Chapter 5 : Comparative Genomics: Genome Configuration and the Driving Forces in the Evolution of Vibrios

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Comparative Genomics: Genome Configuration and the Driving Forces in the Evolution of Vibrios, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap05-2.gif


This chapter outlines recent progress in the study of the genomes, including information from the genome sequences covered to date. A Japanese group and an American group independently reported the possession of two circular chromosomes for vibrios. First, all the vibrios examined possessed two chromosomes: no vibrios with only one chromosome were found. Second, the size of the large chromosome was relatively constant among the vibrios. The distribution of genes of known function between the large and small chromosomes of vibrios provides tantalizing clues about how the two-chromosome configuration of the might confer an evolutionary advantage. Thus, whatever the origin of the small chromosome of , stable maintenance of genomes with multiple chromosomes might have required the evolution of shared mechanisms to control replication. Genome sequencing of three species enabled the authors to precisely compare the genome structures of the strains. The chapter provides a brief introduction to some recent topics on horizontal gene transfer in vibrios, mainly in relation to the acquisition of the genes for pathogenicity. Recently, it was reported that chromosomal superintegrons of vibrios might be a genetic source for the evolution of resistance to clinically relevant antibiotics through integron-mediated recombination events. As with , further genome sequencing and comparative analysis of more vibrios should give us exciting new knowledge about vibrios exhibiting a variety of lifestyles.

Citation: Iida T, Kurokawa K. 2006. Comparative Genomics: Genome Configuration and the Driving Forces in the Evolution of Vibrios, p 67-75. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

PFGE of undigested genomic DNA of vibrios. 1, ; 2, ; 3, Two distinct bands corresponding to each chromosome are apparent.

Citation: Iida T, Kurokawa K. 2006. Comparative Genomics: Genome Configuration and the Driving Forces in the Evolution of Vibrios, p 67-75. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Comparison of the size of the large and small chromosomes. The vertical axis is the relative size of each chromosome from various vibrios; the chromosomes of were used as a standard. The size differences of the chromosomes of each vibrio are presented by dividing the size of the large or small chromosome of each strain by the size of the corresponding chromosome of . Black bars, large chromosomes; gray bars, small chromosomes.

