Chapter 7 : The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap07-2.gif


This chapter discusses the detection of lateral gene transfer (LGT), from the level of individual genes up to whole-genome and multiple locus analyses. The genetic elements most frequently involved in these gene transfers and the genomic hot spots for such events are also described. Lateral DNA transfer is known to occur through three main modes. Many detection methods are used to detect LGT events. The methods for estimating foreign gene content in a genome give different estimates because they detect different laterally acquired gene subsets. The integron/gene cassette system of vibrios is noteworthy, given the substantial contribution it likely makes to LGT. In addition, other integrons with smaller cassette arrays, usually containing antibiotic resistance genes, are frequently found on vibrio plasmids or other genetic elements. Most efforts in studying the evolution of have been devoted to pathogenic species. From these studies, many novel mobile genetic elements have been discovered. Several of these elements have been subsequently found in nonpathogenic environmental vibrios, marking them as general tools for vibrio evolution. Much progress has recently been made in trying to quantify laterally acquired DNA in the genomes of vibrios, although many more taxa need to be examined for accurate representation. Vibrio genome sequences and microarray comparisons, phylomes of vibrio genomes, and multilocus sequence analysis of many strains and species of vibrios, allows for a global picture of evolution, from the microevolution of conserved housekeeping genes by recombination to mobile genes traveling rapidly between species.

