butterton. 1999. Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1. Mol. Microbiol. 34: 10581069.
117. McLeod, S. M.,, H. H. Kimsey,, B. M. Davis, and, M. K. Waldor. 2005. CTXφ and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol. Microbiol. 57: 347356.
118. Medini, D.,, C. Donati,, H. Tettelin,, V. Masignani, and, R. Rappuoli. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589594.
119. Mesyanzhinov, V. V.,, J. Robben,, B. Grymonprez,, V. A. Kostyuchenko,, M. V. Bourkaltseva,, N. N. Sykilinda, et al. 2002. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 317: 119.
120. Miller, E. S.,, E. Kutter,, G. Mosig,, F. Arisaka,, T. Kunisawa, and, W. Ruger. 2003. Bacteriophage T4 Genome. Microbiol. Mol. Biol. Rev. 67: 86156.
121. Mirold, S.,, W. Rabsch,, M. Rohde,, S. Stender,, H. Tschäpe,, H. Rüssmann, et al. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. USA 96: 98459850.
122. Mizoguchi, K.,, M. Morita,, C. R. Fischer,, M. Yoichi,, Y. Tanji, and, H. Unno. 2003. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl. Environ. Microbiol. 69: 170176.
123. Mizuno, M.,, S. Masuda,, K. Takemaru,, S. Hosono,, T. Sato,, M. Takeuchi, et al. 1996. Systematic sequencing of the 283 kb 210 degrees-232 degrees region of the Bacillus subtilis genome containing the skin element and many sporulation genes. Microbiology 142: 31033111.
124. Mokady, D.,, U. Gophna, and, E. Z. Ron. 2005a. Extensive gene diversity in septicemic Escherichia coli strains. J. Clin. Microbiol. 43: 6673.
125. Mokady, D.,, U. Gophna, and, E. Z Ron. 2005b. Virulence factors of septicemic Escherichia coli strains. Int. J. Med. Microbiol. 295: 455462.
126. Moriishi, K.,, M. Kuora,, N. Abe,, N. Fujii,, Y. Fujinaga,, K. Inoue, et al. 1996. Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim. Biophys Acta 1307: 123126.
127. Moxon, E. R., and, V. A. A. Jansen. 2005. Phage variation: understanding the behavior of an accidental pathogen. Trends Microbiol. 13: 563565.
128. Muniesa, M.,, A. García,, E. Miró,, B. Mirelis,, G. Prats,, J. Jofre, et al. 2004. Bacteriophages and diffusion of β-lactamase genes. Emerg. Infect. Dis. 10: 11341137.
129. Munson, R. S., Jr.,, A. Harrison,, A. Gillaspy,, W. C. Ray,, M. Carson,, D. Armbruster, et al. 2004. Partial analysis of the genomes of two nontypeable Haemophilus influenzae otitis media isolates. Infect. Inmun. 72: 30023010.
130. Musser, J. M.,, A. R. Hauser,, M. H. Kim,, P. M. Schlievert,, K. Nelson, and, R. K. Selander. 1991. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc. Natl. Acad. Sci. USA 88: 26682672.
131. Nakagawa, I.,, K. Kurokawa,, A. Yamashita,, M. Nakata,, Y. Tomiyasu,, N. Okahashi, et al. 2003a. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13: 10421055.
132. Nakagawa, S.,, S. Kojio,, I. Taneike,, N. Iwakura,, Y. Tamura,, K. Kushiya, et al. 2003b. Inhibitory action of telithromycin against Shiga toxin and endotoxin. Biochem. Biophys. Res. Commun. 310: 11941199.
133. Nakayama, K.,, S. Kanaya,, M. Ohnishi,, Y. Terawaki, and, T. Hayash. 1999. The complete nucleotide sequence of φCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 39419.
134. Nelson, D.,, L. Loomis, and, V. A. Fischetti. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 41074112.
135. Novic, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49: 93105.
136. Ohara, T.,, S. Kojio,, I. Taneike,, S. Nakagawa,, F. Gondaira,, Y. Tamura, et al. 2002. Effects of azithromycin on shiga toxin production by Escherichia coli and subsequent host inflammatory response. Antimicrob. Agents Chemother. 46: 34783483.
137. Ohnishi, M.,, K. Kurokawa, and, T. Hayashi. 2001. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9: 481485.
138. Ohnishi, M.,, J. Terajima,, K. Kurokawa,, K. Nakayama,, T. Murata,, K. Tamura, et al. 2002. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc. Natl. Acad. Sci. USA 99: 1704317048.
