Chapter 26 : Effects of Antibiotic Resistance on Bacterial Fitness, Virulence, and Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Effects of Antibiotic Resistance on Bacterial Fitness, Virulence, and Transmission, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap26-2.gif


This chapter deals with study of antibiotic resistance and its fitness costs has had several interesting evolutionary implications. The effect of antibiotic resistance on the virulence and disease pathology of pathogenic bacteria can be assessed by measuring 50% lethal dose LD50 values in experimental animals or by examining the specific pathology of the disease. An interesting question is whether antibiotic resistance is associated with an altered rate of bacterial transmission between hosts. The most commonly occurring katG mutation in Mycobacterium tuberculosis, Ser315Thr, is both highly resistant to isoniazid and virulent in the mouse model of the disease. A meta-analysis of the literature on isoniazid resistance resulting from the S315T mutation in clinical isolates in relation to ecological factors supports this, suggesting that this mutation provides high-level resistance without diminishing virulence or transmissibility. For the models to be most useful in the context of antibiotic resistance, one needs to know if the transmission rates for susceptible and resistant bacteria differ significantly. The limited amount of data currently available on the biological costs suggests that antibiotic resistance might be less easily reversed than previously anticipated, and the expected rate and extent of reduction are predicted to be at best moderate in community settings. In particular, one needs measurements under conditions that are as similar to the clinical situation as possible. Thus, competition, colonization, and transmission studies in human volunteers are needed, as they are likely to give us the most relevant parameter values.

Citation: Andersson D, Hughes D. 2008. Effects of Antibiotic Resistance on Bacterial Fitness, Virulence, and Transmission, p 307-318. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Agvald-Ohman, C.,, B. Lund, and, C. Edlund. 2004. Multiresistant coagulase-negative staphylococci disseminate frequently between intubated patients in a multidisciplinary intensive care unit. Crit. Care 8: R42R47.
2. Andersson, D. I. 2003. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6: 452456.
3. Andersson, D. I., and, B. R. Levin. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489493.
4. Arason, V. A.,, A. Gunnlaugsson,, J. A. Sigurdsson,, H. Erlendsdottir,, S. Gudmundsson, and, K. G. Kristinsson. 2002. Clonal spread of resistant pneumococci despite diminished antimicrobial use. Microb. Drug Resist. 8: 187192.
5. Austin, D. J., and, R. M. Anderson. 1999a. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 721738.
6. Austin, D. J., and, R. M. Anderson. 1999b. Transmission dynamics of epidemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in England and Wales. J. Infect. Dis. 179: 883891.
7. Austin, D. J.,, M. J. Bonten,, R. A. Weinstein,, S. Slaughter, and, R. M. Anderson. 1999a. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc. Natl. Acad. Sci. USA 96: 69086913.
8. Austin, D. J.,, M. Kakehashi, and, R. M. Anderson. 1997. The transmission dynamics of antibiotic-resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption. Proc. Biol. Sci. 264: 16291638.
9. Austin, D. J.,, K. G. Kristinsson, and, R. M. Anderson. 1999b. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc. Natl. Acad. Sci. USA 96: 11521156.
10. Bergman, M.,, S. Huikko,, M. Pihlajamaki,, P. Laippala,, E. Palva,, P. Huovinen, and, H. Seppala. 2004. Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997–2001. Clin. Infect. Dis. 38: 12511256.
11. Besier, S.,, A. Ludwig,, V. Brade, and, T. A. Wichelhaus. 2005. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus. Antimicrob. Agents. Chemother. 49: 14261431.
12. Besier, S.,, A. Ludwig,, V. Brade, and, T. A. Wichelhaus. 2003. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol. Microbiol. 47: 463469.
13. Billington, O. J.,, T. D. McHugh, and, S. H. Gillespie. 1999. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 43: 18661869.
14. Binet, R., and, A. T. Maurelli. 2005. Fitness cost due to mutations in the 16S rRNA associated with spectinomycin resistance in Chlamydia psittaci 6BC. Antimicrob. Agents Chemother. 49: 44554464.
