Chapter 8 : The Adaptive Genetic Arsenal of Pathogenic Species: the Role of Integrons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Adaptive Genetic Arsenal of Pathogenic Species: the Role of Integrons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap08-2.gif


This chapter discusses the specific roles of integrons in the adaptive capacity of the , with emphasis on pathogenic species and antibiotic resistance. Even though many reports have demonstrated that the presence of antibiotic resistance genes in plasmids or integrons in was the cause of resistance to antimicrobial agents, the mechanism of resistance in other cases was unknown. Integrons likely correspond to one of the most refined tools selected by bacteria, as suggested by the data collected during the last 15 years. The authors recommend using the single term integron to describe all types of integron structures, supporting this suggestion with the fact that the different integrons use the same recombination processes and machinery. The integron gene cassettes for which an activity has been experimentally demonstrated, be they from superintegrons (SI) arrays or from soil DNA, encode proteins related to simple enzymatic functions; their recruitment is seen as providing the bacterial host with an adaptive advantage. Both experimental and phylogenetic data suggest that SIs are the source of the mobile integrons (MI) and resistance gene cassettes observed within clinical isolates.

Citation: Rowe-Magnus D, Zouine M, Mazel D. 2006. The Adaptive Genetic Arsenal of Pathogenic Species: the Role of Integrons, p 95-111. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Structural comparison of a “classical” mobile integron and the N16961 superintegron. (Top) Schematic representation of In40; the various resistance genes are associated with different sites (see text). Antibiotic resistance cassettes confer resistance to the following compounds: , aminoglycosides; , quaternary ammonium compounds; , chloramphenicol; , beta-lactams. The gene, which provides resistance to sulfonamides, is not a gene cassette. (Bottom) The ORFs are separated by highly homologous sequences, the VCRs. See text for details.

Citation: Rowe-Magnus D, Zouine M, Mazel D. 2006. The Adaptive Genetic Arsenal of Pathogenic Species: the Role of Integrons, p 95-111. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Phylogenetic relationship of the integron genes among the proteobacteria. The dendrogram is based on known gene sequences. The tree was rooted using XerC and XerD from (Eco) and ATCC 25259 (Thd). The integrases from the five classes of MI are boxed. Abbreviations for the organism in which the integron integrases are found are as follows: sp. EbN1 (Azo), (Dar), (Eco), (Gme), (Lpe), (Lan), (Mef), (Mid), (Neu), (Pal), BAM (PstBAM), Q (PstQ), (Rug), (Son), (Spu), (Thd), (Tde), (Vch), (Vme), (Vmi), (Vpa), (Vsp), (Vfi), (Xca), (Xor), and species (Xsp). The sources of , and are unknown. Branch lengths were drawn proportional to the amount of evolution based on genetic distances. Accession numbers (when available) can be found in Table 1 .

Citation: Rowe-Magnus D, Zouine M, Mazel D. 2006. The Adaptive Genetic Arsenal of Pathogenic Species: the Role of Integrons, p 95-111. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abbott S. L., and, J. M. Janda. 1994. Severe gastroenteritis associated with Vibrio hollisae infection: report of two cases and review. Clin. Infect. Dis. 18: 310312.
2. Ahmed, A. M.,, T. Nakagawa,, E. Arakawa,, T. Ramamurthy,, S. Shinoda, and, T. Shimamoto. 2004. New aminoglycoside acetyl-transferase gene, aac(3)-Id, in a class 1 integron from a multire-sistant strain of Vibrio fluvialis isolated from an infant aged 6 months. J. Antimicrob. Chemother. 53: 947951.
3. Amita, S. R., Chowdhury, M., Thungapathra, T., Ramamurthy, G. B., Nair, and, A. Ghosh. 2003. Class I integrons and SXT elements in El Tor strains isolated before and after 1992 Vibrio cholerae O139 outbreak, Calcutta, India. Emerg. Infect. Dis. 9: 500502.
4. Arakawa, Y.,, M. Murakami,, K. Suzuki,, H. Ito,, R. Wacharo-tayankun,, S. Ohsuka,, N. Kato, and, M. Ohta. 1995. A novel integron-like element carrying the metallo-beta-lactamase gene blalMP. Antimicrob. Agents Chemother. 39: 16121615.