Citation: Boucher Y, Stokes H. 2006. The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution, p 84-94. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 33893402.
2. Baross, J. A.,, J. Liston, and, R. Y. Morita. 1978. Incidence of Vibrio parahaemolyticus bacteriophages and other Vibrio bacteriophages in marine samples. Appl. Environ. Microbiol. 36: 492499.
3. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2002. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184: 42594269.
4. Bergh, Ø.,, K. Y. Borsheim,, G. Bratbak, and, M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature 340: 467468.
5. Bik, E. M.,, R. D. Gouw, and, F. R. Mooi. 1996. DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J. Clin. Microbiol. 34: 14531461.
6. Boucher, Y., and, W. F. Doolittle. 2000. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37: 703716.
7. Bryant, D., and, V. Moulton. 2004. Neighbornet: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21: 255265.
8. Byun, R.,, L. D. Elbourne,, R. Lan, and, P. R. Reeves. 1999. Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect. Immun. 67: 11161124.
9. Canchaya, C.,, G. Fournous, and, H. Brussow. 2004. The impact of prophages on bacterial chromosomes. Mol. Microbiol. 53: 918.
10. Canchaya, C.,, C. Proux,, G. Fournous,, A. Bruttin, and, H. Brussow. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238276.
11. Chang, B.,, H. Taniguchi,, H. Miyamoto, and, S. Yoshida. 1998. Filamentous bacteriophages of Vibrio parahaemolyticus as a possible clue to genetic transmission. J. Bacteriol. 180: 50945101.
12. Charlebois, R. L., and, W. F. Doolittle. 2004. Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res. 14: 24692477.
13. Chen, C. Y.,, K. M. Wu,, Y. C. Chang,, C. H. Chang,, H. C. Tsai,, T. L. Liao,, Y. M. Liu,, H. J. Chen,, A. B. Shen,, J. C. Li,, T. L. Su,, C. P. Shao,, C. T. Lee,, L. I. Hor, and, S. F. Tsai. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13: 25772587.
14. Chowdhury, N. R.,, O. C. Stine,, J. G. Morris, and, G. B. Nair. 2004. Assessment of evolution of pandemic Vibrio parahaemolyticus by multilocus sequence typing. J. Clin. Microbiol. 42: 12801282.
15. Clark, C. A.,, L. Purins,, P. Kaewrakon,, T. Focareta, and, P. A. Manning. 2000. The Vibrio cholerae O1 chromosomal integron. Microbiology 146: 26052612.
16. Dalsgaard, A.,, A. Forslund,, O. Serichantalergs, and, D. Sandvang. 2000. Distribution and content of class 1 integrons in different Vibrio cholerae Oserotype strains isolated in Thailand. Antimicrob. Agents Chemother. 44: 13151321.
17. DePaola, A.,, S. McLeroy, and, G. McManus. 1997. Distribution of Vibrio vulnificus phage in oyster tissues and other estuarine habitats. Appl. Environ. Microbiol. 63: 24642467.
18. Di Lorenzo, M.,, M. Stork,, M. E. Tolmasky,, L. A. Actis,, D. Farrell,, T. J. Welch,, L. M. Crosa,, A. M. Wertheimer,, Q. Chen,, P. Salinas,, L. Waldbeser, and, J. H. Crosa. 2003. Complete sequence of virulence plasmid pJM1 from the marine fish pathogen Vibrio anguillarum strain 775. J. Bacteriol. 185: 58225830.
19. Dobrindt, U.,, B. Hocchut,, U. Hentschel, and, J. Hacker. 2004. genomic islands in pathogenic and environmental microorganisms. Nature Rev. 2: 414424.
20. Dumontier, S., and, P. Berche. 1998. Vibrio cholerae O22 might be a putative source of exogenous DNA resulting in the emergence of the new strain of Vibrio cholerae O139. FEMS Microbiol. Lett. 164: 9198.
21. Dumontier, S.,, P. Trieu-Cuot, and, P. Berche. 1998. Structural and functional characterization of IS1358 from Vibrio cholerae. J. Bacteriol. 180: 61016106.
22. Dziejman, M.,, E. Balon,, D. Boyd,, C. M. Fraser,, J. F. Heidelberg, and, J. J. Mekalanos. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99: 15561561.
23. Farfan, M.,, D. Minana-Galbis,, M. C. Fuste, and, J. G. Loren. 2002. Allelic diversity and population structure in Vibrio cholerae O139 Bengal based on nucleotide sequence analysis. J. Bacteriol. 184: 13041313.
24. Faruque, S. M., and, J. J. Mekalanos. 2003. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol. 11: 505510.
25. Feil, E. J.,, E. C. Holmes,, D. E. Bessen,, M. S. Chan,, N. P. Day,, M. C. Enright,, R. Goldstein,, D. W. Hood,, A. Kalia,, C. E. Moore,, J. Zhou, and, B. G. Spratt. 2001. Recombination within natural populations of pathogenic bacteria: shortterm empirical estimates and longterm phylogenetic consequences. Proc. Natl. Acad. Sci. USA 98: 182187.
26. Frickey, T., and, A. N. Lupas. 2004. PhyloGenie: automated phylome generation and analysis. Nucleic Acids Res. 32: 52315238.
