MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

19 , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap19-2.gif


In 1937 Imshenetski and Solntseva isolated a new species of cellulose-degrading myxobacteria, which they called . 16S rRNA gene sequencing of nine isolates of and their comparison with as the reference strain proved a close phylogenetic relationship (evolutionary distance, less than 3% on the nucleotide level). The use of single antibiotics or better combinations of several antibiotics that act on different targets may be helpful, because species usually turn out to be multiresistant. Cells of the suborder “” on the one hand and “” and “” on the other hand can easily be distinguished because they differ in cell morphology, as can be detected using phase-contrast microscopy. Strains of , characterized by their intense blood-red color, and the very common strains are the only myxobacteria which degrade crystalline cellulose and can use it as the sole carbon source. At the Gesellschaft für Biotechnologische Forschung (GBF) an isolation and screening program was initiated in the late 1970s to evaluate the potential of the different genera of myxobacteria as producers of secondary metabolites. A gene product, which was previously found only in eukaryotes, has also been identified in strains. As discussed in this chapter, the fascinating microorganisms of the genus attract more and more attention, because they undergo a complex life cycle, possess the largest bacterial genomes known to date, and show a high potential as producers of biotechnologically important natural products.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Raster electron microscopic pictures of fruiting . (a) Vegetative swarm colony. (b) Sporangioles on the agar surface, some of which are broken. (c) Myxospores of . The surface structure is the result of drying. Pictures by K. Gerth and H. Lünsdorf.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Dependence of the generation time of strains on incubation temperature. So ce26 is a mesothermophilic isolate. An increase of the temperature from 30 to 40°C results in an increase of the generation time from 11 to 19 h. GT-46 and GT-41 are moderately thermophilic strains. The generation time decreases with an increase in temperature. At 42°C the temperature optimum is reached with a generation time of 6.5 h.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Myxobacterial producers of novel secondary metabolites. With 47% of total production, strains are the most outstanding producers of novel metabolites.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Frequency of some selected metabolites derived from strains. The data are given as numbers of producer strains from 1,700 screened isolates. From Gerth et al. (2003) with the permission of Elsevier, B.V.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

A survey of “novel” metabolites from . Typical linear and macrocyclic polyketides are presented. Some of them are likely to be biosynthesized by combinations of peptide synthetases and polyketide synthetases, e.g., eliamid. Socein is one of the rare polypeptides active against fungi and yeasts.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

(a) Structures of myxobacterial secondary metabolites with a benzoic acid moiety. (b) Benzoyl-CoA biosynthesis in So ce26 (soraphen producer). Mutants E4 and E5 are nonproducer mutants. Mutant E4 excretes traces of cinnamic acid and high concentrations of phenyl propionic acid into the culture supernantant. Mutant E5 recovers the ability of soraphen production in the presence of these compounds. From Gerth et al. (2003) with the permission of Elsevier, B.V.

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Transposon mutagenesis in . (a) -based transposon. IR, inverted repeats, P, promoter of the gene; Ω, transcription terminator of the hygromycin resistance gene (Hyg); oriR6Kγ, conditional origin of replication. (b) Transposon region when integrated into the chromosome. (c) Transposon recovery, consisting of ligation of chromosomal DNA from mutants after restriction with an enzyme which does not cut inside the transposed element (e.g., MluI). Using Primer 1 and Primer 2 the flanking chromosomal regions can be sequenced from the recovered plasmid. (d) Analysis of mutants, using a bioassay (e.g., comparison of nonproducers of chivosazol obtained by transposon mutagenesis with the wild type, which shows an inhibition zone on the indicator plate) (Kopp et al., 2004).

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figurer 8
Figurer 8

Identification of the chivosazol biosynthetic gene cluster by inactivation of PKS genes using plasmid integration by homologous recombination. (a) Inactivation plasmid containing the selection marker Hyg and a homologous region obtained by PCR using degenerate PKS primers. (b) Biosynthetic gene cluster; localization of mutations is marked. (c) HPLC chromatogram of culture extracts of So ce56 wild type (wt) and chivosazol-negative mutants (Mutant1 and Mutant2). (d) Bioassay for chivosazol production using .

Citation: Gerth K, Perlova O, Müller R. 2008. 19 , p 329-348. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill, and, D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141147.
2. Berner, M.,, D. Krug,, C. Bihlmaier,, A. Vente,, R. Müller, and, A. Bechthold. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 26662673.
