Chapter 18 : Adaptations of the Psychrotolerant Piezophile Strain SS9

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Adaptations of the Psychrotolerant Piezophile Strain SS9, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815646/9781555814236_Chap18-2.gif


Strains of and have become the work-horses for examining the adaptations of cold-adapted deep-sea microbes to high pressure. The chapter focuses on , with an emphasis on strain SS9. Transposon mutagenesis, insertional mutagenesis, -based transcriptional reporter studies, allelic exchange, and complementation are all possible. SS9 is both the most psychrotolerant and the most piezophilic microorganism for which such studies have been reported. More recently its entire genome sequence has been determined, and transcriptome and comparative genomic analyses have been undertaken. The sections describe the roles of the membrane, membrane-associated signaling systems, and DNA recombination in SS9 piezoadaptation, and provide recent insights obtained from the SS9 genome sequence and functional and comparative genomics. Advances in genomic approaches have dramatically altered the understanding of the evolution, diversity, biochemistry, and physiology of life. These technologies have also been applied to two piezophiles: strain SS9 and strain DSS12, and additional sequencing projects are in the works. Genetic manipulations are needed to establish which genes actually influence growth ability at high pressure. Additional important issues are which piezophile-specific genes were acquired by horizontal gene transfer (HGT) and which were lost by the mesophilic strain 3TCK, which genes 3TCK might have needed to acquire for adaptation to shallow-water and atmospheric pressure, and whether the last common ancestor to the strains was piezophilic or mesophilic.

Citation: Bartlett D, Ferguson G, Valle G. 2008. Adaptations of the Psychrotolerant Piezophile Strain SS9, p 319-337. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

NanoOrange fluorescent image of a strain SS9 cell from a culture grown at 30 MPa. The body of the cell is approximately 2.5 µm in length. A single unsheathed polar flagellum is present.

Citation: Bartlett D, Ferguson G, Valle G. 2008. Adaptations of the Psychrotolerant Piezophile Strain SS9, p 319-337. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Locations in which isolates have been reported ( ). Stars indicate eastern Antarctica, the northwestern Pacific Ocean, the Peru Margin, the Ryukyu Trench, the San Diego Bay, and the Sulu Sea.

Citation: Bartlett D, Ferguson G, Valle G. 2008. Adaptations of the Psychrotolerant Piezophile Strain SS9, p 319-337. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Many membrane components could be important for integrity and function at high pressure. Shown in schematic format is the outer membrane of a gram-negative bacterial cell. The outer leaflet is composed of LPS with its lipid A (vertical lines, some with branches), core oligosaccharide (horizontal oval), and O-antigen polysaccharide (wavy line) regions. The inner leaflet contains phospholipids containing head groups (shown as open circles) attached to different types of fatty acids at their -1 and -2 positions. Straight lines are used to depict saturated fatty acids, lines with one bend are used to depict MUFAs such as -vaccenic acid, and lines with multiple bends are used to depict the PUFA EPA. A porin protein is shown spanning the entire outer membrane. Lipoprotein is shown connecting the outer membrane to the cell wall below. Phospholipid composition is also important for inner membrane function (not shown). Many lipid-protein interactions, and thus many essential cellular processes, could be subject to strong influences by pressure.

Citation: Bartlett D, Ferguson G, Valle G. 2008. Adaptations of the Psychrotolerant Piezophile Strain SS9, p 319-337. In Michiels C, Bartlett D, Aersten A (ed), High-Pressure Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555815646.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abe, F., and, K. Horikoshi. 2000. Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 20: 80988102.
2. Allen, E. E., and, D.H. Bartlett. 2000. FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9. J. Bacteriol. 182: 1264 1271.
3. Allen, E. E., and, D.H. Bartlett. 2001. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148: 19031913.
4. Allen, E. E.,, D. Facciotti, and, D.H. Bartlett. 1999. Monounsaturated but not polyunsaturated fatty acids are required for growth at high pressure and low temperature in the deep-sea bacterium Photobacterium profundum strain SS9. Appl. Environ. Microbiol. 65: 17101720.
5. Amundsen, S. K.,, A.F. Taylor,, A. M. Chaudhury, and, G. R. Smith. 1986. recD: the gene for an essential third subunit of exonuclease V. Proc. Natl. Acad. Sci. USA 83: 55585582.
6. Angerer, P., and, C. von Schacky. 2000. n-3 polyunsaturated fatty acids and the cardiovascular system. Curr. Opin. Clin. Nutr. Metab. Care 3: 439445.