5. Azam, T. A., and, A. Ishihama. 1999. Twelve species of the nu-cleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274: 3310533113.
6. Azaro, M. A., and, A. Landy. 2002. λ integrase and the λ Int family, p. 118148. In N. L. Craig,, R. Craigie,, M. Gellert, and, A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
7. Barker, A.,, C. A. Clark, and, P. A. Manning. 1994. Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibrio cholerae O1. J. Bacteriol. 176: 54505458.
8. Barker, A., and, P. A. Manning. 1997. VlpA of Vibrio cholerae O1: the first bacterial member of the alpha 2-microglobulin lipocalin superfamily. Microbiology 143: 18051813.
9. Beaber, J. W.,, V. Burrus,, B. Hochhut, and, M. K. Waldor. 2002a. Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell. Mol. Life Sci. 59: 20652070.
10. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2002b. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184: 42594269.
11. Bhattacharya, S. K. 2003. An evaluation of current cholera treatment. Expert Opin. Pharmacother. 4: 141146.
12. Biskri, L.,, M. Bouvier,, A. M. Guerout,, S. Boisnard, and, D. Mazel. 2005. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J. Bacteriol. 187: 17401750.
13. Boltner, D.,, C. MacMahon,, J. T. Pembroke,, P. Strike, and, A. M. Osborn. 2002. R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184: 51585169.
14. Bouvier, M.,, G. Demarre, and, D. Mazel. 2005. Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J. 24: 43564367.
15. Burrus, V.,, G. Pavlovic,, B. Decaris, and, G. Guedon. 2002a. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46: 601610.
16. Burrus, V.,, G. Pavlovic,, B. Decaris, and, G. Guedon. 2002. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48: 7797.
17. Chen, C. Y.,, K. M. Wu,, Y. C. Chang,, C. H. Chang,, H. C. Tsai,, T. L. Liao,, Y. M. Liu,, H. J. Chen,, A. B. Shen,, J. C. Li,, T. L. Su,, C. P. Shao,, C. T. Lee,, L. I. Hor, and, S. F. Tsai. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13: 25772587.
18. Chiang, S. R., and, Y. C. Chuang. 2003. Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. J. Microbiol. Immun. Infect. 36: 8188.
19. Clark, C. A.,, L. Purins,, P. Kaewrakon,, T. Focareta, and, P. A. Manning. 2000. The Vibrio cholerae O1 chromosomal integron. Microbiology 146: 26052612.
20. Coleman, N.,, S. Tetu,, N. Wilson, and, A. Holmes. 2004. An unusual integron in Treponema denticola. Microbiology 150: 35243526.
21. Collis, C. M., and, R. M. Hall. 1992. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol. Microbiol. 16: 28752885.
22. Collis, C. M.,, M. J. Kim,, S. R. Partridge,, H. W. Stokes, and, R. M. Hall. 2002. Characterization of the class 3 integron and the site-specific recombination system it determines. J. Bacteriol. 184: 30173026.
23. Collis, C. M.,, M. J. Kim,, H. W. Stokes, and, R. M. Hall. 1998. Binding of the purified integron DNA integrase Intl1 to integronand cassette-associated recombination sites. Mol. Microbiol. 29: 477490.
24. Collis, C. M.,, G. D. Recchia,, M. J. Kim,, H. W. Stokes, and, R. M. Hall. 2001. Efficiency of recombination reactions catalyzed by class 1 integron integrase IntI1. J. Bacteriol. 183: 25352542.
25. Colmer, J. A.,, J. A. Fralick, and, A. N. Hamood. 1998. Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol. Microbiol. 27: 6372.
26. Correia, M.,, F. Boavida,, F. Grosso,, M. J. Salgado,, L. M. Lito,, J. M. Cristino,, S. Mendo, and, A. Duarte. 2003. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 47: 28382843.
27. Dalsgaard, A.,, A. Forslund,, A. Petersen,, D. J. Brown,, F. Dias,, S. Monteiro,, K. Molbak,, P. Aaby,, A. Rodrigues, and, A. Sand-strom. 2000. Class 1 integron-borne, multiple-antibiotic resistance encoded by a 150-kilobase conjugative plasmid in epidemic Vibrio cholerae O1 strains isolated in guinea-bissau. J. Clin. Microbiol. 38: 37743779.
