1887

24 Multicellular Development in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

24 Multicellular Development in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555815677/9781555814205_Chap24-2.gif

Abstract:

The colony structure and life cycle of the grampositive, soil-dwelling bacterium provide a fascinating exception to the view of bacteria as simple unicellular microorganisms. Mutations in genes involved in morphogenesis alter colony appearance but do not usually compromise viability. The majority of genes identified as being important for aerial hypha formation encode regulatory proteins; however, recent work has resulted in the characterization of two classes of structural molecules that are necessary for aerial development: the SapB surfactant peptide (specified by the gene cluster) and eight chaplin proteins (ChpA through H). It has been found that while has many of the conventional genes that are necessary for these processes to occur, cells are organized very differently from other bacteria and these differences are highly relevant to colony development and spore formation. In , however, DivIVA is an essential protein that does not seem to be associated with cell division but rather is crucial for coordinating cell wall growth. The basic mechanism of Z-ring formation appears to be shared between and other prokaryotes; however, there are important differences in how employs and executes cell division. has no homologues of the or MinC or MinD proteins and uses its DivIVA for functions apparently unrelated to cell division.

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Scanning electron micrograph of a side-on view of a mature colony showing long chains of spores in the air supported by a layer of substrate mycelium (photo courtesy of Kim Findlay and Mark Buttner, John Innes Centre).

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Spore rodlet ultrastructure. Freeze-etch preparation of a spore showing the basket-work of paired rodlets characteristic of the hydrophobic surface layer of aerial hyphae and spores. The sample was prepared by freeze-etching followed by the creation of a replica, which was examined by transmission electron microscopy. The spore envelopes are partly fractured away, revealing part of the spore wall and an expanse of the plasma membrane. Image kindly provided by Hansrudi Wildermuth and David Hopwood, John Innes Centre.

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Covalent structure of SapB (Kodani et al., 2004). Note that following dehydration of serine to Dha and lanthionine bridge formation by a nearby cysteine residue, both the Dha residue and Cys residues involved in thioether formation are, by convention, designated as alanine residues. (B) Model for SapB maturation and export complex (Willey et al., 2006). The unmodified gene product (RamS) is modified by dehydration and thioether formation, presumably catalyzed by RamC, which is hypothesized to have LanM-like bifunctional enzyme activity. RamC is known to function as a dimer ( ) and is associated with the membrane ( ). The modified product, PreSapB, is exported, and the leader sequence is cleaved to yield mature SapB. Currently there are no good candidates for the leader peptidase, so it is unclear if processing occurs before, during, or following export.

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Localization of the chaplins. The long chaplins are covalently anchored to the cell wall at their C termini. A peptidoglycan-spanning domain is shown as a thick black line, and the two chaplin domains are shown as hatched diamonds. The short chaplins consist of a single chaplin domain and are thought to be anchored to the cell wall by the long chaplins.

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model of morphogenetic protein activity in the formation of aerial hyphae in . During vegetative growth (A and B), SapB is secreted (black circles) and assembles to form an amphiphilic sheet at the air-water interface (straight black line). This reduces surface tension and allows the emergence of aerial hyphae. Chaplin synthesis and secretion (hatched diamonds) begin during late vegetative growth (B) and continue throughout aerial hyphal growth (C and D). The chaplins polymerize to form a hydrophobic sheath surrounding the aerial filament, which further facilitates the growth into the air.

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Transmission electron micrographs of . (A) Substrate hyphae showing a branch (B) and a vegetative cross wall (VC). (B) Aerial hypha showing synchronous sporulation septation. Note that septation and chromosome segregation are taking place simultaneously.