139. Oliver, A.,, T. M. Coque,, D. Alonso,, A. Valverde,, F. Baquero, and, R. Cantón R. 2005. CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital. Antimicrob. Agents Chemother. 49: 15671571.
140. Oliver, A.,, J. C. Pérez-Díaz,, T. M. Coque,, F. Baquero, and, R. Cantón. 2001. Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing β-lactamase (CTX-M-10) isolated in Spain. Antimicrob. Agents Chemother. 45: 616620.
141. Osawa, R.,, S. Iyoda,, S. I. Nakayama,, A. Wada,, S. Yamai, and, H. Watanabe. 2000. Genotypic variations of Shiga toxin-converting phages from enterohaemorrhagic Escherichia coli O157:H7 isolates. J. Med. Microbiol. 49: 565574.
142. O’Shea, Y. A.,, F. J. Reen,, A. M. Quirke, and, E. F. Boyd. 2004. Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J. Clin. Microbiol. 42: 46574671.
143. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis, et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171182.
144. Pereira, M. S.,, V. P. Barreto, and, J. P. Siqueira-Junior. 1997. Phage-mediated transfer of tetracycline resistance in Staphylococcus aureus isolated from cattle in Brazil. Microbios 92: 147155.
145. Perna, N. T.,, G. Plunkett, III,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose, et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529533.
146. Pozzi, G.,, F. Iannelli,, M. R. Oggioni,, M. Santagati, and, S. Stefani. 2004. Genetic elements carrying macrolide efflux genes in streptococci. Curr. Drug Targets Infect. Disord. 4: 203206.
147. Purohit, S.,, R. K. Bestwick,, G. W. Lasser,, C. M. Rogers, and, C. K. Mathews. 1981. T4 phage-coded dihydrofolate reductase. Subunit composition and cloning of its structural gene. J. Biol. Chem. 256: 91219125.
148. Quiñones, M.,, H. H. Kimsey, and, M. K. Waldor. 2005. LexA cleavage is required for CTX prophage induction. Mol. Cell. 17: 291300.
149. Ramirez, M.,, E. Severina, and, A. Tomasz. 1999. A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae. 181: 36183625.
150. Ray, P.,, J. D. Berman,, W. Middleton, and, J. Brendle. 1993. Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J. Biol. Chem. 268: 1105711064.
151. Riley, L. W.,, R. S. Remis,, S. D. Helgerson,, H. B. MvGee,, J. G. Wells,, B. R. Davis, et al. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308: 681685.
152. Rohwer, F. 2003. Global phage diversity. Cell 113: 141.
153. Romero, A.,, R. Lopez,, R. Lurz, and, P. Garcia. 1990. Temperate bacteriophages of Streptococcus pneumoniae that contain protein covalently linked to the 5′ ends of their DNA. J. Virol. 64: 51495155.
154. Ruzin, A.,, J. Lindsay, and, R. P. Novick. 2001. Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41: 365377.
155. Sack, D. A.,, R. B. Sack,, G. B. Nair, and, A. K. Siddique. 2004. Cholera. Lancet 363: 223233.
156. Sakaguchi, Y.,, T. Hayashi,, K. Kurokawa,, K. Nakayama,, K. Oshima,, Y. Fujinaga, et al. 2005. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc. Natl. Acad. Sci. USA 102: 1747217477.
157. Sanogo, Y. O., and, S. L. Dobson. 2006. WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect. Biochem. Mol. Biol. 36: 8085.
158. Santagati, M.,, F. Iannelli,, C. Cascone,, F. Campanile,, M. R. Oggioni,, S. Stefani, et al. The novel conjugative transposon Tn 1207. 3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb. Drug Resist. 9: 243247.
159. Santagati, M.,, F. Iannelli,, M. R. Oggioni,, S. Stefani, and, G. Pozzi. 2000. Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44: 25852587.
160. Sato, T., and, Y. Kobayashi. 1998. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol. 180: 16551661.
161. Schaefler, S. 1982. Bacteriophage-mediated acquisition of antibiotic resistance by Staphylococcus aureus type 88. Anti-microb. Agents Chemother. 21: 460467.