28. Dalsgaard, A.,, A. Forslund,, D. Sandvang,, L. Arntzen, and, K. Keddy. 2001. Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multiple-drug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons. J. Antimicrob. Chemother. 48: 827838.
29. Drouin, F.,, J. Melancon, and, P. H. Roy. 2002. The IntI-like tyro-sine recombinase of Shewanella oneidensis is active as an inte-gron integrase. J. Bacteriol. 184: 18111815.
30. Dziejman, M.,, D. Serruto,, V. C. Tam,, D. Sturtevant,, P. Diraphat,, S. M. Faruque,, M. H. Rahman,, J. F. Heidelberg,, J. Decker,, L. Li,, K. T. Montgomery,, G. Grills,, R. Kucherlapati, and, J. J. Mekalanos. 2005. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl. Acad. Sci. USA 102: 34653470.
31. Ehara, M.,, B. M. Nguyen,, D. T. Nguyen,, C. Toma,, N. Higa, and, M. Iwanaga. 2004. Drug susceptibility and its genetic basis in epidemic Vibrio cholerae O1 in Vietnam. Epidemiol. Infect. 132: 595600.
32. Falbo, V.,, A. Carattoli,, F. Tosini,, C. Pezzella,, A. M. Dionisi, and, I. Luzzi. 1999. Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob. Agents Chemother. 43: 693696.
33. Faruque, S. M., and, J. J. Mekalanos. 2003. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol. 11: 505510.
34. Fluit, A. C., and, F. J. Schmitz. 2004. Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10: 272288.
35. Francia, M. V.,, P. Avila,, F. de la Cruz, and, J. M. Garcia Lobo. 1997. A hot spot in plasmid F for site-specific recombination mediated by Tn21 integron integrase. J. Bacteriol. 179: 44194425.
36. Francia, M. V.,, F. de la Cruz, and, J. M. Garcia Lobo. 1993. Secondary-sites for integration mediated by the Tn21 integrase. Mol. Microbiol. 10: 823828.
37. Francia, M. V., and, J. M. Garcia Lobo. 1996. Gene integration in the Escherichia coli chromosome mediated by Tn21 integrase (Int21). J. Bacteriol. 178: 894898.
38. Francia, M. V.,, J. C. Zabala,, F. de la Cruz, and, J. M. Garcia-Lobo. 1999. The IntI1 integron integrase preferentially binds single-stranded DNA of the attC site. J. Bacteriol. 181: 68446849.
39. Gravel, A.,, B. Fournier, and, P. H. Roy. 1998. DNA complexes obtained with the integron integrase IntI1 at the attI1 site. Nucleic Acids Res. 26: 43474355.
40. Hacker, J.,, M. Ott,, G. Blum,, R. Marre,, J. Heesemann,, H. Tschape, and, W. Goebel. 1992. Genetics of Escherichia coli uropatho-genicity: analysis of the O6:K15:H31 isolate 536. Zentbl. Bak-teriol. 276: 165175.
41. Hall, R. M. 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found. Symp. 207: 192202.
42. Hall, R. M.,, D. E. Brookes, and, H. W. Stokes. 1991. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol. Microbiol. 5: 19411959.
43. Hall, R. M.,, C. M. Collis,, M. J. Kim,, S. R. Partridge,, G. D. Rec-chia, and, H. W. Stokes. 1999. Mobile gene cassettes and integrons in evolution. Ann. N. Y. Acad. Sci. 870: 6880.
44. Hall, R. M., and, H. W. Stokes. 2004. Integrons or super integrons? Microbiology 150: 34.
45. Hansson, K.,, O. Skold, and, L. Sundstrom. 1997. Non-palindromic attl sites of integrons are capable of sitespecific recombination with one another and with secondary targets. Mol. Microbiol. 26: 441453.
46. Hansson, K.,, L. Sundstrom,, A. Pelletier, and, P. H. Roy. 2002. IntI2 integron integrase in Tn7. J. Bacteriol. 184: 17121721.
47. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter, and, C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477483.
48. Hochhut, B.,, J. W. Beaber,, R. Woodgate, and, M. K. Waldor. 2001a. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol. 183: 11241132.
49. Hochhut, B.,, Y. Lotfi,, D. Mazel,, S. M. Faruque,, R. Woodgate, and, M. K. Waldor. 2001b. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT con-stins. Antimicrob. Agents Chemother. 45: 29913000.