7. Attard, G. S.,, R.H. Templer,, W.S. Smith,, A. N. Hunt, and, S. Jackowski. 2000. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA 97: 9032 9036.
8. Bahloul, A.,, J. Meury,, R. Kern,, J. Garwood,, S. Guha, and, M. Kohiyama. 1996. Coordination between membrane oriC sequestration factors and a chromosome partitioning protein, TolC (MukA). Mol. Microbiol. 22: 275282.
9. Bartlett, D.,, M. Wright,, A. Yayanos, and, M. Silverman. 1989. Isolation of a gene regulated by hydrostatic pressure. Nature 342: 572574.
10. Bartlett, D. H., and, F. Azam. 2005. Chitin, cholera, and competence. Science 310: 17751777.
11. Bartlett, D. H., and, E. Chi. 1994. Genetic characterization of ompH mutants in the deep-sea bacterium Photobacterium species strain SS9. Arch. Microbiol. 162: 323328.
12. Bartlett, D. H., and, T.J. Welch. 1995. ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J. Bacteriol. 177: 10081016.
13. Beck, B. J.,, L.E. Connolly,, A. De Las Peñas, and, D.M. Downs. 1997. Evidence that rseC, a gene in the rpoE cluster, has a role in thiamine synthesis in Salmonella typhimurium. J. Bacteriol. 179: 65046508.
14. Biddle, J. F.,, C. H. House, and, J.E. Brenchley. 2004. Enrichment and isolation of psychrophilic microorganisms from sediment collected at ocean drilling program site 1230, p. 105. Abstr. 104th Gen. Meet. Am. Soc. Microbiol.
15. Bidle, K. A., and, D. H. Bartlett. 1999. RecD function is required for high-pressure growth in a deep-sea bacterium. J. Bacteriol. 181: 23302337.
16. Bidle, K. A., and, D.H. Bartlett. 2001. RNA arbitrarily primed PCR survey of genes regulated by ToxR and ToxS in the deep-sea bacterium Photobacterium profundum strain SS9. J. Bacteriol. 183: 16881693.
17. Biek, D. P., and, S. N. Cohen. 1986. Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli. J. Bacteriol. 167: 594603.
18. Bina, J.,, J. Zhu,, M. Dziejman,, S. Faruque,, S. Calderwood, and, J.J. Mekalanos. 2003. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl. Acad. Sci. USA 100: 2801 2806.
19. Bishop, R. E.,, H. S. Gibbons,, T. Guina,, M. S. Trent,, S. I. Miller, and, C. R. Raetz. 2000. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 19: 50715080.
20. Bordi, C.,, L. Theraulaz,, V. Mejean, and, C. Jourlin-Castelli. 2003. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol. Microbiol. 48: 211223.
21. Bowman, J. P.,, S. A. McCammon,, J. A. Gibson,, L. Robertson, and, P. D. Nichols. 2003. Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl. Environ. Microbiol. 69: 24482462.
22. Bull, H. J.,, G. J. McKenzie,, P. J. Hastings, and, S. M. Rosenberg. 2000. Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154: 14271437.
23. Campanaro, S.,, A. Vezzi,, N. Vitulo,, F. M. Lauro,, M. D’Angeo,, F. Simonato,, A. Cestaro,, G. Malacrida,, G. Bertoloni,, G. Valle, and, D. H. Bartlett. 2005. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6: 122.
24. Charbit, A., and, N. Autret. 1998. Horizontal transfer of chromosomal DNA between the marine bacterium Vibrio furnissii and Escherichia coli revealed by sequence analysis. Microb. Comp. Genomics 3: 119132.
25. Chaudhury, A. M., and, G. R. Smith. 1984. A new class of Escherichia coli recBC mutants: implications for the role of RecBC enzyme in homologous recombination. Proc. Natl. Acad. Sci. USA 81: 78507854.
26. Chi, E., and, D. H. Bartlett. 1995. An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep-sea bacterium Photobacterium SS9. Mol. Microbiol. 17: 713726.
27. Chi, E., and, D. H. Bartlett. 1993. Use of a reporter gene to follow high-pressure signal transduction in the deep-sea bacterium Photobacterium sp. strain SS9. J. Bacteriol. 175: 75337540.
28. Chilukuri, L. N.,, P.A. G. Fortes, and, D. H. Bartlett. 1995. High pressure modulation of DNA gyrase activity. Biochem. Biophys. Res. Commun. 239: 552556.