162. Schantz, E. J., and, E. A. Jonson. 1992. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev. 56: 8099.
163. Schmieger, H., and, P. Schicklmaier. 1999. Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol. Lett. 170: 251256.
164. Schuch, R., and, V. A. Fischetti. 2006. Detailed genomic analysis of the Wβ and γ phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance. J. Bacteriol. 188: 30373051.
165. Seppälä, H.,, A. Nissinen,, Q. Yu, and, P. Huovinen. 1993. Three different phenotypes of erythromycin-resistant Streptococcus pyogenes in Finland. J. Antimicrob. Chemother. 32: 885891.
166. Shaikh, N., and, P. I. Tarr. 2003. Escherichia coli O157:H7 shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J. Bacteriol. 185: 35963605.
167. Smoot, J. C.,, K. D. Barbian,, J. J. Van Gompel,, L. M. Smoot,, M. S. Chaussee,, G. L. Sylva, et al. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99: 46684673.
168. Soothill, J. S., and, P. E. Lock. 2005. Screening for carbapenem-resistant bacteria. Lancet Infect. Dis. 5: 597598.
169. Stanley, R. L.,, C. D. Ellermeier, and, J. M. Slauch. 2000. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer’s patches. J. Bacteriol. 182: 44064413.
170. Stragier, P.,, B. Kunkel,, L. Kroos, and, R. Losick. 1989. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243: 507512.
171. Sulakvelidze, A. 2005. Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discov. Today 10: 807809.
172. Sunagawa, H.,, T. Ohyama,, T. Watanabe, and, K. Ioue. 1992. The complete amino acid sequence of the Clostridium botulinum type D neurotoxin deduced by necleotide sequence analysis of the encoding phage d-16phi genome. J. Vet. Med. Sci. 545: 905913.
173. Sutcliffe, J.,, A. Tait-Kamradt, and, L. Wondrack. 1996. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob. Agents Chemother. 40: 18171824.
174. Szczypa, K.,, E. Sadowy,, R. Izdebski, and, W. Hryniewicz. 2004. A rapid increase in macrolide resistance in Streptococcus pyogenes isolated in Poland during 1996–2002. J. Antimicrob. Chemother. 54: 828831.
175. Takemaru, K.,, M. Mizuno,, T. Sato,, M. Takeuchi, and, Y. Kobayashi. 1995. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141: 323327.
176. Takeuchi, F.,, S. Watanabe,, T. Baba,, H. Yuzawa,, T. Ito,, Y. Morimoto, et al. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing Staphylococcal species. J. Bacteriol. 187: 72927308.
177. Tamayo, J.,, E. Pérez-Trallero,, J. L. Gómez-Garcés, and, J. I. Alós. 2005. Resistance to macrolides, clindamycin and telithromycin in Streptococcus pyogenes isolated in Spain during 2004. J. Antimicrob. Chemother. 56: 780782.
178. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson, et al. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. 293: 498506.
179. Thingstad, T. F., and, R. Lignell. 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13: 1927.
180. Thomas, A.,, J. Tocher, and, D. I. Edward. 1990. Electrochemical characteristics of five quinolone drugs and their effect on DNA damage and repair in Escherichia coli. J. Antimicrob. Chemother. 25: 733744.
181. Thomson, N.,, S. Baker,, D. Pickard,, M. Fookes,, M. Anjum,, N. Hamlin, et al. 2004. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J. Mol. Biol. 339: 279300.
182. Úbeda, C.,, E. Maiques,, E. Knecht,, I. Lasa,, R. P. Novick, and, J. R. Penadés. 2005. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56: 836844.
183. Udo, E. E., and, W. B. Grubb. 1996. A phage-mediated transfer of chromosomally integrated tetracycline resistance plasmid in Staphylococcus aureus. J. Med. Microbiol. 32: 286290.
184. Uemura, R.,, M. Sueyoshi,, Y. Taura, and, H. Nagatoma. 2004. Effect of antimicrobial agents on the production and release of shiga toxin by enterotoxaemic Escherichia coli isolates from pigs. J. Vet. Med. Sci. 66: 899903.
185. Vander Byl, C., and, A. M. Kropinski. 2000. Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182: 64726481.
186. Ventura, M.,, A. Bruttin,, C. Canchaya, and, H. Brüssow. 2002. Transcription analysis of Streptococcus thermophilus phages in the lysogenic state. Virology 302: 2132.
