Chapter 18 : The Biology and Pathogenicity of and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Biology and Pathogenicity of and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815714/9781555813659_Chap18-2.gif


Vibriosis is one of the most prevalent fish diseases caused by bacteria belonging to the genus . Vibriosis caused by has been particularly devastating in the marine culture of salmonid fish. The correlation between serotype and virulence may reflect the ability of the bacterial surface antigens to interact with the host tissues. The ferric-anguibactin receptor FatA is an 86-kDa protein that is essential for anguibactin transport. The FatA amino acid sequence is similar to other receptors involved in iron transport, e.g., FhuA and FepA of , and a TonB box can be identified at its amino-terminal end. causes vibriosis in wild and cultured marine salmonids in the Pacific Northwest of the United States and Japan. The determination and analysis of the complete nucleotide sequence could provide information about the role of pMJ101 in the pathobiology of this fish pathogen. Juvenile salmon exposed to V. ordalii by parenteral challenge developed a systemic infection, and the bacterium was recovered from liver, kidneys, spleen, and blood immediately after the infection. However, the number of bacteria in the liver declined after 1 h and then increased 22 h after infection; bacterial numbers were high in all the organs, and 100% mortality occurred 6 days after infection. The latter observations demonstrate that artificial infection of juvenile salmon is a valid experimental model to study the mechanisms and the bacterial virulence factors involved in the pathogenesis of the infections caused by .

Citation: Crosa J, Actis L, Tolmasky M. 2006. The Biology and Pathogenicity of and , p 251-265. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Model of the anguibactin biosynthesis pathway.

Citation: Crosa J, Actis L, Tolmasky M. 2006. The Biology and Pathogenicity of and , p 251-265. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Nucleotide sequence of the pMJ101 origin of replication. The locations of the predicted Shine-Dalgarno (SD) and —10 and —35 promoter elements are indicated by underlined nucleotides. The bent arrow identifies the main transcription initiation site. Predicted methylation sites (GATC) are indicated in italics, and the conserved 7-bp repeats containing them are shown within the open boxes. The position and orientation of putative DnaA boxes are indicated by the horizontal arrows. The first amino acid of RepM is shown below the last nucleotide triplet.

Citation: Crosa J, Actis L, Tolmasky M. 2006. The Biology and Pathogenicity of and , p 251-265. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acosta, F.,, K. Lockhart,, S. K. Gahlawat,, F. Real, and, A. E. Ellis. 2004. Mx expression in Atlantic salmon ( Salmo salar L.) parr in response to Listonella anguillarum bacterin, lipopolysaccharide and chromosomal DNA. Fish Shellfish Immunol. 17: 255263.
2. Actis, L. A.,, M. E. Tolmasky, and, J. H. Crosa. 1998. Vibriosis, p. 523557. In P. T. K. Woo and, D. W. Bruno (ed.), Fish Diseases and Disorders, vol. 3: Viral, Bacterial, and Fungal Infections. CAB International, Wallingford, United Kingdom.
3. Actis, L. A.,, W. Fish,, J. H. Crosa,, K. Kellerman,, S. R. Ellenberger,, F. M. Hauser, and, J. Sanders-Loehr. 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J. Bacteriol. 167: 5765.
4. Actis, L. A.,, M. E. Tolmasky,, D. H. Farrell, and, J. H. Crosa. 1988. Genetic and molecular characterization of essential components of the Vibrio anguillarum plasmid-mediated iron-transport system. J. Biol. Chem. 263: 28532860.
5. Agius, C.,, M. Horne, and, P. Ward. 1983. Immunization of rainbow trout, Salmo gairdneri Richardson, against vibriosis: comparison of an extract antigen with whole cell bacterins by oral and intraperitoneal routes. J. Fish Dis. 6: 129134.
6. Alice, A. F.,, C. S. Lopez, and, J. H. Crosa. 2005. Plasmid- and chromosome-encoded redundant and specific functions are involved in biosynthesis of the siderophore anguibactin in Vibrio anguillarum 775: a case of chance and necessity? J. Bacteriol. 187: 22092214.
7. Alsina, M.,, J. Martinez-Picado,, J. Jofre, and, A. R. Blanch. 1994. A medium for presumptive identification of Vibrio anguillarum. Appl. Environ. Microbiol. 60: 16811683.