15. Bjorkholm, B.,, M. Sjolund,, P. G. Falk,, O. G. Berg,, L. Engstrand, and, D. I. Andersson. 2001. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98: 1460714612.
16. Bjorkman, J.,, D. Hughes, and, D. I. Andersson. 1998. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95: 39493953.
17. Bjorkman, J.,, I. Nagaev,, O. G. Berg,, D. Hughes, and, D. I. Andersson. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 14791482.
18. Bjorkman, J.,, P. Samuelsson,, D. I. Andersson, and, D. Hughes. 1999. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 31: 5358.
19. Bonten, M. J.,, D. J. Austin, and, M. Lipsitch. 2001. Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin. Infect. Dis. 33: 17391746.
20. Bottger, E. C.,, M. Pletschette, and, D. Andersson. 2005. Drug resistance and fitness in Mycobacterium tuberculosis infection. J. Infect. Dis. 191: 823824 (author reply 824).
21. Bouma, J. E., and, R. E. Lenski. 1988. Evolution of a bacteria/plasmid association. Nature 335: 351352.
22. Burgos, M.,, K. DeRiemer,, P. M. Small,, P. C. Hopewell, and, C. L. Daley. 2003. Effect of drug resistance on the generation of secondary cases of tuberculosis. J. Infect. Dis. 188: 18781884.
23. Cohen, T.,, M. C. Becerra, and, M. B. Murray. 2004. Isoniazid resistance and the future of drug-resistant tuberculosis. Microb. Drug Resist. 10: 280285.
24. Cohen, T., and, M. Murray. 2004. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat. Med. 10: 11171121.
25. Cohen, T.,, B. Sommers, and, M. Murray. 2003. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet Infect. Dis. 3: 1321.
26. Compeau, G.,, B. J. Al-Achi,, E. Platsouka, and, S. B. Levy. 1988. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl. Environ. Microbiol. 54: 24322438.
27. D’Agata, E. M.,, G. Webb, and, M. Horn. 2005. A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci. J. Infect. Dis. 192: 20042011.
28. Dahlberg, C., and, L. Chao. 2003. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K-12. Genetics 165: 16411649.
29. Davies, A. P.,, O. J. Billington,, B. A. Bannister,, W. R. Weir,, T. D. McHugh, and, S. H. Gillespie. 2000. Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J. Infect. 41: 184187.
30. Dykes, G. A., and, J. W. Hastings. 1998. Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl. Microbiol. 26: 58.
31. Ender, M.,, N. McCallum,, R. Adhikari, and, B. Berger-Bachi. 2004. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 22952297.
32. Enne, V. I.,, P. M. Bennett,, D. M. Livermore, and, L. M. Hall. 2004. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J. Antimicrob. Chemother. 53: 958963.
33. Enne, V. I.,, A. A. Delsol,, G. R. Davis,, S. L. Hayward,, J. M. Roe, and, P. M. Bennett. 2005. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. J. Antimicrob. Chemother. 56: 544551.
34. Feng, Z.,, C. Castillo-Chavez, and, A. F. Capurro. 2000. A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57: 235247.
35. Fermer, C., and, G. Swedberg. 1997. Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli. J. Bacteriol. 179: 831837.
36. Fitzpatrick, F.,, H. Humphreys, and, J. P. O’Gara. 2006. Environmental regulation of biofilm development in methicillin-resistant and methicillin-susceptible Staphylococcus aureus clinical isolates. J. Hosp. Infect. 62: 120122.
37. Folkesson, A.,, S. Eriksson,, M. Andersson,, J. T. Park, and, S. Normark. 2005. Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell. Microbiol. 7: 147155.
38. Forrester, M., and, A. N. Pettitt. 2005. Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect. Control Hosp. Epidemiol. 26: 598606.
39. Fux, C. A.,, D. Uehlinger,, T. Bodmer,, S. Droz,, C. Zellweger, and, K. Muhlemann. 2005. Dynamics of hemodialysis catheter colonization by coagulase-negative staphylococci. Infect. Control Hosp. Epidemiol. 26: 567574.