27. Garcia-Vallve, S.,, E. Guzman,, M. A. Montero, and, A. Romeu. 2003. HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31: 187189.
28. Garg, P. G.,, A. Aydanian,, D. Smith,, J. G. Morris,, G. B. Nair, and, O. C. Stine. 2003. Molecular epidemiology of O139 Vibrio cholerae: mutation, lateral gene transfer, and founder flush. Emerg. Infect. Dis. 9: 810814.
29. Hardies, S. C.,, A. M. Comeau,, P. Serwer, and, C. A. Suttle. 2003. The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology 310: 359371.
30. Hochhut, B.,, Y. Lotfi,, D. Mazel,, S. M. Faruque,, R. Woodgate, and, M. K. Waldor. 2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45: 29913000.
31. Hochhut, B.,, J. Marrero, and, M. K. Waldor. 2000. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J. Bacteriol. 182: 20432047.
32. Hoi, L.,, I. Dalsgaard,, A. DePaola,, R. J. Siebeling, and, A. Dals-gaard. 1998. Heterogeneity among isolates of Vibrio vulnificus recovered from eels ( Anguilla anguilla) in Denmark. Appl. Environ. Microbiol. 64: 46764682.
33. Holmes, A. J.,, M. R. Gillings,, B. S. Nield,, B. C. Mabbutt,, K. M. Nevalainen, and, H. W. Stokes. 2003. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ. Microbiol. 5: 383394.
34. Ichige, A.,, S. Matsutani,, K. Oishi, and, S. Mizushima. 1989. Establishment of gene transfer systems for and construction of the genetic map of a marine Vibrio strain. J. Bacteriol. 171: 18251834.
35. Iida, T.,, A. Hattori,, K. Tagomori,, H. Nasu,, R. Naim, and, T. Honda. 2001. Filamentous phage associated with recent pandemic strains of Vibrio parahaemolyticus. Emerg. Infect. Dis. 7: 477478.
36. Jermyn, W. S., and, E. F. Boyd. 2002. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148: 36813693.
37. Jiang, S. C., and, J. H. Paul. 1998a. Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64: 27802787.
38. Jiang, S. C., and, J. H. Paul. 1998b. Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb. Ecol. 35: 235243.
39. Kapfhammer, D.,, J. Blass,, S. Evers, and, J. Reidl. 2002. Vibrio cholerae phage K139: complete genome sequence and comparative genomics of related phages. J. Bacteriol. 184: 65926601.
40. Karaolis, D. K.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper, and, P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 31343139.
41. Karaolis, D. K.,, R. Lan, and, P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J. Bacteriol. 177: 31913198.
42. Kim, C. C.,, E. A. Joyce,, K. Chan, and, S. Falkow. 2002. Improved analytical methods for microarraybased genome-composition analysis. Genome Biol. 3: 117.
43. Koonin, E. V.,, K. S. Makarova, and, L. Aravind. 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55: 709742.
44. Koski, L. B., and, G. B. Golding. 2001. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52: 540542.
45. Lawrence, J. G., and, H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44: 383397.
46. Le Chevalier, P.,, C. Le Boulay, and, C. Paillard. 2003. Characterization by restriction fragment length polymorphism and plasmid profiling of Vibrio tapetis strains. J. Basic Microbiol. 43: 414422.
47. Li, M.,, M. Kotetishvili,, Y. Chen, and, S. Sozhamannan. 2003. Comparative genomic analyses of the vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vibrio cholerae. Appl. Environ. Microbiol. 69: 17281738.
48. Majewski, J.,, P. Zawadzki,, P. Pickerill,, F. M. Cohan, and, C. G. Dowson. 2000. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182: 10161023.
49. Makino, K.,, K. Oshima,, K. Kurokawa,, K. Yokoyama,, T. Uda,, K. Tagomori,, Y. Iijima,, M. Najima,, M. Nakano,, A. Yamashita,, Y. Kubota,, S. Kimura,, T. Yasunaga,, T. Honda,, H. Shinagawa,, M. Hattori, and, T. Iida. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361: 743749.
50. Mantri, Y., and, K. P. Williams. 2004. Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities. Nucleic Acids Res. 32: 5558.
51. Michel, B. 1999. Illegitimate recombination in bacteria, p. 129150. In R. Charlesbois (ed.), Organization of the Prokaryotic Genome. ASM Press, Washington, D.C.
52. Miller, E. S.,, J. F. Heidelberg,, J. A. Eisen,, W. C. Nelson,, A. S. Durkin,, A. Ciecko,, T. V. Feldblyum,, O. White,, I. T. Paulsen,, W. C. Nierman,, J. Lee,, B. Szczypinski, and, C. M. Fraser. 2003. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J. Bacteriol. 185: 52205233.
53. Moebus, K., and, H. Nattkemper. 1983. Taxonomic investigation of bacteriophage sensitive bacteria isolated from marine waters. Helgoland Mar. Res. 36: 357373.