3. Bode, H. B., and, R. Müller. 2003. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol. 132: 11531161.
4. Bode, H. B., and, R. Müller. 2005. The impact of bacterial genomics on natural product research. Angew. Chem. Int. Ed. Engl. 44: 68286846.
5. Brenner, D. J.,, N. R. Krieg, and, J. T. Staley. 2005. The alpha-, beta-, delta-, and epsilonproteobacteria. In G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. The Proteobacteria. Springer, New York, NY.
6. Carvalho, R.,, R. Reid,, N. Viswanathan,, H. Gramajo, and, B. Julien. 2005. The biosynthetic genes for disorazoles, potent cytotoxic compounds that disrupt microtubule formation. Gene 359: 9198.
7. Cheng, Y. Q.,, G. L. Tang, and, B. Shen. 2003. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc. Natl. Acad. Sci. USA 100: 31493154.
8. Coucke, P., and, J. P. Voets. 1967. The mineral requirements of Polyangium cellulosum. Z. Allg. Microbiol. 7: 175182.
9. Coucke, P., and, J. P. Voets. 1968. Etude de la cellulolyse enzymatique par Sorangium compositum. Ann. Inst. Pasteur 116: 549560.
10. Dawid, W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24: 403427.
11. Eppelmann, K.,, S. Doekel, and, M. A. Marahiel. 2001. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J. Biol. Chem. 276: 3482434831.
12. Facchini, P. J.,, K. L. Huber-Allanach, and, L. W. Tari. 2000. Plant aromatic-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54: 121138.
13. Facchini, P. J. 2001. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 2966.
14. Finck, G. 1950. Biologische und stoffwechselphysiologische Studien an Myxococcaceen. Arch. Mikrobiol. 15: 358388.
15. Funa, N.,, Y. Ohnishi,, I. Fujii,, M. Shibuya,, Y. Ebizuka, and, S. Horinouchi. 1999. A new pathway for polyketide synthesis in microorganisms. Nature 400: 897899.
16. Gaspari, F.,, Y. Paitan,, M. Mainini,, D. Losi,, E. Z. Ron, and, F. Marinelli. 2004. Myxobacteria isolated in Israel as potential source of new anti-infectives. J. Appl. Microbiol. 98: 429439.
17. Gerth, K.,, N. Bedorf,, H. Irschik,, G. Höfle, and, H. Reichen-bach. 1994. The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1: fermentation, isolation, biological properties. J. Antibiot. 47: 2331.
18. Gerth, K.,, B. Bedorf,, G. Höfle,, H. Irschik, and, H. Reichen-bach. 1996a. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria) production, physico-chemical and biological properties. J. Antibiot. 49: 560563.
19. Gerth, K.,, P. Washausen,, G. Höfle,, H. Irschik, and, H. Reichen-bach. 1996b. The jerangolids: a family of new antifungal compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties of jerangolid A. J. Antibiot. 49: 7175.
20. Gerth, K.,, S. Pradella,, O. Perlova,, S. Beyer, and, R. Müller. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233253.
21. Gerth, K., and, R. Müller. 2005. Moderately thermophilic myxobacteria: novel potential for production of natural products. Environ. Microbiol. 7: 874880.
22. Goffeau, A.,, B. G. Barrell,, H. Bussey,, R. W. Davis,, B. Dujon,, H. Feldmann,, F. Galibert,, J. D. Hoheisel,, C. Jacq,, M. Johnston,, E. J. Louis,, H. W. Mewes,, Y. Murakami,, P. Philippsen,, H. Tettelin, and, S. G. Oliver. 1996. Life with 6000 genes. Science 274: 546, 563567.
23. Golden, N. J.,, A. Camilli, and, D. W. Acheson. 2000. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun. 68: 54505453.
24. Gross, F.,, D. Gottschalk, and, R. Müller. 2005. Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase. Appl. Microbiol. Biotechnol. 68: 6674.
25. Gross, F.,, N. Luniak,, O. Perlova,, N. Gaitatzis,, H. Jenke-Kodama,, K. Gerth,, D. Gottschalk,, E. Dittmann, and, R. Müller. 2006a. Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expession in pseudomonads. Arch. Microbiol. 185: 2838.
26. Gross, F.,, M. W. Ring,, O. Perlova,, J. Fu,, S. Schneider,, K. Gerth,, S. Kuhlmann,, F. Stewart,, Y. Zhang, and, R. Müller. 2006b. Red/ET-subcloning and heterologous expression of methylmalonyl-CoA biosynthesis genes of Sorangium cellulosum So ce56 in Pseudomonas putida KT2440. Chem. Biol. 13: 12531264.