187. Ventura, M.,, C. Canchaya,, M. Kleerebezem,, W. M. de Vos,, R. J. Siezen, and, H. Brüssow. 2003. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 316: 245255.
188. Ventura, M.,, C. Canchaya,, R. D. Pridmore, and, H. Brüssow. 2004. The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology 320: 229342.
189. Ventura, M.,, J. Lee,, C. Canchaya,, R. Zink,, S. Leahy,, J. A. Moreno-Munoz, et al. 2005. Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl. Environ. Microbiol. 71: 86928705.
190. Voelker, L. L., and, K. Dybvig. 1999. Sequence analysis of the Mycoplasma arthritidis bacteriophage MAV1 genome identifies the putative virulence factor. Gene 11: 101107.
191. Wagner, P. L., and, M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Inf. Immun. 70: 39853993.
192. Waldor, M. K., and, D. I. Friedman. 2005. Phage regulatory circuits and virulence gene expression. Curr. Opin. Microbiol. 8: 459465.
193. Waldor, M. K., and, J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 19101914.
194. Walter, M. H., and, D. D. Baker. 2003. Three Bacillus anthracis bacteriophages from topsoil. Curr. Microbiol. 47: 5558.
195. Wang, J.,, B. Hu,, M. Xu,, Q. Yan,, S. Liu,, X. Zhu, et al. 2006a. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med. 17: 347355.
196. Wang, J.,, B. Hu,, M. Xu,, Q. Yan,, S. Liu,, X. Zhu, et al. 2006b. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17: 309317.
197. Washburn, L. R.,, E. J. Miller,, S. Mukherjee, and, D. Dannenbring. 2004. Mycoplasma arthritidis bacteriophage MAV1 prophage integration, deletions, and strain-related polymorphisms. Plasmid 52: 3147.
198. Weitz, J. S.,, H. Hartman, and, S. A. Levin. 2005. Coevolutionary arms races between bacteria and bacteriophage. Proc. Natl. Acad. Sci. USA 102: 95359540.
199. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 65786583.
200. Wichman, H. A.,, J. Millstein, and, J. J. Bull. 2005. Adaptive molecular evolution for 13,000 phage generations: a possible arms race. Genetics 170: 1931.
201. Wick, L. M.,, W. Qi,, D. W. Lacher, and, T. S. Whittam. 2005. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 187: 17831791.
202. Willi, K., H. Sandmeier,, E. M. Kulik, and, J. Meyer. 1997. Transduction of antibiotic resistance markers among Actinobacillus actinomicetecomitans strains by temperate bacteriophages Aa phi23. Cell Mol. Life Sci. 53: 904910.
203. Witte, W. 2004. International dissemination of antibiotic resistant strains of bacterial pathogens. Infect. Genet. Evol. 4: 1874191.
204. Wommack, K. E., and, R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64: 69114.
205. Wong, S. M.,, P. A. Carroll,, L. G. Rahme,, F. M. Ausubel, and, S. B. Calderwood. 1998. Modulation of expression of the ToxR regulon in Vibrio cholerae by a member of the two-component family of response regulators. Inf. Immun. 66: 58545861.
206. Wood, E.,, M. T. Dawson,, K. M. Devine, and, D. J. McConnell. 1990. Characterization of PBSX, a defective prophage of Bacillus subtilis. J. Bacteriol. 172: 26672674.
207. Yamaguchi, T.,, T. Hayashi,, H. Takami,, K. Nakasone,, M. Ohnishi,, K. Nakayama, et al. 2000. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38: 694705.
208. Zeph, L. R.,, M. A. Onaga, and, G. Stotzky. 1988. Transduction of Escherichia coli by bacteriophage P1 in soil. Appl. Environ. Microbiol. 54: 17311737.
209. Zhang, X.,, A. D. McDaniel,, L. E. Wolf,, G. T. Keusch,, M. K. Waldor, and, D. W. Acheson. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Inf. Dis. 181: 664670.
210. Zhou, Y.,, H. Sugiyama, and, E. A. Johnson. 1993. Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl. Envir. Microbiol. 59: 38253831.


Generic image for table
Table 1.

Some examples of phages carrying virulence factors in gram-positive bacteria

Citation: Galán J. 2008. Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance, p 167-184. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch16
Generic image for table
Table 2.

Some examples of phages carrying virulence factors in gram-negative bacteria

Citation: Galán J. 2008. Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance, p 167-184. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error