Citation: Iida T, Kurokawa K. 2006. Comparative Genomics: Genome Configuration and the Driving Forces in the Evolution of Vibrios, p 67-75. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bina, J.,, J. Zhu,, M. Dziejman,, S. Faruque,, S. Calderwood, and, J. Mekalanos. 2003. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl. Acad. Sci. USA 100: 28012806.
2. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschape, and, J. Hacker. 1994. Excision of large DNA regions termed pathogenicity island from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62: 606614.
3. Campos, J.,, E. Martinez,, E. Suzarte,, B. L. Rodriguez,, K. Marrero,, Y. Silva,, T. Ledon,, R. del Sol, and, R. Fando. 2003. VGJø, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTXϕ. Bacterial. 185: 56855696.
4. Chang, B.,, H. Taniguchi,, H. Miyamoto, and, S. Yoshida. 1998. Filamentous bacteriophages of Vibrio parahaemolyticus as a possible clue to genetic transmission. J. Bacteriol. 180: 50945101.
5. Chen, C. Y.,, K. M. Wu,, Y. C. Chang,, C. H. Chang,, H. C. Tsai,, T. L. Liao,, Y. M. Liu,, H. J. Chen,, A. B. Shen,, J. C. Li,, T. L. Su,, C. P. Shao,, C. T. Lee,, L. I. Hor, and, S. F. Tsai. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13: 25772587.
6. Clark, C. A.,, L. Purins,, P. Kaewrakon, and, P. A. Manning. 1997. VCR repetitive sequence elements in the Vibrio cholerae chromosome constitute a mega-integron. Mol. Microbiol. 26: 11371138.
7. Colwell, R. R. 1996. Global climate and infectious disease: the cholera paradigm. Science 274: 20252031.
8. Dziejman, M.,, E. Balon,, D. Boyd,, C. M. Fraser,, J. F. Heidelberg, and, J. J. Mekalanos. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99: 15561561.
9. Egan, E. S., and, M. K. Waldor. 2003. Distinct replication requirements for the two Vibrio chromosomes. Cell 114: 521530.
10. Egan, E. S.,, A. Løbner-Olesen, and, M. K. Waldor. 2004. Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr. Biol. 14: R501R502.
11. Eisen, J. A.,, J. F. Heidelberg,, O. White, and, S. L. Salzberg. 2000. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 1:RESEARCH0011.1–0011.9.
12. Fogel, M. A., and, M. K. Waldor. 2005. Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Mol. Microbiol. 55: 125136.
13. Groisman, E. A., and, H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791794.
14. Hacker, J., and, E. Carniel. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2: 376381.
15. Hacker, J.,, U. Hentschel, and, U. Dobrindt. 2003. Prokaryotic chromosomes and disease. Science 301: 790793.
16. Hang, L.,, M. John,, M. Asaduzzaman,, E. A. Bridges,, C. Vander-spurt,, T. J. Kirn,, R. K. Taylor,, J. D. Hillman,, A. Progulske-Fox,, M. Handfield,, E. T. Ryan, and, S. B. Calderwood. 2003. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100: 85088513.
17. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeve,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477483.
18. Honma, Y.,, M. Ikema,, C. Toma,, M. Ehara, and, M. Iwanaga. 1997. Molecular analysis of a filamentous phage (fs1) of Vibrio cholerae O139. Biochim. Biophys. Acta 1362: 109115.
19. Huber, K. E., and, M. K. Waldor. 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417: 656659.
20. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379433.
21. Iida, T.,, K. Makino,, H. Nasu,, K. Yokoyama,, K. Tagomori,, A. Hattori,, T. Okuno,, H. Shinagawa, and, T. Honda. 2002. Filamentous bacteriophages of vibrios are integrated into the dif-like site of the host chromosome. J. Bacteriol. 184: 49334935.
22. Iida, T.,, K.-S. Park,, O. Suthienkul,, J. Kozawa,, Y. Yamaichi,, K. Ya-mamoto, and, T. Honda. 1998. Close proximity of the tdh, trh and ure genes on the chromosome of Vibrio parahaemolyticus. Microbiology 144: 25172523.
23. Iida, T.,, O. Suthienkul,, K.-S. Park,, G.-Q. Tang,, R. K. Yamamoto,, M. Ishibashi,, K. Yamamoto, and, T. Honda. 1997. Evidence for genetic linkage between the ure and trh genes in Vibrio parahaemolyticus. J. Med. Microbiol. 46: 639645.
24. Ikema, M., and, Y. Honma. 1998. A novel filamentous phage, fs2, of Vibrio cholerae O139. Microbiology 144: 19011906.
25. Joseph, S. W.,, R. R. Colwell, and, J. B. Kaper. 1982. Vibrio parahaemolyticus and related halophilic vibrios. Crit. Rev. Microbiol. 10: 77124.
26. Jumas-Bilak. E.,, S. Michaux-Charachon,, G. Bourg,, M. Ramuz, and, A. Allardet-Servent. 1998a. Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J. Bacteriol. 180: 27492755.
27. Jumas-Bilak, E.,, S. Michaux-Charachon,, G. Bourg,, D. O’Callaghan, and, M. Ramuz. 1998b. Differences in chromosome number and genome rearrangements in the genus Brucella. Mol. Microbiol. 27: 99106.
28. Kaper, J. B., and, J. Hacker. 1999. Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C.
29. Kar, S.,, R. K. Ghosh,, A. N. Ghosh, and, A. Ghosh. 1996. Integration of the DNA of a novel filamentous bacteriophage VSK from Vibrio cholerae O139 into the host chromosomal DNA. FEMS Microbiol. Lett. 145: 1722.