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815677.ch24
1. Aínsa, J. A.,, N. J. Ryding,, N. Hartley,, K. C. Findlay,, C. J. Bruton, and, K. F. Chater. 2000. WhiA, a protein of unknown function conserved among gram-positive bacteria, is essential for sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 182: 54705478.
2. Aínsa, J. A.,, H. D. Parry, and, K. F. Chater. 1999. A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol. Microbiol. 34: 607619.
3. Alam, M. S.,, S. K. Garg, and, P. Agrawal. 2007. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol. Microbiol. 63: 14141431.
4. Archibald, A. R.,, I. C. Hancock, and, C. R. Harwood. 1993. Cell wall structure, synthesis and turnover. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, DC.
5. Ausmees, N.,, H. Wahlstedt,, S. Bagchi,, M. Elliot,, M. Buttner, and, K. Flärdh. SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-domain protein to cell division septa. Mol. Microbiol ., in press.
6. Bao, K., and, S. N. Cohen. 2003. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev. 17: 774785.
7. Bao, K., and, S. N. Cohen. 2004. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc. Natl. Acad. Sci. USA 101: 1436114366.
8. Bath, J.,, L. J. Wu,, J. Errington, and, J. C. Wang. 2000. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290: 995997.
9. Beinert, H., and, M. C. Kennedy. 1993. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 7: 14421449.
10. Bentley, S. D.,, S. Brown,, L. D. Murphy,, D. E. Harris,, M. A. Quail,, J. Parkhill,, B. G. Barrell,, J. R. McCormick,, R. I. Santamaria,, R. Losick,, M. Yamasaki,, H. Kinashi,, C. W. Chen,, G. Chandra,, D. Jakimowicz,, H. M. Kieser,, T. Kieser, and, K. F. Chater. 2004. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 51: 16151628.
11. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill, and, D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 417: 141147.
12. Ben-Yehuda, S., and, R. Losick. 2002. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cyto-kinetic protein FtsZ. Cell 109: 257266.
13. Bernhardt, T. G., and, P. A. de Boer. 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18: 555564.
14. Bibb, M. J.,, V. Molle, and, M. J. Buttner. 2000. σ BldN, an extra-cytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J. Bacteriol. 182: 46064616.
15. Bignell, D. R.,, J. L. Warawa,, J. L. Strap,, K. F. Chater, and, B. K. Leskiw. 2000. Study of the bldG locus suggests that an anti-anti-sigma factor and an anti-sigma factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiology 146: 21612173.
16. Braña, A. F.,, M.-B. Manzanal, and, C. Hardisson. 1982. Mode of cell wall growth of Streptomyces antibioticus. FEMS Microbiol. Lett. 13: 231235.
17. Bruton, C. J.,, K. A. Plaskitt, and, K. F. Chater. 1995. Tissue-specific glycogen branching isoenzymes in a multicellular prokaryote, Streptomyces coelicolor A3(2). Mol. Microbiol. 18: 8999.
18. Burger, A.,, K. Sichler,, G. Kelemen,, M. Buttner, and, W. Wohlleben. 2000. Identification and characterization of the mre gene region of Streptomyces coelicolor A3(2). Mol. Gen. Genet. 263: 10531060.
19. Capstick, D. S.,, J. M. Willey,, M. J. Buttner, and, M. A. Elliot. 2007. SapB and the chaplins: connections between morpho-genetic proteins in Streptomyces coelicolor. Mol. Microbiol. 64: 602613.
20. Chang, P. C., and, S. N. Cohen. 1994. Bidirectional replication from an internal origin in a linear streptomyces plasmid. Science 265: 952954.
21. Chater, K. F.,, C. J. Bruton,, K. A. Plaskitt,, M. J. Buttner,, C. Méndez, and, J. D. Helmann. 1989. The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell 59: 133143.
22. Chater, K. F., and, G. Chandra. 2006. The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30: 651672.
23. Cho, Y. H.,, E. J. Lee, and, J. H. Roe. 2000. A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol. Microbiol. 35: 150160.