54. Molina-Aja, A.,, A. Garcia-Gasca,, A. Abreu-Grobois,, C. Bolan-Mejia,, A. Roque, and, B. Gomez-Gil. 2002. Plasmid profiling and antibiotic resistance of Vibrio strains isolated from cultured penaeid shrimp. FEMS Microbiol. Lett. 213: 712.
55. Nasu, H.,, T. Iida,, T. Sugahara,, Y. Yamaichi,, K. S. Park,, K. Yoko-yama,, K. Makino,, H. Shinagawa, and, T. Honda. 2000. A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J. Clin. Microbiol. 38: 21562161.
56. Nesbø, C. L.,, K. E. Nelson, and, W. F. Doolittle. 2002. Suppressive subtractive hybridization detects extensive genomic diversity in Thermotoga maritima. J. Bacteriol. 184: 44754488.
57. Nishibuchi, M., and, J. B. Kaper. 1995. Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect. Immun. 63: 20932099.
58. Oakey, H. J.,, B. R. Cullen, and, L. Owens. 2002. The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. J. Appl. Microbiol. 93: 10891098.
59. Pedersen, K.,, I. Dalsgaard, and, J. L. Larsen. 1997. Vibrio damsela associated with diseased fish in Denmark. Appl. Environ. Microbiol. 63: 37113715.
60. Pedersen, K.,, I. Kuhn,, J. Seppanen,, A. Hellstrom,, T. Tiainen,, E. Rimaila-Parnanen, and, J. L. Larsen. 1999. Clonality of Vibrio anguillarum strains isolated from fish from the Scandinavian countries, Sweden, Finland and Denmark. J. Appl. Microbiol. 86: 337347.
61. Perna, N. T.,, G. Plunkett III,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirk-patrick,, G. Posfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N. W. Davis,, A. Lim,, E. T. Dimalanta,, K. D. Potamousis,, J. Apodaca,, T. S. Anantharaman,, J. Lin,, G. Yen,, D. C. Schwartz,, R. A. Welch, and, F. R. Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529533.
62. Radu, S.,, N. Elhadi,, Z. Hassan,, G. Rusul,, S. Lihan,, N. Fifadara,, Yuherman, and, E. Purwati. 1998. Characterization of Vibrio vulnificus isolated from cockles ( Anadara granosa): antimicrobial resistance, plasmid profiles and random amplification of polymorphic DNA analysis. FEMS Microbiol. Lett. 165: 139143.
63. Ragan, M. A. 2001. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201: 187191.
64. Rowe-Magnus, D. A.,, A. M. Guerout,, L. Biskri,, P. Bouige, and, D. Mazel. 2003. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 13: 428442.
65. Seguritan, V.,, I. W. Feng,, F. Rohwer,, M. Swift, and, A. M. Segall. 2003. Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. J. Bacteriol. 185: 64346447.
66. Shimodori, A.,, K. Takeya, and, A. Takade. 1984. Lysogenicity and prophage type of the strains of V. cholerae O1 isolated mainly from the natural environment. Am. J. Epidemiol. 120: 759768.
67. Sicheritz-Ponten, T., and, S. G. Andersson. 2001. A phylogenomic approach to microbial evolution. Nucleic Acids Res. 29: 545552.
68. Smith, G. R. 1988. Homologous recombination in procaryotes. Microbiol. Rev. 52: 128.
69. Smith, M. W.,, D. F. Feng, and, R. F. Doolittle. 1992. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem. Sci. 17: 489493.
70. Stephens, J. C. 1985. Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol. Biol. Evol. 2: 539556.
71. Tiainen, T.,, K. Pedersen, and, J. L. Larsen. 1995. Ribotyping and plasmid profiling of Vibrio anguillarum serovar O2 and Vibrio ordalii. J. Appl. Bacteriol. 79: 384392.
72. Waldor, M. K., and, J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 19101914.
73. Wiik, R.,, K. Andersen,, F. L. Daae, and, K. A. Hoff. 1989. Virulence studies based on plasmid profiles of the fish pathogen Vibrio salmonicida. Appl. Environ. Microbiol. 55: 819825.
74. Wommack, K. E., and, R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64: 69114.


Generic image for table

Representative cases of genes that have been laterally transferred

Citation: Boucher Y, Stokes H. 2006. The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution, p 84-94. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch7
Generic image for table

Laterally acquired genes detected in genomes through atypical nucleotide composition analysis (Garcia-Vallve et al., 2003)

Citation: Boucher Y, Stokes H. 2006. The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution, p 84-94. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch7
Generic image for table

Plasmid profile studies in species

Citation: Boucher Y, Stokes H. 2006. The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution, p 84-94. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch7
Generic image for table

Completely sequenced vibriophage genomes

Citation: Boucher Y, Stokes H. 2006. The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution, p 84-94. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error