Chapter 11 : Introduction to Deep-Sea Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Introduction to Deep-Sea Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap11-2.gif


The science of deep-sea life has come a long way since the naturalist Edward Forbes formulated his azoic hypothesis in the mid-19th century. Based on dredging studies in the Aegean Sea, he postulated that no marine life could exist in the deep sea below a depth of about 550 m. Today it is clear that the species richness at depth could be many times greater than that present in the better-understood and -appreciated tropical rainforests and shallow-coral reef environments, both of which teem with biodiversity. The German scientist Fisher was also active in deep-sea microbiology during the same general period. One of the great discoveries of the 20th century was the discovery of abundant life in and around hydrothermal vents. Pressure plays critical roles in deep-sea vents, not the least of which is to keep many gaseous substrates for metabolism in solution at high temperature. It also provides an opportunity for chemical reactions to occur under supercritical water conditions. Future advances in the understanding of piezophiles, as with many branches of biology, will benefit from advances in genome technology and its innovative application.

Citation: Bartlett D. 2008. Introduction to Deep-Sea Microbiology, p 195-201. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Some notable deep thinkers. (A) Richard Y. Morita (left) and Claude E. ZoBell (right); (B) Holger W. Jannasch; (C) A. Aristides Yayanos; (D) Koki Horikoshi.