24. Claessen, D.,, R. Rink, W. de Jong,, J. Siebring,, P. De Vreugd,, F. G. Boersma,, L. Dijkhuizen, and, H. A. Wösten. 2003. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17: 1714 1726.
25. Claessen, D.,, I. Stokroos,, H. J. Deelstra,, N. A. Penninga,, C. Bormann,, J. A. Salas,, L. Dijkhuizen, and, H., A. Wösten. 2004. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 53: 433443.
26. Claessen, D., H., A. Wösten,, G. van Keulen,, O. G. Faber,, A. M. Alves,, W. G. Meijer, and, L. Dijkhuizen. 2002. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol. Microbiol. 44: 14831492.
27. Craney., A.,, T. Hohenauer,, Y. Xu,, N. K. Navani,, Y. Li, and, J. Nodwell. 1 March 2007. A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Res. 35: e46 [Epub ahead of print.]
28. Daniel, R. A., and, J. Errington. 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113: 767776.
29. Davis, N. K., and, K. F. Chater. 1992. The Streptomyces coeli-color whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol. Gen. Genet. 232: 351358.
30. Davis, N. K., and, K. F. Chater. 1990. Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol. Microbiol. 4: 16791691.
31. de Crécy-Lagard, V.,, P. Servant-Moisson,, J. Viala,, C. Grand-valet, and, P. Mazodier. 1999. Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol. Micro-biol. 32: 505517.
32. Del Sol, R.,, J. G. Mullins,, N. Grantcharova,, K. Flärdh, and, P. Dyson. 2006. Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J. Bacteriol. 188: 15401550.
33. Derouaux, A.,, S. Halici,, H. Nothaft,, T. Neutelings,, G. Moutzourelis,, J. Dusart,, F. Titgemeyer, and, S. Rigali. 2004. Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. J. Bacteriol. 186: 18931897.
34. Eccleston, M.,, R. A. Ali,, R. Seyler,, J. Westpheling, and, J. Nodwell. 2002. Structural and genetic analysis of the BldB protein of Streptomyces coelicolor. J. Bacteriol. 184: 42704276.
35. Eccleston, M.,, A. Willems,, A. Beveridge, and, J. R. Nodwell. 2006. Critical residues and novel effects of over-expression of the Streptomyces coelicolor developmental protein BldB: evidence for a critical interacting partner. J Bacteriol. 188: 81898195.
36. Edwards, D. H., and, J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905915.
37. Elliot, M.,, F. Damji,, R. Passantino,, K. Chater, and, B. Leskiw. 1998. The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J. Bacteriol. 180: 15491555.
38. Elliot, M. A.,, M. J. Bibb,, M. J. Buttner, and, B. K. Leskiw. 2001. BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol. Microbiol. 40: 257269.
39. Elliot, M. A.,, N. Karoonuthaisiri,, J. Huang,, M. J. Bibb,, S. N. Cohen,, C. M. Kao, and, M. J. Buttner. 2003. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17: 17271740.
40. Elliot, M. A., and, B. K. Leskiw. 1999. The BldD protein from Streptomyces coelicolor is a DNA-binding protein. J. Bacteriol. 181: 68326835.
41. Fernández-Moreno, M. A.,, A. J. Martín-Triana,, E. Martínez,, J. Niemi,, H. M. Kieser,, D. A. Hopwood, and, F. Malpartida. 1992. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174: 29582967.
42. Flärdh, K. 2003a. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor. Mol. Microbiol. 49: 15231536.
43. Flärdh, K. 2003b. Growth polarity and cell division in Streptomyces. Curr. Opin. Microbiol. 6: 564571.
44. Flärdh, K.,, K. C. Findlay, and, K. F. Chater. 1999. Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145: 22292243.
45. Flärdh, K.,, E. Leibovitz,, M. J. Buttner, and, K. F. Chater. 2000. Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Mol. Microbiol. 38: 737749.
46. Gehring, A. M.,, J. R. Nodwell,, S. M. Beverley, and, R. Losick. 2000. Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc. Natl. Acad. Sci. USA 97: 96429647.
47. Gehring, A. M.,, S. T. Wang,, D. B. Kearns,, N. Y. Storer, and, R. Losick. 2004. Novel genes that influence development in Streptomyces coelicolor. J. Bacteriol. 186: 35703577.