40. Gillespie, S. H.,, O. J. Billington,, A. Breathnach, and, T. D. McHugh. 2002a. Multiple drug-resistant Mycobacterium tuberculosis: evidence for changing fitness following passage through human hosts. Microb. Drug Resist. 8: 273279.
41. Gillespie, S. H.,, L. L. Voelker, and, A. Dickens. 2002b. Evolutionary barriers to quinolone resistance in Streptococcus pneumoniae. Microb. Drug Resist. 8: 7984.
42. Giraud, E.,, A. Cloeckaert,, S. Baucheron,, C. Mouline, and, E. Chaslus-Dancla. 2003. Fitness cost of fluoroquinolone resistance in Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 52: 697703.
43. Grundmann, H.,, S. Hori,, B. Winter,, A. Tami, and, D. J. Austin. 2002. Risk factors for the transmission of methicillin-resistant Staphylococcus aureus in an adult intensive care unit: fitting a model to the data. J. Infect. Dis. 185: 481488.
44. Gustafsson, I.,, O. Cars, and, D. I. Andersson. 2003. Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J. Antimicrob. Chemother. 52: 258263.
45. Heym, B.,, E. Stavropoulos,, N. Honore,, P. Domenech,, B. Saint-Joanis,, T. M. Wilson,, D. M. Collins,, M. J. Colston, and, S. T. Cole. 1997. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect. Immun. 65: 13951401.
46. Hurdle, J. G.,, A. J. O’Neill, and, I. Chopra. 2004a. The isoleucylt-RNA synthetase mutation V588F conferring mupirocin resistance in glycopeptide-intermediate Staphylococcus aureus is not associated with a significant fitness burden. J. Antimicrob. Chemother. 53: 102104.
47. Hurdle, J. G.,, A. J. O’Neill,, E. Ingham,, C. Fishwick, and, I. Chopra. 2004b. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob. Agents Chemother. 48: 43664376.
48. Jacobs, C.,, J. M. Frere, and, S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 88: 823832.
49. Jacobs, C.,, L. J. Huang,, E. Bartowsky,, S. Normark, and, J. T. Park. 1994. Bacterial cell wall recycling provides cytosolic muropep-tides as effectors for beta-lactamase induction. EMBO J. 13: 46844694.
50. Johanson, U.,, A. Aevarsson,, A. Liljas, and, D. Hughes. 1996. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258: 420432.
51. Johnsen, P. J.,, G. S. Simonsen,, O. Olsvik,, T. Midtvedt, and, A. Sundsfjord. 2002. Stability, persistence, and evolution of plasmid-encoded VanA glycopeptide resistance in enterococci in the absence of antibiotic selection in vitro and in gnotobiotic mice. Microb. Drug Resist. 8: 161170.
52. Johnson, C. N.,, D. E. Briles,, W. H. Benjamin, Jr.,, S. K. Hollingshead, and, K. B. Waites. 2005. Relative fitness of fluoroquinolone-resistant Streptococcus pneumoniae. Emerg. Infect. Dis. 11: 814820.
53. Kadurugamuwa, J. L.,, K. Modi,, J. Yu,, K. P. Francis,, C. Orihuela,, E. Tuomanen,, A. F. Purchio, and, P. R. Contag. 2005a. Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol. Imaging 4: 137142.
54. Kadurugamuwa, J. L.,, K. Modi,, J. Yu,, K. P. Francis,, T. Purchio, and, P. R. Contag. 2005b. Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infect. Immun. 73: 38783887.
55. Kanai, K.,, K. Shibayama,, S. Suzuki,, J. Wachino, and, Y. Arakawa. 2004. Growth competition of macrolide-resistant and -susceptible Helicobacter pylori strains. Microbiol. Immunol. 48: 977980.
56. Komp Lindgren, P.,, L. L. Marcusson,, D. Sandvang,, N. Frimodt-Moller, and, D. Hughes. 2005. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob. Agents Chemother. 49: 23432351.
57. Kugelberg, E.,, S. Lofmark,, B. Wretlind, and, D. I. Andersson. 2005. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 55: 2230.