50. Hochhut, B., and, M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32: 99110.
51. Holmes, A. J.,, M. R. Gillings,, B. S. Nield,, B. C. Mabbutt,, K. M. Nevalainen, and, H. W. Stokes. 2003a. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ. Microbiol. 5: 383394.
52. Holmes, A. J.,, M. P. Holley,, A. Mahon,, B. Nield,, M. Gillings, and, H. W. Stokes. 2003b. Recombination activity of a distinctive in-tegron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J. Bacteriol. 185: 918928.
53. Huda, M. N.,, J. Chen,, Y. Morita,, T. Kuroda,, T. Mizushima, and, T. Tsuchiya. 2003. Gene cloning and characterization of VcrM, a Na +−coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol. Immunol. 47: 419427.
54. Huda, M. N.,, Y. Morita,, T. Kuroda,, T. Mizushima, and, T. Tsuchiya. 2001. Na +−driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium. FEMS Microbiol. Lett. 203: 235239.
55. Iwanaga, M.,, C. Toma,, T. Miyazato,, S. Insisiengmay,, N. Naka-sone, and, M. Ehara. 2004. Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob. Agents Chemother. 48: 23642369.
56. Janda, J. M.,, C. Powers,, R. G. Bryant, and, S. L. Abbott. 1988. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin. Microbiol. Rev. 1: 245267.
57. Johansson, C.,, M. Kamali-Moghaddam, and, L. Sundstrom. 2004. Integron integrase binds to bulged hairpin DNA. Nucleic Acids Res. 32: 40334043.
58. Landy, A. 1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58: 913949.
59. Leon, G., and, P. H. Roy. 2003. Excision and integration of cassettes by an integron integrase of Nitrosomonas europaea. J. Bacteriol. 185: 20362041.
60. Liebert, C. A.,, R. M. Hall, and, A. O. Summers. 1999. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63: 507522.
61. Lim, D.,, F. Sanschagrin,, L. Passmore,, L. De Castro,, R. C. Levesque, and, N. C. Strynadka. 2001. Insights into the molecular basis for the carbenicillinase activity of PSE-4 beta-lactamase from crystallographic and kinetic studies. Biochemistry 40: 395402.
62. Lima, A. A. 2001. Tropical diarrhoea: new developments in traveller’s diarrhoea. Curr. Opin. Infect. Dis. 14: 547552.
63. Makino, K.,, K. Oshima,, K. Kurokawa,, K. Yokoyama,, T. Uda,, K. Tagomori,, Y. Iijima,, M. Najima,, M. Nakano,, A. Yamashita,, Y. Kubota,, S. Kimura,, T. Yasunaga,, T. Honda,, H. Shinagawa,, M. Hattori, and, T. Iida. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361: 743749.
64. Martin, C.,, J. Timm,, J. Rauzier,, R. Gomez-Lus,, J. Davies, and, B. Gicquel. 1990. Transposition of an antibiotic resistance element in mycobacteria. Nature 345: 739743.
65. Martinez, E., and, F. de la Cruz. 1990. Genetic elements involved in Tn 21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J. 9: 12751281.
66. Mazel, D.,, B. Dychinco,, V. A. Webb, and, J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605608.
67. Melano, R.,, A. Petroni,, A. Garutti,, H. A. Saka,, L. Mange,, F. Pasteran,, M. Rapoport,, A. Rossi, and, M. Galas. 2002. New carbenicillin-hydrolyzing beta-lactamase (CARB-7) from Vibrio cholerae non-O1, non-O139 strains encoded by the VCR region of the V. cholerae genome. Antimicrob. Agents Chemother. 46: 21622168.
68. Messier, N., and, P. H. Roy. 2001. Integron integrases possess a unique additional domain necessary for activity. J. Bacteriol. 183: 66996706.
69. Mitsuhashi, S.,, K. Harada,, H. Hashimoto, and, R. Egawa. 1961. On the drug-resistance of enteric bacteria. Jpn. J. Exp. Med. 31: 4752.
70. Morita, Y.,, K. Kodama,, S. Shiota,, T. Mine,, A. Kataoka,, T. Mizushima, and, T. Tsuchiya. 1998. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42: 17781782.
71. Murphy, D. B., and, J. T. Pembroke. 1995. Transfer of the IncJ plasmid R391 to recombination deficient Escherichia coli K12: evidence that R391 behaves as a conjugal transposon. FEMS Microbiol. Lett. 134: 153158.