48. Gehring, A. M.,, N. J. Yoo, and, R. Losick. 2001. RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor. J. Bacteriol. 183: 59915996.
49. Giesbrecht, P.,, T. Kersten,, H. Maidhof, and, J. Wecke. 1998. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62: 13711414.
50. Grantcharova, N.,, U. Lustig, and, K. Flärdh. 2005. Dynamics of FtsZ assembly during sporulation in Streptomyces coeli-color A3(2). J. Bacteriol. 187: 32273237.
51. Grantcharova, N.,, W. Ubhayasekera,, S. L. Mowbray,, J. R. McCormick, and, K. Flärdh. 2003. A missense mutation in ftsZ differentially affects vegetative and developmentally controlled cell division in Streptomyces coelicolor A3(2). Mol. Microbiol. 47: 645656.
52. Gray, D. I.,, G. W. Gooday, and, J. I. Prosser. 1990. Apical hyphal extension in Streptomyces coelicolor A3(2). J. Gen. Microbiol. 136: 10771084.
53. Guijarro, J.,, R. Santamaria,, A. Shauer, and, R. Losick. 1988. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J. Bacteriol. 170: 18951901.
54. Hopwood, D. A. 2006. Soil to genomics: the Streptomyces chromosome. Annu. Rev. Genet. 40: 123.
55. Hopwood, D. A., and, A. M. Glauert. 1961. Electron microscope observations on the surface structures of Streptomyces violaceoruber. J. Gen. Microbiol. 26: 325330.
56. Hoskisson, P. A.,, S. Rigali,, K. Fowler,, K. C. Findlay, and, M. J. Buttner. 2006. DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J. Bacteriol. 188: 50145023.
57. Hudson, M. E.,, D. Zhang, and, J. R. Nodwell. 2002. Membrane association and kinase-like motifs of the RamC protein of Streptomyces coelicolor. J. Bacteriol. 184: 49204924.
58. Hudson, M. E., and, J. R. Nodwell. 2004. Dimerization of the RamC morphogenetic protein of Streptomyces coelicolor. J. Bacteriol. 186: 13301336.
59. Hunt, A. C.,, L. Servín-González,, G. H. Kelemen, and, M. J. Buttner. 2005. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. J. Bacteriol. 187: 716728.
60. Ikeda, H.,, J. Ishikawa,, A. Hanamoto,, M. Shinose,, H. Kikuchi,, T, Shiba,, Y. Sakaki,, M. Hattori, and, S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526531.
61. Ireton, K.,, S. Jin,, A. D. Grossman, and, A. L. Sonenshein. 1995. Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92: 28452849.
62. Jakimowicz, D.,, K. Chater, and, J. Zakrzewska-Czerwinska. 2002. The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol. Microbiol. 45: 13651377.
63. Jakimowicz, D.,, B. Gust,, J. Zakrzewska-Czerwinska, and, K. F. Chater. 2005a. Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae. J. Bacteriol. 187: 35723580.
64. Jakimowicz, D.,, S. Mouz,, J. Zakrzewska-Czerwinska, and, K. F. Chater. 2006. Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J. Bacteriol. 188: 17101720.
65. Jakimowicz, P.,, M. R. Cheesman,, W. R. Bishai,, K. F. Chater,, A. J. Thomson, and, M. J. Buttner. 2005b. Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J. Biol. Chem. 280: 83098315.
66. Karandikar, A.,, G. P. Sharples, and, G. Hobbs. 1997. Differentiation of Streptomyces coelicolor A3(2) under nitrate-limited conditions. Microbiology 143: 35813590.
67. Kawamoto, S.,, H. Watanabe,, A. Hesketh,, J. C. Ensign, and, K. Ochi. 1997. Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. Microbiology 143: 10771086.
68. Keijser, B. J.,, E. E. Noens,, B. Kraal,, H. K. Koerten, and, G. P. van Wezel. 2003. The Streptomyces coelicolor ssgB gene is required for early stages of sporulation. FEMS Microbiol. Lett. 225: 5967.
69. Keijser, B. J.,, G. P. van Wezel,, G. W. Canters, and, E. Vijgen-boom. 2002. Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J. Bacteriol. 184: 44204429.
70. Kelemen, G. H.,, P. Brian,, K. Flärdh,, L. Chamberlin,, K. F. Chater, and, M. J. Buttner. 1998. Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3(2). J. Bacteriol. 180: 25152521.