8. Aoki, T.,, Y. Jo, and, S. Egusa. 1980. Frequent occurrence of drug resistance bacteria in ayu ( Plecoglossus altivelis). Fish Pathol. 15: 16.
9. Aoki, T.,, T. Kitao, and, T. Arai. 1977. R plasmids in fish pathogens, p. 3945. In S. Mitsuhashi,, L. Rosival, and, W. Kremery (ed.), Plasmids: Medical and Theoretical Aspects. Czechoslovak Medical Press, Prague.
10. Aoki, T.,, T. Kitao,, T. Itabashi,, Y. Wada, and, M. Sakai. 1981. Proteins and lipopolysaccharides in the membrane of Vibrio anguillarum. Dev. Biol. Stand. 49: 226232.
11. Aoki, T.,, T. Kitao,, S. Watanabe, and, S. Takeshita. 1984. Drug resistance and R plasmids in Vibrio anguillarum isolated in cultured ayu ( Plecoglossus altivelis). Microbiol. Immunol. 28: 19.
12. Baumann, P.,, S. Bang, and, L. Baumann. 1978. Phenotypic characterization of Beneckea anguillara biotypes I and II. Curr. Microbiol. 1: 8588.
13. Bennett, P. M., and, P. M. Hawkey. 1991. The future contribution of transposition to antimicrobial resistance. J. Hosp. Infect. 18 (Suppl. A): 211221.
14. Bergh, O.,, L. Vikanes,, P. Makridis,, J. Skjermo,, D. Knappskog, and, O. M. Rodseth. 2001. Uptake and processing of a Vibrio anguillarum bacterin in Artemia franciscana measured by ELISA and immunohistochemistry. Fish Shellfish Immunol. 11: 1522.
15. Bidinost, C.,, J. H. Crosa, and, L. A. Actis. 1994. Localization of the replication region of the pMJ101 plasmid from Vibrio ordalii. Plasmid 31: 242250.
16. Bidinost, C.,, P. J. Wilderman,, C. W. Dorsey, and, L. A. Actis. 1999. Analysis of the replication elements of the pMJ101 plasmid from the fish pathogen Vibrio ordalii. Plasmid 42: 2030.
17. Bolinches, J.,, M. Lemos,, B. Fouz,, A. Toranzo,, M. Cambra, and, J. L. Larsen. 1990. Serological relationships within Vibrio anguillarum strains. J. Aquat. Anim. Health 2: 1220.
18. Bowden, T. J.,, D. Menoyo-Luque,, I. R. Bricknell, and, H. Werge-land. 2002. Efficacy of different administration routes for vaccination against Vibrio anguillarum in Atlantic halibut ( Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 12: 283285.
19. Cahill, M. M. 1990. Bacterial flora of fishes: a review. Microb. Ecol. 19: 2141.
20. Chen, D.,, P. J. Hanna,, K. Altmann,, A. Smith,, P. Moon, and, L. S. Hammond. 1992. Development of monoclonal antibodies that identify Vibrio species commonly isolated from infections of humans, fish, and shellfish. Appl. Environ. Microbiol. 58: 36943700.
21. Cisar, J. O., and, J. L. Fryer. 1969. An epizootic of vibriosis in Chinook salmon. Bull. Wildlife Dis. Assoc. 5: 7375.
22. Conchas, R. F.,, M. L. Lemos,, J. L. Barja, and, A. E. Toranzo. 1991. Distribution of plasmid- and chromosome-mediated iron uptake systems in Vibrio anguillarum strains of different origins. Appl. Environ. Microbiol. 57: 29562962.
23. Crosa, J. H. 1987. Bacterial iron metabolism, plasmids and other virulence factors, p. 139170. In J. Bullen and, E. Griffiths (ed.), Iron and Infection. John Wiley and Sons, Chichester, England.
24. Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53: 517530.
25. Crosa, J. H. 1984. The relationship of plasmid-mediated iron transport and bacterial virulence. Annu. Rev. Microbiol. 38: 6989.
26. Crosa, J. H.,, L. Hodges, and, M. Schiewe. 1980. Curing of a plasmid is correlated with an attenuation of virulence in the marine fish pathogen Vibrio anguillarum. Infect. Immun. 27: 897902.
27. Crosa, J. H.,, M. Schiewe, and, S. Falkow. 1977. Evidence for plasmid contribution to the virulence of the fish pathogen Vibrio anguillarum. Infect. Immun. 18: 509513.