72. Naas, T.,, Y. Mikami,, T. Imai,, L. Poirel, and, P. Nordmann. 2001. Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J. Bacteriol. 183: 235249.
73. Nandi, S.,, J. J. Maurer,, C. Hofacre, and, A. O. Summers. 2004. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 101: 71187122.
74. Nemergut, D. R.,, A. P. Martin, and, S. K. Schmidt. 2004. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl. Environ. Microbiol. 70: 11601168.
75. Nesvera, J.,, J. Hochmannova, and, M. Patek. 1998. An integron of class 1 is present on the plasmid pCG4 from gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol. Lett. 169: 391395.
76. Nield, B. S.,, A. J. Holmes,, M. R. Gillings,, G. D. Recchia,, B. C. Mabbutt,, K. M. Nevalainen, and, H. W. Stokes. 2001. Recovery of new integron classes from environmental DNA. FEMS Microbiol. Lett. 195: 5965.
77. Nield, B. S.,, R. D. Willows,, A. E. Torda,, M. R. Gillings,, A. J. Holmes,, K. M. Nevalainen,, H. W. Stokes, and, B. C. Mabbutt. 2004. New enzymes from environmental cassette arrays: func tional attributes of a phosphotransferase and an RNA-methyl-transferase. Protein Sci. 13: 16511659.
78. Nunes-Duby, S. E.,, H. J. Kwon,, R. S. Tirumalai,, T. Ellenberger, and, A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26: 391406.
79. Ogawa, A., and, T. Takeda. 1993. The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol. Immunol. 37: 607616.
80. Okada, K.,, T. Iida,, K. Kita-Tsukamoto, and, T. Honda. 2005. Vibrios commonly possess two chromosomes. J. Bacteriol. 187: 752757.
81. Petroni, A.,, R. G. Melano,, H. A. Saka,, A. Garutti,, L. Mange,, F. Pasteran,, M. Rapoport,, M. Miranda,, D. Faccone,, A. Rossi,, P. S. Hoffman, and, M. F. Galas. 2004. CARB-9, a carbenicilli-nase encoded in the VCR region of Vibrio cholerae non-O1, non-O139 belongs to a family of cassette-encoded beta-lacta-mases. Antimicrob. Agents Chemother. 48: 40424046.
82. Rabus, R.,, M. Kube,, J. Heider,, A. Beck,, K. Heitmann,, F. Widdel, and, R. Reinhardt. 2005. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbiol. 183: 2736.
83. Radstrom, P.,, O. Skold,, G. Swedberg,, J. Flensburg,, P. H. Roy, and, L. Sundstrom. 1994. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J. Bacteriol. 176: 32573268.
84. Recchia, G. D., and, R. M. Hall. 1995. Plasmid evolution by acquisition of mobile gene cassettes: plasmid pIE723 contains the aadB gene cassette precisely inserted at a secondary site in the incQ plasmid RSF1010. Mol. Microbiol. 15: 179187.
85. Recchia, G. D.,, H. W. Stokes, and, R. M. Hall. 1994. Characterisation of specific and secondary recombination sites recognised by the integron DNA integrase. Nucleic Acids Res. 22: 20712078.
86. Rice, L. B. 1998. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42: 18711877.
87. Robinson, A.,, P. S. Wu,, S. J. Harrop,, P. M. Schaeffer,, Z. Dosztanyi,, M. R. Gillings,, A. J. Holmes,, K. M. Helena Nevalainen,, H. W. Stokes,, G. Otting,, N. E. Dixon,, P. M. Curmi, and, B. C. Mabbutt. 2005. Integron-associated mobile gene cassettes code for folded proteins: the structure of Bal32a, a new member of the adaptable alpha +beta barrel family. J. Mol. Biol. 346: 12291241.
88. Rowe-Magnus, D. A.,, A.-M. Guerout, and, D. Mazel. 1999. Super-integrons. Res. Microbiol. 150: 641651.
89. Rowe-Magnus, D. A.,, A.-M. Guerout,, P. Ploncard,, B. Dychinco,, J. Davies, and, D. Mazel. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multi-resistant integrons. Proc. Natl. Acad. Sci. USA 98: 652657.