71. Kelemen, G. H.,, P. H. Viollier,, J. Tenor,, L. Marri,, M. J. Buttner, and, C. J. Thompson. 2001. A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol. Microbiol. 40: 804814.
72. Kim, D. W.,, K. Chater,, K. J. Lee, and, A. Hesketh. 2005. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J. Bacteriol. 187: 29572966.
73. Kim, H. J.,, M. J. Calcutt,, F. J. Schmidt, and, K. F. Chater. 2000. Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J. Bacteriol. 182: 13131320.
74. Kodani, S.,, M. E. Hudson,, M. C. Durrant,, M. J. Buttner,, J. R. Nodwell, and, J. M. Willey. 2004. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 101: 1144811453.
75. Lawlor, E. J.,, H. A. Baylis, and, K. F. Chater. 1987. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev. 1: 13051310.
76. Lee, E. J.,, N. Karoonuthaisiri,, H. S. Kim,, J. H. Park,, C. J. Cha,, C. M. Kao, and, J. H. Roe. 2005. A master regulator σ B governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 57: 12521264.
77. Leskiw, B. K.,, M. J. Bibb, and, K. F. Chater. 1991. The use of a rare codon specifically during development? Mol. Microbiol. 5: 28612867.
78. Lin, Y. S.,, H. M. Kieser,, D. A. Hopwood, and, C. W. Chen. 1993. The chromosomal DNA of Streptomyces lividans66 is linear. Mol. Microbiol. 10: 923933.
79. Löwe, J., and, L. A. Amos. 1998. Crystal structure of the bacterial cell division protein FtsZ. Nature 391: 203206.
80. Ma, H., and, K. Kendall. 1994. Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J. Bacteriol. 176: 38003811.
81. Marston, A. L.,, H. B. Thomaides,, D. H. Edwards,, M. E. Sharpe, and, J. Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 21: 34193430.
82. Mazza, P.,, E. E. Noens,, K. Schirner,, N. Grantcharova,, A. M. Mommaas,, H. K. Koerten,, G. Muth,, K. Flärdh,, G. P. Van Wezel, and, W. Wohlleben. 2006. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol. Microbiol. 60: 838852.
83. McCormick, J. R., and, R. Losick. 1996. Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3(2). J. Bacteriol. 178: 52955301.
84. McCormick, J. R.,, E. P. Su,, A. Driks, and, R. Losick. 1994. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14: 243254.
85. Méndez, C., and, K. F. Chater. 1987. Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2). J. Bacteriol. 169: 57155720.
86. Mikulík, K.,, J. Bobek,, S. Bezouŝková,, O. Benada, and, O. Kofroňová. 2002. Expression of proteins and protein kinase activity during germination of aerial spores of Streptomyces granaticolor. Biochem. Biophys. Res. Commun. 299: 335342.
87. Molle, V., and, M. J. Buttner. 2000. Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol. Microbiol. 36: 12651278.
88. Molle, V.,, W. J. Palframan,, K. C. Findlay, and, M. J. Buttner. 2000. WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 182: 12861295.
89. Neuhaus, F. C., and, J. Baddiley. 2003. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67: 686723.
90. Nguyen, K. T.,, J. M Willey,, L. D. Nguyen,, L. T. Nguyen,, P. H. Viollier, and, C. J. Thompson. 2002. A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol. Microbiol. 46: 12231238.
91. Nguyen, K. T.,, J. Tenor,, H. Stettles,, L. T. Nguyen,, L. D. Nguyen, and, C. J. Thompson. 2003. Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J. Bacteriol. 185: 72917296.
92. Nodwell, J. R., and, R. Losick. 1998. Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J. Bacteriol. 180: 13341337.
93. Nodwell, J. R.,, K. McGovern, and, R. Losick. 1996. An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol. Microbiol. 22: 881893.
94. Nodwell, J. R.,, M. Yang,, D. Kuo, and, R. Losick. 1999. Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151: 569584.
95. Noens, E. E.,, V. Mersinias,, B. A. Traag,, C. P. Smith,, H. K. Koerten, and, G. P. van Wezel. 2005. SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol. Microbiol. 58: 929944.