28. Croxatto, A.,, V. J. Chalker,, J. Lauritz,, J. Jass,, A. Hardman,, P. Williams,, M. Camara, and, D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metallopro-tease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184: 16171629.
29. Denkin, S. M., and, D. R. Nelson. 1999. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 65: 35553560.
30. Denkin, S. M., and, D. R. Nelson. 2004. Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl. Environ. Microbiol. 70: 41934204.
31. Di Lorenzo, M.,, M. Stork,, M. E. Tolmasky,, L. A. Actis,, D. Farrell,, T. J. Welch,, L. M. Crosa,, A. M. Wertheimer,, Q. Chen,, P. Salinas,, L. Waldbeser, and, J. H. Crosa. 2003. Complete sequence of virulence plasmid pJM1 from the marine fish pathogen Vibrio anguillarum strain 775. J. Bacteriol. 185: 58225830.
32. Di Lorenzo, M.,, S. Poppelaars,, M. Stork,, M. Nagasawa,, M. E. Tolmasky, and, J. H. Crosa. 2004. A nonribosomal peptide synthetase with a novel domain organization is essential for siderophore biosynthesis in Vibrio anguillarum. J. Bacteriol. 186: 73277336.
33. Dorsey, C. W.,, A. P. Tomaras,, P. L. Connerly,, M. E. Tolmasky,, J. H. Crosa, and, L. A. Actis. 2004. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiology 150: 36573667.
34. Farrell, D. H., and, J. H. Crosa. 1991. Purification and characterization of a secreted protease from the pathogenic marine bacterium Vibrio anguillarum. Biochemistry 30: 34323436.
35. Gonzalez, S. F.,, M. J. Krug,, M. E. Nielsen,, Y. Santos, and, D. R. Call. 2004. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J. Clin. Microbiol. 42: 14141419.
36. Harbell, S.,, O. Hodgins, and, M. Schiewe. 1979. Studies on the pathogenesis of vibriosis in coho salmon Oncorhynchus kisutch (Walbaum). J. Fish Dis. 2: 391404.
37. Harrell, L.,, A. J. Novotny,, M. H. Schiewe, and, H. Hodgins. 1976. Isolation and description of two vibrios pathogenic to Pacific salmon in Puget Sound, Washington. Fish. Bull. 74: 447449.
38. Hayashi, F.,, B. Araki,, K. Harada,, M. Inove, and, S. Mitsuhashi. 1982. Epidemiological studies of drug resistant strains in cultured in cultured fish and water. Bull. Jpn. Soc. Sci. Fish. 48: 11211127.
39. Hoff, K. A. 1989. Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl. Environ. Microbiol. 55: 17751786.
40. Johnsen, G. S. 1977. Immunological studies on Vibrio anguillarum. Aquaculture 10: 212230.
41. Kawano, K.,, T. Aoki, and, T. Kitao. 1984. Duration of protection against vibriosis in ayu, Plecoglossus altivelis, vaccinated by immersion and oral administration with Vibrio anguillarum. Bull. Jpn. Soc. Sci. Fish. 50: 771774.
42. Kitao, T.,, T. Aoki,, K. Fukudome,, K. Kawano,, Y. Wada, and, Y. Mizuno. 1983. Serotyping of Vibrio anguillarum isolated from diseased freshwater fish in Japan. J. Fish Dis. 6: 175181.
43. Kleckner, N. 1981. Transposable elements in prokaryotes. Annu. Rev. Genet. 15: 341404.
44. Larsen, J., and, S. Mellegaard. 1984. Agglutination typing of Vibrio anguillarum isolates from diseased fish and from the environment. Appl. Environ. Microbiol. 47: 12611265.
45. Larsen, J. L. 1983. Vibrio anguillarum: a comparative study of fish pathogenic, environmental, and reference strains. Acta Vet. Scand. 24: 456479.
46. Larsen, M. H., and, H. T. Boesen. 2001. Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol. Lett. 203: 149152.
47. Lemos, M.,, A. Toranzo, and, J. Barja. 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbiol. Ecol. 11: 149163.
48. Lemos, M. L.,, P. Salinas,, A. E. Toranzo,, J. L. Barja, and, J. H. Crosa. 1988. Chromosome-mediated iron uptake system in pathogenic strains of Vibrio anguillarum. J. Bacteriol. 170: 19201925.