30. Karaolis, D. K.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper, and, P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 31343139.
31. Kolsto, A. B. 1999. Time for a fresh look at the bacterial chromosome. Trends Microbiol. 7: 223226.
32. Liu, S.-L., and, K. E. Sanderson. 1996. Highly plastic chromosomal organization in Salmonella typhi. Proc. Natl. Acad. Sci. USA 93: 1030310308.
33. Makino, K.,, K. Oshima,, K. Kurokawa,, K. Yokoyama,, T. Uda,, K. Tagomori,, Y. Iijima,, M. Najima,, M. Nakano,, A. Yamashita,, Y. Kubota,, S. Kimura,, T. Yasunaga,, T. Honda,, H. Shinagawa,, M. Hattori, and, T. Iida. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361: 743749.
34. Mazel, D.,, B. Dychinco,, V. A. Webb, and, J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605608.
35. Merrell, D. S.,, S. M. Butler,, F. Qadri,, N. A. Dolganov,, A. Alam,, M. B. Cohen,, S. B. Calderwood,, G. K. Schoolnik, and, A. Camilli. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417: 642645.
36. Nasu, H.,, T. Iida,, T. Sugahara,, Y. Yamaichi,, K.-S. Park,, K. Yokoyama,, K. Makino,, H. Shinagawa, and, T. Honda. 2000. A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J. Clin. Microbiol. 38: 21562161.
37. Ochman, H.,, J. G. Lawrence, and, E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299304.
38. Ochman, H., and, N. A. Moran. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 10961098.
39. Ohnishi, M.,, K. Kurokawa, and, T. Hayashi. 2001. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9: 481485.
40. Okada, K.,, T. Iida,, K. Kita-Tsukamoto, and, T. Honda. 2005. Vibrios commonly possess two chromosomes. J. Bacteriol. 187: 752757.
41. Park, K.-S.,, T. Iida,, Y. Yamaichi,, T. Oyagi,, K. Yamamoto, and, T. Honda. 2000. Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus. Infect. Immun. 68: 57425748.
42. Park, K.-S.,, T. Ono,, M. Rokuda,, M.-H. Jang,, T. Iida, and, T. Honda. 2004a. Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiol. Immunol. 48: 313318.
43. Park, K.-S.,, T. Ono,, M. Rokuda,, M.-H. Jang,, K. Okada,, T. Iida, and, T. Honda. 2004b. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 48: 313318.
44. Rowe-Magnus, D. A.,, A.-M. Guetout,, P. Ploncard,, B. Dychinco,, J. Davies, and, D. Mazel. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA 98: 652657.
45. Rowe-Magnus, D. A.,, J. Davies, and, D. Mazel. 2002a. Impact of integrons and transposons on the evolution of resistance and virulence. Curr. Top. Microbiol. Immunol. 264: 167188.
46. Rowe-Magnus, D. A.,, A.-M. Guetout, and, D. Mazel. 2002b. Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol. Microbiol. 43: 16571669.
47. Rowe-Magnus, D. A.,, A.-M. Guetout,, L. Biskri,, P. Bouige, and, D. Mazel. 2002c. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 13: 428442.
48. Ruimy, R.,, V. Breittmayer,, P. Elbaze,, B. Lafay,, O. Boussemart,, M. Gauthier, and, R. Christen. 1994. Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int. J. Syst. Bacteriol. 44: 416426.
49. Schoolnik, G. K., and, F. H. Yildiz. 2000. The complete genome sequence of Vibrio cholerae: a tale of two chromosomes and of two lifestyles. Genome Biol. 1: 1016.11016.3.
50. Sobral, B. W.,, R. J. Honeycutt,, A. G. Atherly, and, M. McClelland. 1991. Electrophoretic separation of the three Rhizobium meliloti replicons. J. Bacteriol. 173: 51735180.
51. Stibitz, S., and, M.-S. Yang. 1997. Genomic fluidity of Bordetella pertussis assessed by a new method for chromosomal mapping. J. Bacteriol. 179: 58205826.
52. Suthienkul, O.,, M. Ishibashi,, T. Iida,, N. Nettip,, S. Supavej,, B. Eampokalap,, M. Makino, and, T. Honda. 1995. Urease production correlates with possession of the trh gene in Vibrio parahaemolyticus strains isolated in Thailand. J. Infect. Dis. 172: 14051408.
53. Suwanto, A., and, S. Kaplan. 1989. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. J. Bacteriol. 171: 58505859.
54. Tagomori, K.,, T. Iida, and, T. Honda. 2002. Comparison of genome structures of vibrios, bacteria possessing two chromosomes. J. Bacteriol. 184: 43514358.
55. Thompson, F. L.,, T. Iida, and, J. Swings. 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 68: 403431.
56. Trucksis, M.,, J. Michalski,, Y. K. Deng, and, J. B. Kaper. 1998. The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl. Acad. Sci. USA 95: 1446414469.
57. Waldor, M. K., and, J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 19101914.
58. Waldor, M. K., and, D. Raychaudhuri. 2000. Treasure trove for cholera research. Nature 406: 469470.
59. Xu, Q.,, M. Dziejman, and, J. J. Mekalanos. 2003. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl. Acad. Sci. USA 100: 12861291.
60. Yamaichi, Y.,, T. Iida,, K.-S. Park,, K. Yamamoto, and, T. Honda. 1999. Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol. Microbiol. 31: 15131521.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error