27. Hertweck, C., and, B. S. Moore. 2000. A plant-like biosynthesis of benzoyl-CoA in the marine bacterium ‘Streptomyces maritimus’. Tetrahedron 56: 91159120.
28. Höfle, G., and, H. Reichenbach. 1995. The biosynthetic potential of the Myxobacteria, p. 6178. In W. Kuhn and, H. P. Fiedler (ed.), Sekundärmetabolismus bei Mikroorganismen. Attempo Verlag, Tübingen, Germany.
29. Höfle, G. 1996–2002. Isolation, structure elucidation and chemistry. In Scientific Annual Report. Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany.
30. Hoischen, C. 1986. Untersuchungen zum Zuckerstoffwechsel von Sorangium cellulosum, p. 197. Fakultät für Biologie der Universität, Tübingen, Germany.
31. Ikeda, H.,, J. Ishikawa,, A. Hanamoto,, M. Shinose,, H. Kikuchi,, T. Shiba,, Y. Sakaki,, M. Hattori, and, S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526531.
32. Imshenetski, A. A., and, L. Solntseva. 1936. On aerobic cellulose-decomposing bacteria. Izv. Akad. Nauk SSSR Cl. Sci. Math. Natl. Ser. Biol. 1936: 11151172. (In Russian with English summary.)
33. Imshenetski, A. A. 1959. Mikrobiologie der Cellulose. Akademie Verlag, Berlin, Germany.
34. Irschik, H.,, R. Jansen,, K. Gerth,, G. Höfle, and, H. Reichen-bach. 1987. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J. Antibiot. 40: 713.
35. Irschik, H.,, R. Jansen,, K. Gerth,, G. Höfle, and, H. Reichenbach. 1995a. Chivosazol A, a new inhibitor of eukaryotic organisms isolated from myxobacteria. J. Antibiot. 48: 962966.
36. Irschik, H.,, R. Jansen,, K. Gerth,, G. Höfle, and, H. Reichenbach. 1995b. Disorazol A, an efficient inhibitor of eukaryotic organisms isolated from myxobacteria. J. Antibiot. 48: 3135.
37. Jansen, R.,, D. Schomburg, and, G. Höfle. 1993. Thiangazole, a new Tris(thiazoline) derivative from Polyangium spec.: absolute configuration. Liebigs Ann. 1993: 701704.
38. Jansen, R.,, P. Washausen,, B. Kunze,, H. Reichenbach, and, G. Höfle. 1999. Antibiotics from gliding bacteria, LXXXIII—The crocacins, novel antifungal and cytotoxic antibiotics from Chondromyces crocatus and Chondromyces pediculatus (Myxobacteria): isolation and structure elucidation. Eur. J. Org. Chem. 1999: 10851089.
39. Jaoua, S.,, S. Neff, and, T. Schupp. 1992. Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28: 157165.
40. Julien, B.,, S. Shah,, R. Ziermann,, R. Goldman,, L. Katz, and, C. Khosla. 2000. Isolation and characterization of the epothi-lone biosynthetic gene cluster from Sorangium cellulosum. Gene 249: 153160.
41. Julien, B., and, S. Shah. 2002. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Anti-microb. Agents Chemother. 46: 27722778.
42. Julien, B., and, R. Fehd. 2003. Development of a mariner-based transposon for use in Sorangium cellulosum. Appl. Environ. Microbiol. 69: 62996301.
43. Kaiser, O.,, D. Bartels,, T. Bekel,, A. Goesmann,, S. Kespohl,, A. Pühler, and, F. Meyer. 2003. Whole genome shotgun sequencing guided by bioinformatics pipelines—an optimized approach for an established technique. J. Biotechnol. 106: 121133.
44. Kegler, C.,, K. Gerth, and, R. Müller. 2006. Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxo-bacterium Sorangium cellulosum So ce56. J. Biotechnol. 121: 201212.
45. Konstantinidis, K. T., and, J. M. Tiedje. 2004. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl. Acad. Sci. USA 101: 31603165.
46. Kopp, M.,, H. Irschik,, F. Gross,, O. Perlova,, A. Sandmann,, K. Gerth, and, R. Müller. 2004. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J. Biotechnol. 107: 2940.