96. O’Connor, T. J.,, P. Kanellis, and, J. R. Nodwell. 2002. The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol. Microbiol. 45: 4557.
97. O’Connor, T. J., and, J. R. Nodwell. 2005. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J. Mol. Biol. 351: 10301047.
98. Ohnishi, Y.,, H. Yamazaki,, J. Y. Kato,, A. Tomono, and, S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69: 431439.
99. Paget, M. S.,, J. B. Bae,, M. Y. Hahn,, W. Li,, C. Kleanthous,, J. H. Roe, and, M. J. Buttner. 2001. Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch. Mol. Microbiol. 39: 10361047.
100. Pope, M. K.,, B. D. Green, and, J. Westpheling. 1996. The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell-cell signalling. Mol. Microbiol. 19: 747756.
101. Pope, M. K.,, B. Green, and, J. Westpheling. 1998. The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J. Bacteriol. 180: 15561562.
102. Potûcková, L.,, G. H. Kelemen,, K. C. Findlay,, M. A. Lonetto,, M. J. Buttner, and, J. Kormanec. 1995. A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol. Microbiol. 17: 3748.
103. Quirós, L. M.,, C. Hardisson, and, J. A. Salas. 1986. Isolation and properties of Streptomyces spore membranes. J. Bacteriol. 165: 923928.
104. Redshaw, P. A.,, P. A. McCann,, L. Sankaran, and, B. M. Pogell. 1976. Control of differentiation in streptomycetes: involvement of extrachromosomal deoxyribonucleic acid and glucose repression in aerial mycelia development. J. Bacteriol. 125: 698705.
105. Rigali, S.,, H. Nothaft,, E. E. Noens,, M. Schlicht,, S. Colson,, M. Müller,, B. Joris,, H. K. Koerten,, D. A. Hopwood,, F. Titge-meyer, and, G. P. van Wezel. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61: 12371251.
106. Ryding, N. J.,, M. J. Bibb,, V. Molle,, K. C. Findlay,, K. F. Chater, and, M. J. Buttner. 1999. New sporulation loci in Streptomyces coelicolor A3(2). J. Bacteriol. 181: 54195425.
107. Ryding, N. J.,, G. H. Kelemen,, C. A. Whatling,, K. Flärdh,, M. J. Buttner, and, K. F. Chater. 1998. A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol. Microbiol. 29: 343357.
108. San Paolo, S.,, J. Huang,, S. N. Cohen, and, C. J. Thompson. 2006. rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol. Microbiol. 61: 11671186.
109. Scheffers, D. J.,, L. J. Jones, and, J. Errington. 2004. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol. 51: 749764.
110. Schwedock, J.,, J. R. McCormick,, E. R. Angert,, J. R. Nodwell, and, R. Losick. 1997. Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25: 847858.
111. Setlow, P. 2003. Spore germination. Curr. Opin. Microbiol. 6: 550556.
112. Shima, J.,, A. Hesketh,, S. Okamoto,, S. Kawamoto, and, K. Ochi. 1996. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178: 72767284.
113. Smucker, R. A., and, R. M. Pfister. 1978. Characteristics of Streptomyces coelicolor A3(2) aerial spore rodlet mosaic. Can. J. Microbiol. 24: 397408.
114. Soliveri, J. A.,, J. Gomez,, W. R. Bishai, and, K. F. Chater. 2000. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146: 333343.
115. Sprusansky, O.,, K. Stirrett,, D. Skinner,, C. Denoya, and, J. West-pheling. 2005. The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J. Bacteriol. 187: 664671.
116. Steyn, A. J.,, D. M. Collins,, M. K. Hondalus,, W. R. Jacobs, Jr.,, R. P. Kawakami, and, B. R. Bloom. 2002. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc. Natl. Acad. Sci. USA 99: 31473152.
117. Süsstrunk, U.,, J. Pidoux,, S. Taubert,, A. Ullmann, and, C. J. Thompson. 1998. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30: 3346.
118. Takano, E.,, T. Nihira,, Y. Hara,, J. J. Jones,, C. J. Gershater,, Y. Yamada, and, M. Bibb. 2000. Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275: 1101011016.
119. Takano, E.,, M. Tao,, F. Long,, M. J. Bibb,, L. Wang,, W. Li,, M. J. Buttner,, M. J. Bibb,, Z. X. Deng, and, K. F. Chater. 2003. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol. Microbiol. 50: 475486.