49. Liu, Q.,, Y. Ma,, H. Wu,, M. Shao,, H. Liu, and, Y. Zhang. 2004. Cloning, identification and expression of an entE homologue angE from Vibrio anguillarum serotype O1. Arch. Microbiol. 181: 287293.
50. MacDonell, M., and, R. R. Colwell. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6: 171182.
51. Martinez-Picado, J.,, A. R. Blanch, and, J. Jofre. 1994. Rapid detection and identification of Vibrio anguillarum by using a specific oligonucleotide probe complementary to 16S rRNA. Appl. Environ. Microbiol. 60: 732737.
52. Mazoy, R.,, C. R. Osorio,, A. E. Toranzo, and, M. L. Lemos. 2003. Isolation of mutants of Vibrio anguillarum defective in haeme utilisation and cloning of huvA, a gene coding for an outer membrane protein involved in the use of haeme as iron source. Arch. Microbiol. 179: 329338.
53. McGee, K.,, P. Horstedt, and, D. L. Milton. 1996. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J. Bacteriol. 178: 51885198.
54. Mihara, K.,, T. Tanabe,, Y. Yamakawa,, T. Funahashi,, H. Nakao,, S. Narimatsu, and, S. Yamamoto. 2004. Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. Microbiology 150: 25872597.
55. Milton, D. L.,, V. J. Chalker,, D. Kirke,, A. Hardman,, M. Camara, and, P. Williams. 2001. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl) homoserine lactone and N-hexanoylhomoserine lactone. J. Bacteriol. 183: 35373547.
56. Milton, D. L.,, A. Hardman,, M. Camara,, S. R. Chhabra,, B. W. Bycroft,, G. S. Stewart, and, P. Williams. 1997. Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J. Bacteriol. 179: 30043012.
57. Milton, D. L.,, A. Norqvist, and, H. Wolf-Watz. 1992. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J. Bacteriol. 174: 72357244.
58. Milton, D. L.,, A. Norqvist, and, H. Wolf-Watz. 1995. Sequence of a novel virulence-mediating gene, virC, from Vibrio anguillarum. Gene 164: 95100.
59. Milton, D. L.,, R. O’Toole,, P. Horstedt, and, H. Wolf-Watz. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178: 13101319.
60. Mourino, S.,, C. R. Osorio, and, M. L. Lemos. 2004. Characterization of heme uptake cluster genes in the fish pathogen Vibrio anguillarum. J. Bacteriol. 186: 61596167.
61. Mutharia, L. M., and, P. A. Amor. 1994. Monoclonal antibodies against Vibrio anguillarum O2 and Vibrio ordalii identify antigenic differences in lipopolysaccharide O-antigens. FEMS Microbiol. Lett. 123: 289298.
62. Mutharia, L. W.,, B. T. Raymond,, T. R. Dekievit, and, R. M. Stevenson. 1993. Antibody specificities of polyclonal rabbit and rainbow trout antisera against Vibrio ordalii and serotype 0:2 strains of Vibrio anguillarum. Can. J. Microbiol. 39: 492499.
63. Nelson, J.,, J. S. Rohovec, and, J. L. Fryer. 1985a. Location of Vibrio anguillarum in tissues of infected rainbow trout ( Salmo gairdneri) using the fluorescent antibody technique. Fish Pathol. 20: 229235.
64. Nelson, J.,, J. S. Rohovec, and, J. L. Fryer. 1985b. Tissue location of Vibrio bacterin delivered by intraperitoneal injection, immersion and oral routes to Salmo gairdneri. Fish Pathol. 19: 263269.
65. Nomura, J., and, T. Aoki. 1985. Morphological analysis of lipo-polysaccharide from gram-negative fish pathogenic bacteria. Fish Pathol. 20: 193197.
66. Norqvist, A.,, A. Hagstrom, and, H. Wolf-Watz. 1989. Protection of rainbow trout against vibriosis and furunculosis by the use of attenuated strains of Vibrio anguillarum. Appl. Environ. Microbiol. 55: 14001405.
67. Norqvist, A.,, B. Norrman, and, H. Wolf-Watz. 1990. Identification and characterization of a zinc metalloprotease associated with invasion by the fish pathogen Vibrio anguillarum. Infect. Immun. 58: 37313736.