90. Rowe-Magnus, D. A.,, A. M. Guerout,, L. Biskri,, P. Bouige, and, D. Mazel. 2003. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 13: 428442.
91. Rowe-Magnus, D. A.,, A. M. Guerout, and, D. Mazel. 2002. Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol. Microbiol. 43: 16571669.
92. Rowe-Magnus, D. A., and, D. Mazel. 2001. Integrons: natural tools for bacterial genome evolution. Curr. Opin. Microbiol. 4: 565- 569.
93. Rowe-Magnus, D. A., and, D. Mazel. 2002. The role of integrons in antibiotic resistance gene capture. Int. J. Med. Microbiol. 292: 115125.
94. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102: 30043009.
95. Shibata, N.,, Y. Doi,, K. Yamane,, T. Yagi,, H. Kurokawa,, K. Shibayama,, H. Kato,, K. Kai, and, Y. Arakawa. 2003. PCR typing of genetic determinants for metallo-beta-lactamases and inte-grases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 41: 54075413.
96. Smith, A. B., and, R. J. Siebeling. 2003. Identification of genetic loci required for capsular expression in Vibrio vulnificus. Infect. Immun. 71: 10911097.
97. Stokes, H. W., and, R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3: 16691683.
98. Stokes, H. W.,, A. J. Holmes,, B. S. Nield,, M. P. Holley,, K. M. Nevalainen,, B. C. Mabbutt, and, M. R. Gillings. 2001. Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl. Environ. Microbiol. 67: 52405246.
99. Stokes, H. W.,, D. B. O’Gorman,, G. D. Recchia,, M. Parsekhian, and, R. M. Hall. 1997. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol. Microbiol. 26: 731745.
100. Sullivan, J. T., and, C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 95: 51455149.
101. Sundstrom, L.,, P. H. Roy, and, O. Skold. 1991. Site-specific insertion of three structural gene cassettes in transposon Tn7. J. Bacteriol. 173: 30253028.
102. Tagomori, K.,, T. Iida, and, T. Honda. 2002. Comparison of genome structures of vibrios, bacteria possessing two chromosomes. J. Bacteriol. 184: 43514358.
103. Tauch, A.,, S. Gotker,, A. Puhler,, J. Kalinowski, and, G. Thierbach. 2002. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48: 117129.
104. Tennstedt, T.,, R. Szczepanowski,, S. Braun,, A. Puhler, and, A. Schluter. 2003. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol. Ecol. 45: 239252.
105. Thungapathra, M.,, Amita,, K. K. Sinha,, S. R. Chaudhuri,, P. Garg,, T. Ramamurthy,, G. B. Nair, and, A. Ghosh. 2002. Occurrence of antibiotic resistance gene cassettes aac(6′)-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob. Agents Chemother. 46: 29482955.
106. Trucksis, M.,, J. Michalski,, Y. K. Deng, and, J. B. Kaper. 1998. The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl. Acad. Sci. USA 95: 1446414469.
107. Ullmann, U. 1969. [Vibrio fetus as cause of disease in man]. [In German.] Dtsch. Med. Wochenschr. 94: 23992402.
108. Vaisvila, R.,, R. D. Morgan,, J. Posfai, and, E. A. Raleigh. 2001. Discovery and distribution of super-integrons among pseudo-monads. Mol. Microbiol. 42: 587601.
109. van der Meer, J. R., and, V. Sentchilo. 2003. Genomic islands and the evolution of catabolic pathways in bacteria. Curr. Opin. Biotechnol. 14: 248254.
110. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307: 14591461.
111. Waldor, M. K.,, H. Tschape, and, J. J. Mekalanos. 1996. A new type of conjugative transposon encodes resistance to sulfamethox-azole, trimethoprim, and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178: 41574165.
112. Whittle, G.,, N. B. Shoemaker, and, A. A. Salyers. 2002. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol. Life Sci. 59: 20442054.
113. Yamaichi, Y.,, T. Iida,, K. S. Park,, K. Yamamoto, and, T. Honda. 1999. Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol. Microbiol. 31: 15131521.


Generic image for table

Bacterial species harboring chromosomal integrons and superintegrons

Citation: Rowe-Magnus D, Zouine M, Mazel D. 2006. The Adaptive Genetic Arsenal of Pathogenic Species: the Role of Integrons, p 95-111. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error