58. Kurland, C. G.,, D. Hughes, and, M. Ehrenberg. 1996. Limitations of translational accuracy, p. 9791004. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. vol. 1. ASM Press, Washington, DC.
59. Lambertsen, L.,, C. Sternberg, and, S. Molin. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6: 726732.
60. Lenski, R. E. 1991. Quantifying fitness and gene stability in microorganisms. Biotechnology 15: 173192.
61. Lenski, R. E., and, J. E. Bouma. 1987. Effects of segregation and selection on instability of plasmid pACYC184 in Escherichia coli B. J. Bacteriol. 169: 53145316.
62. Levin, B. R. 2001. Minimizing potential resistance: a population dynamics view. Clin. Infect. Dis. 33 (Suppl 3): S161S169.
63. Levin, B. R.,, V. Perrot, and, N. Walker. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154: 985997.
64. Li, Z.,, C. Kelley,, F. Collins,, D. Rouse, and, S. Morris. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177: 10301035.
65. Linares, J. F.,, J. A. Lopez,, E. Camafeita,, J. P. Albar,, F. Rojo, and, J. L. Martinez. 2005. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J. Bacteriol. 187: 13841391.
66. Lloyd-Smith, J. O.,, S. J. Schreiber,, P. E. Kopp, and, W. M. Getz. 2005. Superspreading and the effect of individual variation on disease emergence. Nature 438: 355359.
67. Luo, N.,, S. Pereira,, O. Sahin,, J. Lin,, S. Huang,, L. Michel, and, Q. Zhang. 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 102: 541546.
68. Macvanin, M.,, A. Ballagi, and, D. Hughes. 2004. Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium have low levels of heme and a reduced rate of respiration and are sensitive to oxidative stress. Antimicrob. Agents Chemother. 48: 38773883.
69. Macvanin, M.,, J. Bjorkman,, S. Eriksson,, M. Rhen,, D. I. Andersson, and, D. Hughes. 2003. Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium with low fitness in vivo are defective in RpoS induction. Antimicrob. Agents Chemother. 47: 37433749.
70. Macvanin, M., and, D. Hughes. 2005. Hyper-susceptibility of a fusidic acid-resistant mutant of Salmonella to different classes of antibiotics. FEMS Microbiol. Lett. 247: 215220.
71. Macvanin, M.,, U. Johanson,, M. Ehrenberg, and, D. Hughes. 2000. Fusidic acid-resistant EF-G perturbs the accumulation of ppGpp. Mol. Microbiol. 37: 98107.
72. Maisnier-Patin, S.,, O. G. Berg,, L. Liljas, and, D. I. Andersson. 2002. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46: 355366.
73. Mariam, D. H.,, Y. Mengistu,, S. E. Hoffner, and, D. I. Andersson. 2004. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48: 12891294.
74. May, R. M.,, S. Gupta, and, A. R. McLean. 2001. Infectious disease dynamics: what characterizes a successful invader? Philos. Trans. R. Soc. Lond. B Biol. Sci. 356: 901910.
75. Meka, V. G.,, H. S. Gold,, A. Cooke,, L. Venkataraman,, G. M. Eliopoulos,, R. C. Moellering, Jr., and, S. G. Jenkins. 2004a. Reversion to susceptibility in a linezolid-resistant clinical isolate of Staphylococcus aureus. J. Antimicrob. Chemother. 54: 818820.
76. Meka, V. G.,, S. K. Pillai,, G. Sakoulas,, C. Wennersten,, L. Venkataraman,, P. C. DeGirolami,, G. M. Eliopoulos,, R. C. Moellering, Jr., and, H. S. Gold. 2004b. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J. Infect. Dis. 190: 311317.
77. Morosini, M. I.,, J. A. Ayala,, F. Baquero,, J. L. Martinez, and, J. Blazquez. 2000. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 44: 31373143.
78. Nagaev, I.,, J. Bjorkman,, D. I. Andersson, and, D. Hughes. 2001. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40: 433439.
79. Nilsson, A. I.,, O. G. Berg,, O. Aspevall,, G. Kahlmeter, and, D. I. Andersson. 2003. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 47: 28502858.