29. Conejero, M. J., and, C. T. Hedreyda 2003. Isolation of partial toxR gene of Vibrio harveyi and design of toxR-targeted PCR primers for species detection. J. Appl. Microbiol. 95: 602611.
30. Coolbear, K. P.,, C. B. Berde, and, K. M. Keough. 1983. Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochemistry 22: 14661473.
31. Dell’Anno, A., and, R. Danovaro. 2005. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309: 2179.
32. DeLong, E. F. 1986. Adaptations of deep-sea bacteria to the abyssal environment. Ph.D. dissertation. University of California, San Diego.
33. DeLong, E. F., and, A. A. Yayanos. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228: 11011103.
34. DeLong, E. F., and, A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51: 730737.
35. Dillingham, M. S.,, M. Spies, and, S. C. Kowalczykowski. 2003. RecBCD enzyme is a bipolar DNA helicase. Nature 423: 893897.
36. Dolar, M. L. L.,, W.A. Walker,, G.L. Kooyman, and, W. F. Perrin. 2003. Comparative feeding ecology of spinner dolphins (Stenella longirostris) and Fraser’s dolphins (Lagenodelphis hosei) in the Sulu Sea. Mar. Mamm. Sci. 19: 119.
37. Egan, E. S.,, M.A. Fogel, and, M.K. Waldor. 2005. Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol. Microbiol. 56: 11291138.
38. Erickson, J. W., and, C.A. Gross. 1989. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev. 3: 14621471.
39. Fang, J.,, O. Chan,, C. Kato,, T. Sato,, T. Peeples, and, K. Niggemeyer. 2003. Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38: 885887.
40. Faruque, S. M.,, D. A. Sack,, R.B. Sack,, R.R. Colwell,, Y. Takeda, and, G.B. Nair. 2003. Emergence and evolution of Vibrio cholerae O139. Proc. Natl. Acad. Sci. USA 100: 13041309.
41. Ferguson, G. P.,, A. Datta,, R.W. Carlson, and, G.C. Walker. 2005. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol. Microbiol. 56: 6880.
42. Finch, E. D., and, L. A. Kiesow. 1979. Pressure, anesthetics, and membrane structure: a spin-probe study. Undersea Biomed. Res. 6: 4153.
43. Friedberg, E. C.,, G.C. Walker, and, W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, DC.
44. Garwin, J. L., and, J. E. Cronan, Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J. Bacteriol. 141: 14571459.
45. Gelmann, E. P., and, J.E. Cronan, Jr. 1972. Mutant of Escherichia coli deficient in the synthesis of cisvaccenic acid. J. Bacteriol. 112: 381387.
46. Graentzdoerffer, A.,, A. Pich, and, J. R. Andreesen. 2001. Molecular analysis of the grd operon coding for genes of the glycine reductase and of the thioredoxin system from Clostridium sticklandii. Arch. Microbiol. 175: 818.
47. Guo, L.,, K. B. Lim,, C. M. Poduje,, M. Daniel,, J.S. Gunn,, M. Hackett, and, S. I. Miller. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95: 189198.
48. Hazel, J. R., and, E. E. Williams. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29: 167227.
49. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M.D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. Mcdonald,, T. Utterback,, R.D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477483.
50. Hennecke, F.,, A. Muller,, R. Meister,, A. Strelow, and, S. Behrens. 2005. A ToxR-based two-hybrid system for the detection of periplasmic and cytoplasmic protein-protein interactions in Escherichia coli: minimal requirements for specific DNA binding and transcriptional activation. Protein Eng. Des. Sel. 18: 477486.
51. Hung, D. T., and, J. J. Mekalanos. 2005. Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proc. Natl. Acad. Sci. USA 102: 30283033.
52. Ishii, A.,, T. Oshima,, T. Sato,, K. Nakasone,, H. Mori, and, C. Kato. 2005. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9: 6573.
53. Ishii, A.,, T. Sato,, M. Wachi,, K. Nagai, and, C. Kato. 2004. Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150: 19651972.
54. Johnson, F. H., and, E. A. Flagler. 1950. Hydrostatic pressure reversal of narcosis in tadpoles. Science 112: 9192.
55. Kannenberg, E. L., and, R. W. Carlson. 2001. Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol. Microbiol. 39: 379391.
56. Koo, M. S.,, J. H. Lee,, S. Y. Rah,, W. S. Yeo,, J. W. Lee,, K. L. Lee,, Y. S. Koh,, S. O. Kang, and, J. H. Roe. 2003. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22: 26142622.