Citation: Bartlett D. 2008. Introduction to Deep-Sea Microbiology, p 195-201. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alain, K.,, V.G. Marteinsson,, M.L. Miroshnichenko,, E.A. Bonch-Osmolovskaya,, D. Prieur, and, J.-L. Birrien. 2002. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52: 13311339.
2. Alargov, D. K.,, S. Deguchi,, K. Tsujii, and, K. Horikoshi. 2002. Reaction behaviors of glycine under super-and subcritical water conditions. Origins Life Evol. Biosph. 32: 112.
3. Anderson, T. R., and, T. Rice. 2006. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean. Endeavor 30: 131137.
4. Ballard, R. D. 2000. The Eternal Darkness. A Personal History of Deep-Sea Exploration. Princeton University Press, Princeton, NJ.
5. Bartlett, D. H.,, F.M. Lauro, and, E.A. Eloe. 2007. Microbial adaptation to high pressure, p. 333–348. In C. Gerday and, N. Glandsdorf (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC.
6. Bianchi, A., and, J. Garcin. 1993. In stratified waters the metabolic rate of deep-sea bacteria decreases with decompression. Deep-Sea Res. I 40: 17031710.
7. Bult, C. J.,, O. White,, G. J. Olsen,, L. Zhou,, R. D. Fleischmann,, G. G. Sutton,, J. A. Blake,, L. M. Fitz-Gerald,, R. A. Clayton,, J. D. Gocayn,, A. R. Kerlavage,, B. A. Dougherty,, J.-F. Tomb,, M. D. Adams,, C. I. Reich,, R. Overbeek,, E. F. Kirkness,, K. G. Weinstock,, J. M. Merrick,, A. Glodek,, J. L. Scott,, N.S. M. Geoghagen,, J.F. Weidman,, J.L. Fuhrmann,, D. Nguyen,, T.R. Utterback,, J.M. Kelley,, J.D. Peterson,, P.W. Sadow,, M. C. Hanna,, M. D. Cotton,, K. M. Roberts,, M. A. Hurst,, B. P. Kaine,, M. Borodovsky,, H.-P. Klenk,, C. M. Fraser,, H. O. Smith,, C. R. Woese, and, J.C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 10581073.
8. Certes, A. 1884. Sur la culture, a l’abri des germes atmospherique, des eaux et des sediments rapportes par les expeditions du Travailleur et du Talisman. C. R. Acad. Sci. Paris 11: 690693.
9. DeLong, E. F.,, C.M. Preston,, T. Mincer,, V. Rich,, S. J. Hallam,, N. U. Frigaard,, A. Martinez,, M.B. Sullivan,, R. Edwards,, B.R. Brito,, S. W. Chisholm, and, D. M. Karl. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311: 496503.
10. DeLong, E. F., and, A.A. Yayanos. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228: 11011103.
11. DeLong, E. F., and, A.A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51: 730737.
12. DeLong, E. F., and, A.A. Yayanos. 1987. Properties of the glucose transport system in some deep-sea bacteria. Appl. Environ. Microbiol. 53: 527532.
13. Fisher, B. 1894. Die Baktrien des Meeres nach den Untersuchungen der Plankton-Expedition unter gleichzeitiger Berücksichtigung einiger älterer und neuerer Untersuchungen. Ergebnisse der Plankton-Expedition der Hu, boldt-Siftung 4: 183.
14. Grassle, J. F., and, N. J. Maciolek. 1992. Deep-sea species richness—regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139: 313341.
15. Hamamoto, T., and, K. Horikoshi. 1993. Deepsea microbiology research within the Deepstar program. J. Mar. Biotechnol. 1: 119124.
16. Jannasch, H. W., and, C. D. Taylor. 1984. Deep-sea microbiology. Annu. Rev. Microbiol. 38: 487514.
17. Jannasch, H. W., and, C. O. Wirsen. 1977. Microbial life in the deep sea. Sci. Am. 236: 4252.
18. Kriss, A. E. 1963. Marine Microbiology. John Wiley & Sons, Inc., New York, NY.
19. Kriss, A. E., and, I.N. Mitskevich. 1967. Effect of nutrient medium on the tolerance of barotolerant bacteria to high pressure. Mikrobiologiya 36: 203206.
20. Kunzig, R. 2003. Deep-sea biology: living with the endless frontier. Science 302: 991.
21. Lauro, F. M., and, D.H. Bartlett. 17 January 2007. Prokaryotic lifestyles in deep-sea habitats. Extremophiles doi:10.1007/s00792-006-0059-5.
22. Marquis, R. E. 1982. Microbial barobiology. BioScience 32: 267271.
23. Marquis, R. E., and, P. Matsumura. 1978. Microbial life under pressure, p. 105158. In D.J. Kushner Microbial Life in Extreme Environments. Academic Press, London, United Kingdom.
24. Marsh, A. G.,, L.S. Mullineaux,, C.M. Young, and, D.T. Manahan. 2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411: 7780.
25. Marteinsson, V. T.,, J.-L. Birrien,, A.-L. Reysenbach,, M. Vernet,, D. Marie,, A. Gambacorta,, P. Messner,, U.B. Sleytr, and, D. Prieur. 1999. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 49: 351359.
26. Marteinsson, V. T.,, P. Moulin,, J.-L. Birrien,, A. Gambacorta,, M. Vernet, and, D. Prieur. 1997. Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63: 12301236.
27. Sharma, A.,, J.H. Scott,, G. D. Cody,, M. L. Fogel,, R.M. Hazen,, R. J. Hemley, and, W.T. Huntress. 2002. Microbial activity at gigapascal pressures. Science 295: 15141516.
28. Sogin, M. L.,, H. G. Morrison,, J.A. Huber,, D. M. Welch,, S. M. Huse,, P. R. Neal,, J. M. Arrieta, and, G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci. USA 103: 1211512120.
29. Tabor, P. S.,, J.W. Deming,, K. Ohwada, and, R.R. Colwell. 1982. Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples. Appl. Environ. Microbiol. 44: 413422.
30. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D.H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307: 14591461.
31. Worden, A. Z.,, M.L. Cuvelier, and, D. H. Bartlett. 2006. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14: 331336.
32. Xiao, X.,, P. Wang,, X. Zeng,, D. H. Bartlett, and, F. Wang. 2007. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int. J. Syst. Evol. Microbiol. 57: 6065.
33. Yayanos, A. A. 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA 83: 95429546.
34. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49: 777805.
35. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205: 808810.
36. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana trench. Proc. Natl. Acad. Sci. USA 78: 52125215.
37. ZoBell, C. E. 1952. Bacterial life at the bottom of the Philippine Trench. Science 115: 507508.
38. ZoBell, C. E., and, F. H. Johnson. 1949. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol. 57: 179189.
39. ZoBell, C. E., and, R.Y. Morita. 1959. Deep-sea bacteria. Scientific resuts of the Danish deep-sea expedition round the world 1950–2. Galathea Rep. 1: 139154.
40. ZoBell, C. E., and, C. H. Oppenheimer. 1950. Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J. Bacteriol. 60: 771781.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error