120. Takano, E. 2006. γ-butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9: 287294.
121. Tan, H.,, Y. Tian,, H. Yang,, G. Liu, and, L. Nie. 2002. A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor. Arch. Microbiol. 177: 274278.
122. Traag, B. A.,, G. H. Kelemen, and, G. P. van Wezel. 2004. Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi- independent manner in Streptomyces coelicolor A3(2). Mol. Microbiol. 53: 9851000.
123. Ueda, K.,, H. Takano,, M. Nishimoto,, H. Inaba, and, T. Beppu. 2005. Dual transcriptional control of amfTSBA, which regulates the onset of cellular differentiation in Streptomyces griseus. J. Bacteriol. 187: 135142.
124. van Wezel, G. P.,, J. van der Meulen,, S. Kawamoto,, R. G. Luiten,, H. K. Korten, and, B. Kraal. 2000. ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J. Bacteriol. 182: 56535662.
125. Viollier, P. H.,, K. T. Nguyen,, W. Minas,, M. Folcher,, G. E. Dale, and, C. J. Thompson. 2001a. Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J. Bacteriol. 183: 31933203.
126. Viollier, P. H.,, W. Minas,, G. E. Dale,, M. Folcher, and, C. J. Thompson. 2001b. Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J. Bacteriol. 183: 31843192.
127. Wang, L.,, Y. Yu,, X. He,, X. Zhou,, Z. Deng,, K. F. Chater, and, M. Tao. 2007. Role of an FtsK-like protein in genetic stability in Streptomyces coelicolor A3(2). J. Bacteriol. 189: 23102318.
128. Wildermuth, H. 1970. Surface structure of streptomycete spores as revealed by negative staining and freeze-etching. J. Bacteriol. 101: 318322.
129. Wildermuth, H.,, E. Wehrli, and, R. W. Horne. 1971. The surface structure of spores and aerial mycelium in Streptomyces coelicolor. J. Ultrastruct. Res. 35: 168180.
130. Willey, J.,, R. Santamaria,, J. Guijarro,, M. Geistlich, and, R. Losick. 1991. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65: 641650.
131. Willey, J.,, J. Schwedock, and, R. Losick. 1993. Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev. 7: 895903.
132. Willey, J. M.,, A. Willems,, S. Kodani, and, J. R. Nodwell. 2006. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59: 731742.
133. Wu, L. J., and, J. Errington. 2004. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117: 915925.
134. Yamazaki, H.,, Y. Ohnishi, and, S. Horinouchi. 2003. Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J. Bacteriol. 185: 12731283.
135. Yang, C. C.,, C. H. Huang,, C., Y. Li,, Y. G. Tsay,, S. C. Lee, and, C. W. Chen. 2002. The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol. Microbiol. 43: 297305.
136. Yang, M. C., and, R. Losick. 2001. Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor. J. Bacteriol. 183: 51805186.
137. Yeo, M., and, K. Chater. 2005. The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. Microbiology 151: 855861.
138. Zhu, D.,, X. He,, X. Zhou, and, Z. Deng. 2005. Expression of the melC operon in several Streptomyces strains is positively regulated by AdpA, an AraC family transcriptional regulator involved in morphological development in Streptomyces coelicolor. J. Bacteriol. 187: 31803187.

Tables

Generic image for table
Table 1

Genes required for formation of aerial hyphae

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Generic image for table
Table 2

Genes required for sporulation

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Generic image for table
Table 3

Cell wall decoration

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Generic image for table
Table 4

Cell division genes in and

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24
Generic image for table
Table 5

Partitioning and cytoskeletal genes

Citation: Elliot M, Buttner M, Nodwell J. 2008. 24 Multicellular Development in , p 419-438. In Whitworth D (ed), Myxobacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815677.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error