57. Kowalczykowski, S. C. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 26: 156165.
58. Landau, J. V. 1967. Induction, transcription, and translation in Escherichia coli: a hydrostatic pressure study. Biochem. Biophys. Acta 149: 506512.
59. Lauritzen, L.,, H. S. Hansen,, M. H. Jorgensen, and, K. F. Michaelsen. 2001. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40: 194.
60. Lauro, F. M., and, D. H. Bartlett. 17 January 2007. Prokaryotic lifestyles in deep-sea habitats. Extremophiles doi:10.1007/s00792-006-0059-5.
61. Lauro, F. M.,, R. A. Chastain,, L. E. Blankenship,, A. A. Yayanos, and, D. H. Bartlett. 8 December 2006. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl. Environ. Microbiol. doi:10.1128/AEM.01726-06. (Subsequently published, Appl. Environ. Microbiol. 73: 838845.)
62. Lauro, F. M.,, E. A. Eloe, and, D. H. Bartlett. 2005. Conjugal vectors for cloning, expression, and insertional mutagenesis in Gram-negative bacteria. BioTechniques 38: 708710.
63. Lauro, F. M.,, K. Tran,, A. Vezzi,, N. Vitulo,, G. Valle, and, D. H. Bartlett. Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J. Bacteriol., in press.
64. Leonard, T. A.,, J. Moller-Jensen, and, J. Lowe. 2005. Towards understanding the molecular basis of bacterial DNA segregation. Philos. Trans. R. Soc. Lond. B 360: 523535.
65. Li, M. R.,, T. Shimada,, J. G. Morris,, A. Sulakvelidze, and, S. Sozhamannan. 2002. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect. Immun. 70: 24412453.
66. Marquis, R. E., and, G. R. Bender. 1987. Barophysiology of Prokaryotes and Proton-Translocating ATPases. Academic Press, London, United Kingdom.
67. Marr, A. G., and, J. L. Ingraham. 1962. Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 84: 12601267.
68. Martin, D. D.,, D. H. Bartlett, and, M. F. Roberts. 2002. Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6: 507514.
69. Mathur, J., and, M. K. Waldor. 2004. The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect. Immun. 72: 35773583.
70. Meganathan, R., and, R. E. Marquis. 1973. Loss of bacterial motility under pressure. Nature 246: 526 27.
71. Meibom, K. L.,, X. B. Li,, A. T. Nielsen,, C.-Y. Wu,, S. Roseman, and, G. K. Schoolnik. 2004. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. Sci. USA 101: 25242529.
72. Missiakas, D., and, S. Raina. 1998. The extracytoplasmic function sigma factors: role and regulation. Mol. Microbiol. 28: 10591066.
73. Mulkey, D. K.,, R. A. Henderson III,, R. W. Putnam, and, J. B. Dean. 2003. Pressure (< or = 4 ATA) increases membrane conductance and firing rate in the rat solitary complex. J. Appl. Physiol. 95: 922930.
74. Nakamura, Y.,, T. Itoh,, H. Matsuda, and, T. Gojobori. 2004. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 36: 760766.
75. Nishida, T.,, Y. Orikasa,, Y. Ito,, R. Yu,, A. Yamada,, K. Watanabe, and, H. Okuyama. 2006. Escherichia coli engineered to produce eicosapentaenoic acid becomes resistant against oxidative damages. FEBS Lett. 580: 27312735.
76. Nogi, Y.,, N. Masui, and, C. Kato. 1998. Photobacterium profundum sp. nov., a new moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2: 17.
77. Oliver, J. D., and, R.R. Colwell. 1973. Extractable lipids of gram-negative marine bacteria: fatty acid composition. Int. J. Syst. Bacteriol. 23: 442458.
78. Omura, S. 1981. Cerulenin. Methods Enzymol. 72: 520532.
79. O’Shea, Y. A.,, S. Finnan,, F.J. Reen,, J.P. Morrissey,, F. O’Gara, and, E. F. Boyd. 2004. The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology 150: 4053 4063.
80. Pope, D. M., and, L. R. Berger. 1973. Inhibition of metabolism by hydrostatic pressure: what limits microbial growth? Arch. Mikrobiol. 93: 367370.
81. Provenzano, D.,, D.A. Schuhmacher,, J. L. Barker, and, K. E. Klose. 2000. The virulence regulatory protein ToxR mediates enhanced bile resistance in Vibrio cholerae and other pathogenic Vibrio species. Infect. Immun. 68: 14911497.