47. Kopp, M.,, H. Irschik,, S. Pradella, and, R. Müller. 2005. Production of the tubulin destabilizer disorazol in Sorangium cellulosum: biosynthetic machinery and regulatory genes. ChemBioChem 6: 12771286.
48. Krzemieniewska, H., and, S. Krzemieniewski. 1937a. Über die Zersetzung der Zellulose durch Myxobakterien. Bull. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat. B I: 3359.
49. Krzemieniewska, H., and, S. Krzemieniewski. 1937b. Die zellulosezersetzenden Myxobakterien. Bull. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat. B I: 1131.
50. Kunze, B.,, R. Jansen,, L. Pridzun,, E. Jurkiewicz,, G. Hunsmann,, G. Höfle, and, H. Reichenbach. 1993. Thiangazole, a new thiazoline antibiotic from Polyangium sp. (myxobacteria): production, antimicrobial activity and mechanism of action. J. Antibiot. 46: 17521755.
51. Kyndt, J. A.,, T. E. Meyer,, M. A. Cusanovich, and, J. J. Van Beeumen. 2002. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett. 512: 240244.
52. Lampky, J. R. 1971. Distribution of Sorangium cellulosum. Appl. Microbiol. Biotechnol. 22: 937938.
53. Lau, J.,, S. Frykman,, R. Regentin,, S. Ou,, H. Tsuruta, and, P. Licari. 2002. Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol. Bioeng. 78: 280288.
54. Li, A., and, J. Piel. 2002. A gene cluster from a marine Streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. Chem. Biol. 9: 10171026.
55. Li, T.,, O. Choroba,, H. Hong,, D. Williams, and, J. Spencer. 2001. Biosynthesis of the vancomycin group of antibiotics: characterisation of a type III polyketide synthase in the pathway to (S)-3,5-dihydroxyphenylglycine. Chem. Commun. 20: 21562157.
56. Ligon, J.,, S. Hill,, J. Beck,, R. Zirkle,, I. Molnar,, J. Zawodny,, S. Money, and, T. Schupp. 2002. Characterization of the bio-synthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene 285: 257267.
57. McCurdy, H. D. 1969. Studies on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. Can. J. Microbiol. 15: 14531461.
58. McCurdy, H. D., Jr. 1970. Studies on the taxonomy of the Myxobacterales II. Polyangium and the demise of the Sorangiaceae. Int. J. Syst. Bacteriol. 20: 283296.
59. Mishustin, E. N. 1938. Cellulose-decomposing myxobacteria. Microbiologiya 7: 427444.
60. Molnar, I.,, T. Schupp,, M. Ono,, R. Zirkle,, M. Milnamow,, B. Nowak-Thompson,, N. Engel,, C. Toupet,, A. Stratmann,, D. D. Cyr,, J. Gorlach,, J. M. Mayo,, A. Hu,, S. Goff,, J. Schmid, and, J. M. Ligon. 2000. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol. 7: 97109.
61. Müller, R.,, K. Gerth,, P. Brandt,, H. Blöcker, and, S. Beyer. 2000. Identification of an L-dopa decarboxylase gene from Sorangium cellulosum So ce90. Arch. Microbiol. 173: 303306.
62. Müller, R., and, K. Gerth. 2006. Development of simple media which allow investigations into the global regulation of chivosazole biosynthesis with Sorangium celllulosum So ce56. J. Biotechnol. 121: 192200.
63. Mutka, S. C.,, J. R. Carney,, Y. Liu, and, J. Kennedy. 2006. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45: 13211330.
64. Neil, R. B.,, D. Hite,, M. I. Kelrick,, M. L. Lockhart, and, K. Lee. 2005. Myxobacterial biodiversity in an established oak-hickory forest and a savanna restoration site. Curr. Micro-biol. 50: 8895.
65. Niggemann, J.,, N. Bedorf,, U. Flörke,, H. Steinmetz,, K. Gerth,, H. Reichenbach, and, G. Höfle. 2005. Spirangien A and B, highly cytotoxic and antifungal spiroketals from the Myxobacterium Sorangium cellulosum: isolation, structure elucidation and chemical modifications. Eur. J. Org. Chem. 23: 50135018.
66. Perlova, O.,, K. Gerth,, A. Hans,, O. Kaiser, and, R. Müller. 2006. Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J. Biotechnol. 121: 174191.
67. Peterson, E. A.,, D. C. Gillespie, and, F. D. Cook. 1966. A wide-spectrum antibiotic produced by a species of Sorangium. Can. J. Microbiol. 12: 221230.