80. Nilsson, A. I.,, A. Zorzet,, A. Kanth,, S. Dahlstrom,, O. G. Berg, and, D. I. Andersson. 2006. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl. Acad. Sci. USA 103: 69766981.
81. Normark, S. 1995. Beta-lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb. Drug Resist. 1: 111114.
82. O’Neill, A. J., and, I. Chopra. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol. Microbiol. 59: 664676.
83. O’Neill, A. J.,, T. Huovinen,, C. W. Fishwick, and, I. Chopra. 2006. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob. Agents Chemother. 50: 298309.
84. O’Sullivan, D. M.,, T. D. McHugh, and, S. H. Gillespie. 2005. Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in Mycobacterium tuberculosis evolution? J. Antimicrob. Chemother. 55: 674679.
85. Pym, A. S.,, B. Saint-Joanis, and, S. T. Cole. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70: 49554960.
86. Reynolds, M. G. 2000. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156: 14711481.
87. Salpeter, E. E., and, S. R. Salpeter. 1998. Mathematical model for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function. Am. J. Epidemiol. 147: 398406.
88. Sanchez, P.,, J. F. Linares,, B. Ruiz-Diez,, E. Campanario,, A. Navas,, F. Baquero, and, J. L. Martinez. 2002. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother. 50: 657664.
89. Sander, P.,, B. Springer,, T. Prammananan,, A. Sturmfels,, M. Kappler,, M. Pletschette, and, E. C. Bottger. 2002. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46: 12041211.
90. Schrag, S. J., and, V. Perrot. 1996. Reducing antibiotic resistance. Nature 381: 120121.
91. Schrag, S. J.,, V. Perrot, and, B. R. Levin. 1997. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci. 264: 12871291.
92. Seppala, H.,, T. Klaukka,, J. Vuopio-Varkila,, A. Muotiala,, H. Helenius,, K. Lager, and, P. Huovinen. 1997. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med. 337: 441446.
93. Smith, M. A., and, M. J. Bidochka. 1998. Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can. J. Microbiol. 44: 351355.
94. Tan, M. W., and, F. M. Ausubel. 2000. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol. 3: 2934.
95. Tan, M. W.,, S. Mahajan-Miklos, and, F. M. Ausubel. 1999a. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96: 715720.
96. Tan, M. W.,, L. G. Rahme,, J. A. Sternberg,, R. G. Tompkins, and, F. M. Ausubel. 1999b. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 96: 24082413.
97. Tuomanen, E.,, S. Lindquist,, S. Sande,, M. Galleni,, K. Light,, D. Gage, and, S. Normark. 1991. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Science 251: 201204.
98. Wichelhaus, T. A.,, B. Boddinghaus,, S. Besier,, V. Schafer,, V. Brade, and, A. Ludwig. 2002. Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 33813385.
99. Wilson, T. M.,, G. W. de Lisle, and, D. M. Collins. 1995. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol. Microbiol. 15: 10091015.
100. Wolter, N.,, A. M. Smith,, D. J. Farrell, and, K. P. Klugman. 2006. Heterogeneous macrolide resistance and gene conversion in the pneumococcus. Antimicrob. Agents Chemother. 50: 359361.
101. Xiong, Y. Q.,, J. Willard,, J. L. Kadurugamuwa,, J. Yu,, K. P. Francis, and, A. S. Bayer. 2005. Real-time in vivo bioluminescent imaging for evaluating the efficacy of antibiotics in a rat Staphylococcus aureus endocarditis model. Antimicrob. Agents Chemother. 49: 380387.
102. Yu, J.,, J. Wu,, K. P. Francis,, T. F. Purchio, and, J. L. Kadurugamuwa. 2005. Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. J. Antimicrob. Chemother. 55: 528534.


Generic image for table
Table 1.

The biological cost of antibiotic resistance conferred by chromosomal mutations

Citation: Andersson D, Hughes D. 2008. Effects of Antibiotic Resistance on Bacterial Fitness, Virulence, and Transmission, p 307-318. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error