82. Purdy, A.,, F. Rohwer,, R. Edwards,, F. Azam, and, D. H. Bartlett. 2005. A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J. Bacteriol. 187: 29923001.
83. Radjasa, O. K.,, H. Urakawa,, K. Kita-Tsukamoto, and, K. Ohwada. 2001. Characterization of psychrotrophic bacteria in the surface and deep-sea waters from the northwestern Pacific Ocean based on 16S ribosomal DNA analysis. Mar. Biotechnol. 3: 454462.
84. Regha, K.,, A. K. Satapathy, and, M.K . Ray. 2005. RecD plays an essential function during growth at low temperature in the antarctic bacterium Pseudomonas syringae Lz4W. Genetics 170: 14731484.
85. Royer, C. A. 1995. Application of pressure to biochemical equilibria: the other thermodynamic variable. Methods Enzymol. 259: 357377.
86. Sandermann, H., Jr. 1978. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515: 209 237.
87. Sato, T.,, A. Ishii,, C. Kato,, M. Wachi,, K. Nagai, and, K. Horikoshi. 2000. High hydrostatic pressure represses FtsZ-ring formation and chromosomal DNA condensation in Escherichia coli, p. 171–172. Third Int. Cong. Extremophiles Abstr.
88. Sauer, L. A.,, R. T. Dauchy, and, D. E. Blask. 2001. Polyunsaturated fatty acids, melatonin, and cancer prevention. Biochem. Pharmacol. 61: 14551462.
89. Seo, H. J.,, S. S. Bae,, J.-H. Lee, and, S.-J. Kim. 2005. Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int. J. Syst. Evol. Microbiol. 55: 16611666.
90. Siddiqui, K. S., and, R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403433.
91. Sinensky, M. 1974. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71: 522525.
92. Singer, G. A., and, D. A. Hickey. 2003. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317: 3947.
93. Tamegai, H.,, C. Kato, and, K. Horikoshi. 1998. Pressure-regulated respiratory system in barotolerant bacterium Shewanella sp. strain DSS12. J. Biochem. Mol. Biol. Biophys. 1: 213220.
94. Tang, G.-Q.,, N. Tanaka, and, S. Kunugi. 1998. In vitro increases in plasmid DNA supercoiling by hydrostatic pressure. Biochim. Biophys. Acta 1443: 364368.
95. Thilo, L.,, H. Trauble, and, P. Overath. 1977. Mechanistic interpretation of the influence of lipid phase transitions on transport functions. Biochemistry 16: 12831290.
96. Valentine, R. C., and, D. L. Valentine. 2004. Omega-3 fatty acids in cellular membranes: a unified concept. Prog. Lipid Res. 43: 383402.
97. Van de Vossenberg, J. L. C. M.,, T. Ubbink-Kok,, M. G. L. Elferink,, A. J. M. Driessen, and, W. N. Konings. 1995. Ion permeability of the cytoplasmic membrane limits the maximal growth temperature of bacteria and archaea. Mol. Microbiol. 18: 925932.
98. van Passel, M. W.,, A. Bart,, H. H. Thygesen,, A. C. Luyf,, A. H. van Kampen, and, A. van der Ende. 2005. An acquisition account of genomic islands based on genome signature comparisons. BMC Genomics 6: 163.
99. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307: 1459–1461.
100. Wang, S. Y.,, J. Lauritz,, J. Jass, and, D. L. Milton. 2002. A ToxR homolog from Vibrio anguillarum serotype O1 regulates its own production, bile resistance, and biofilm formation. J. Bacteriol. 184: 1630 1639.
101. Weber, G., and, H. G. Drickamer. 1983. The effect of high pressure upon proteins and other biomolecules. Q. Rev. Biophys. 16: 89112.
102. Wegrzyn, A.,, B. Wrobel, and, G. Wegrzyn. 1999. Altered biological properties of cell membranes in Escherichia coli dnaA and seqA mutants. Mol. Gen. Genet. 261: 762769.
103. Welch, T. J., and, D. H. Bartlett. 1998. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27: 977985.
104. Welch, T. J.,, A. Farewell,, F. C. Neidhardt, and, D. H. Bartlett. 1993. Stress response of Escherichia coli to elevated hydrostatic pressure. J. Bacteriol. 175: 71707177.
105. Yayanos, A. A., and, E. C. Pollard. 1969. A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys. J. 9: 14641482.
106. ZoBell, C. E., and, A. B. Cobet. 1963. Filament formation by Escherichia coli at increased hydrostatic pressures. J. Bacteriol. 87: 710719.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error