68. Peterson, J. E. 1965. Group of strongly cellulolytic Myxobacteria previously unreported in North American soils. Am. J. Bot. 52:636.
69. Peterson, J. E., and, B. Norén. 1967. The occurrence of the cellulose-decomposing myxobacterium, Sorangium cellulosum, in Scandinavian soils. Am. J. Bot. 54: 648.
70. Peterson, J. E. 1969a. The fruiting Myxobacteria: their properties, distribution and isolation. J. Appl. Bacteriol. 32: 512.
71. Peterson, J. E. 1969b. Isolation, cultivation and maintenance of the myxobacteria, p. 185210. In J. R. Norris and, D. W. Ribbons (ed.), Methods in Microbiology, vol. 3B. Academic Press, New York, NY.
72. Pfeifer, V.,, G. J. Nicholson,, J. Ries,, J. Recktenwald,, A. B. Schefer,, R. M. Shawky,, J. Schröder,, W. Wohlleben, and, S. Pelzer. 2001. A polyketide synthase in glycopeptide biosynthesis— the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. J. Biol. Chem. 276: 3837038377.
73. Piel, J.,, D. Hui,, N. Fusetani, and, S. Matsunaga. 2004. Targeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ. Microbiol. 6: 921927.
74. Pradella, S.,, A. Hans,, C. Sproer,, H. Reichenbach,, K. Gerth, and, S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178: 484492.
75. Reichenbach, H. 1992. The Genus Lysobacter, p. 32563275. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K. H. Schleifer (ed.), The Prokaryotes. Springer-Verlag, New York, NY.
76. Reichenbach, H., and, G. Höfle. 1999. Myxobacteria as producers of secondary metabolites, p. 149179. In S. Grab-ley and, R. Thieriecke (ed.), Drug Discovery from Nature. Springer Verlag, Berlin, Germany.
77. Reichenbach, R., and, M. Dworkin. 1981. The order Myxobacterales, p. 328355. In H. Stolp,, M. P. Starr,, H. G. Trüber,, A. Balows, and, H. G. Schlegel (ed.), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, vol. I. Springer-Verlag KG, Berlin, Germany.
78. Ringel, S. M.,, R. C. Greenough,, S. Roemer,, D. Connor,, A. L. Gutt,, B. Blair,, G. Kanter, and, M. von Strandtmann. 1977. Ambruticin *(W7783), a new antifungal antibiotic. J. Antibiot. 30: 371375.
79. Rubin, E.,, B. Akerley,, V. Novik,, D. Lampe,, R. Husson, and, J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96: 16451650.
80. Sanford, R. A.,, J. R. Cole, and, J. M. Tiedje. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68: 893900.
81. Sarao, R.,, H. D. McCurdy, and, L. Passador. 1985. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can. J. Microbiol. 31: 11421146.
82. Schupp, T.,, C. Toupet,, B. Cluzel,, S. Neff,, S. Hill,, J. J. Beck, and, J. M. Ligon. 1995. A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J. Bacteriol. 177: 36733679.
83. Silakowski, B.,, B. Kunze, and, R. Müller. 2001. Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275: 233240.
84. Simunovic, V.,, J. Zapp,, S. Rachid,, D. Krug,, P. Meiser, and, R. Müller. 2006. Myxovirescin biosynthesis is directed by an intriguing megasynthetase consisting of hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl CoA synthases and trans-acting acyltransferases. ChemBioChem 7: 12061220.
85. Singh, B. N., and, H. R. Singh. 1971. Distribution of fruiting myxobacteria in Indian soils, bark of trees and dung of herbivorous animals. Indian J. Microbiol. 11: 4792.
86. Solntseva, L. 1939. Methoden zum Kultivieren der Myxobakterien. Microbiologiya 8: 959963.
87. Spröer, C.,, H. Reichenbach, and, E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49: 12551262.
88. Tang, L.,, S. Shah,, L. Chung,, J. Carney,, L. Katz,, C. Khosla, and, B. Julien. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640642.
89. Trowitzsch-Kienast, W.,, E. Forche,, V. Wray,, H. Reichenbach,, E. Jurkiewicz,, G. Hunsmann, and, G. Höfle. 1992. Phenalamide, neue HIV-Inhibitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 16: 659664.
90. Weigele, M., and, W. Leimgruber. 1967. The structure of myxin. Tetrahedron Lett. 1967: 715718.
91. Wenzel, S. C.,, F. Gross,, Y. Zhang,, J. Fu,, F. A. Stewart, and, R. Müller. 2005. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem. Biol. 12: 349356.
92. Wenzel, S. C. and, R. Müller. 2005. Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from text book biosynthetic logic. Curr. Opin. Chem. Biol. 9: 447458.
93. Wenzel, S. C.,, P. Meiser,, T. Binz,, T. Mahmud, and, R. Müller. 2006. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew. Chem. Int. Ed. Engl. 45: 22962301.
94. Wood, V.,, R. Gwilliam,, M. A. Rajandream,, M. Lyne,, R. Lyne,, A. Stewart,, J. Sgouros,, N. Peat,, J. Hayles,, S. Baker,, D. Basham,, S. Bowman,, K. Brooks,, D. Brown,, S. Brown,, T. Chilling-worth,, C. Churcher,, M. Collins,, R. Connor,, A. Cronin,, P. Davis,, T. Feltwell,, A. Fraser,, S. Gentles,, A. Goble,, N. Hamlin,, D. Harris,, J. Hidalgo,, G. Hodgson,, S. Holroyd,, T. Hornsby,, S. Howarth,, E. J. Huckle,, S. Hunt,, K. Jagels,, K. James,, L. Jones,, M. Jones,, S. Leather,, S. McDonald,, J. McLean,, P. Mooney,, S. Moule,, K. Mungall,, L. Murphy,, D. Niblett,, C. Odell,, K. Oliver,, S. O’Neil,, D. Pearson,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, S. Rutter,, D. Saunders,, K. Seeger,, S. Sharp,, J. Skelton,, M. Simmonds,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, R. G. Taylor,, A. Tivey,, S. Walsh,, T. Warren,, S. Whitehead,, J. Woodward,, G. Volckaert,, R. Aert,, J. Robben,, B. Grymonprez,, I. Weltjens,, E. Vanstreels,, M. Rieger,, M. Schafer,, S. Muller-Auer,, C. Gabel,, M. Fuchs,, A. Dusterhoft,, C. Fritzc,, E. Holzer,, D. Moestl,, H. Hilbert,, K. Borzym,, I. Langer,, A. Beck,, H. Lehrach,, R. Reinhardt,, T. M. Pohl,, P. Eger,, W. Zimmermann,, H. Wedler,, R. Wambutt,, B. Purnelle,, A. Goffeau,, E. Cadieu,, S. Dreano,, S. Gloux,, V. Lelaure,, S. Mottier,, F. Galibert,, S. J. Aves,, Z. Xiang,, C. Hunt,, K. Moore,, S. M. Hurst,, M. Lucas,, M. Rochet,, C. Gaillardin,, V. A. Tallada,, A. Garzon,, G. Thode,, R. R. Daga,, L. Cruzado,, J. Jimenez,, M. Sanchez,, F. del Rey,, J. Benito,, A. Dominguez,, J. L. Revuelta,, S. Moreno,, J. Armstrong,, S. L. Forsburg,, L. Cerutti,, T. Lowe,, W. R. McCombie,, I. Paulsen,, J. Potashkin,, G. V. Shpakovski,, D. Ussery,, B. G. Barrell, and, P. Nurse. 2002. The genome sequence of Schizosaccharomyces pombe. Nature 415: 871880.
95. Xiang, L., and, B. S. Moore. 2005. Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. J. Bacteriol. 187: 42864289.
96. Yan, Z. C.,, B. Wang,, Y. Z. Li,, X. Gong,, H. Q. Zhang, and, P. J. Gao. 2003. Morphologies and phylogenetic classification of cellulolytic Myxobacteria. Syst. Appl. Microbiol. 26: 104109.
97. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49: 555570.
98. Zhang, J. K.,, M. A. Pritchett,, D. J. Lampe,, H. M. Robertson, and, W. W. Metcalf. 2000. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc. Natl. Acad. Sci. USA 97: 96659670.
99. Zhang, L.,, U. Sankar,, D. J. Lampe,, H. M. Robertson, and, F. L. Graham. 1998. The Himar1 mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucleic Acids Res. 26: 36873693.
100. Zirkle, R.,, J. M. Ligon, and, I. Molnar. 2004a. Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150: 27612774.
101. Zirkle, R.,, J. M. Ligon, and, M. Molnar. 2004b. Cloning, sequence analysis and disruption of the mglA gene involved in swarming motility of Sorangium cellulosum So ce26, a producer of the antifungal polyketide antibiotic soraphen A. J. Biosci. Bioeng. 97: 267274.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error