68. Norqvist, A., and, H. Wolf-Watz. 1993. Characterization of a novel chromosomal virulence locus involved in expression of a major surface flagellar sheath antigen of the fish pathogen Vibrio anguillarum. Infect. Immun. 61: 24342444.
69. Ohnishi, K., and, K. Muroga. 1976. Vibrio sp. as a cause of disease in rainbow trout cultured in Japan. I. Biochemical characteristics. Fish Pathol. 11: 159165.
70. Olsen, J. E., and, J. L. Larsen. 1990. Restriction fragment length polymorphism of the Vibrio anguillarum serovar O1 virulence plasmid. Appl. Environ. Microbiol. 56: 31303132.
71. Onarheim, A., and, J. Raa. 1990. Characteristics and possible biological significance of an autochthonous flora in the intestinal mucosa of sea water fish, p. 197201. In R. Lesel (ed.), Microbiology in Poecilotherms. Elsevier Science Publishers, Amsterdam, The Netherlands.
72. O’Toole, R.,, D. L. Milton,, P. Horstedt, and, H. Wolf-Watz. 1997. RpoN of the fish pathogen Vibrio ( Listonella) anguillarum is essential for flagellum production and virulence by the water-borne but not intraperitoneal route of inoculation. Microbiology 143: 38493859.
73. O’Toole, R.,, J. Von Hofsten,, R. Rosqvist,, P. E. Olsson, and, H. Wolf-Watz. 2004. Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb. Pathog. 37: 4146.
74. Pacha, R. E., and, E. D. Kiehn. 1969. Characterization and relatedness of marine vibrios pathogenic to fish: physiology, serology, and epidemiology. J. Bacteriol. 100: 12421247.
75. Pedersen, K.,, L. Grisez,, R. van Houdt,, T. Tiainen,, F. Ollevier, and, J. L. Larsen. 1999. Extended serotyping scheme for Vibrio anguillarum with the definition and characterization of seven provisional O-serogroups. Curr. Microbiol. 38: 183189.
76. Pedersen, K.,, S. Koblavi,, T. Tiainen, and, P. A. Grimont. 1996. Restriction fragment length polymorphism of the pMJ101-like plasmid and ribotyping in the fish pathogen Vibrio ordalii. Epidemiol. Infect. 117: 385391.
77. Pedersen, K.,, T. Tiainen, and, J. L. Larsen. 1995. Antibiotic resistance of Vibrio anguillarum, in relation to serovar and plasmid contents. Acta. Vet. Scand. 36: 5564.
78. Pillidge, C. J., and, R. R. Colwell. 1988. Nucleotide sequence of the 5S rRNA from Listonella ( Vibrio) ordalii ATCC 33509 and Listonella ( Vibrio) tubiashii ATCC 19105. Nucleic Acids Res. 16: 3111.
79. Ransom, D. P.,, C. N. Lannan,, J. S. Rohovec, and, J. L. Fryer. 1984. Comparison of histopathology caused by Vibrio anguillarum and Vibrio ordalii in three species of Pacific salmon. J. Fish Dis. 7: 107115.
80. Rasmussen, H. B. 1987a. Subgrouping of lipopolysaccharide O antigens from Vibrio anguillarum serogroup O2 by immuno-electrophoretic analyses. Curr. Microbiol. 16: 3942.
81. Rasmussen, H. B. 1987b. Evidence for two new Vibrio anguillarum K antigens. Curr. Microbiol. 16: 105107.
82. Rehnstam, A. S.,, A. Norqvist,, H. Wolf-Watz, and, A. Hagstrom. 1989. Identification of Vibrio anguillarum in fish by using partial 16S rRNA sequences and a specific 16S rRNA oligonucleotide probe. Appl. Environ. Microbiol. 55: 19071910.
83. Roberts, R. 1989. The bacteriology of teleosts, p. 289319. In R. Roberts (ed.), Fish Pathology, 2nd ed. Bailliere Tindall, London, England.
84. Sadovskaya, I.,, J. R. Brisson,, N. H. Khieu,, L. M. Mutharia, and, E. Altman. 1998. Structural characterization of the lipopolysac-charide O-antigen and capsular polysaccharide of Vibrio ordalii serotype O:2. Eur. J. Biochem. 253: 319327.
85. Salinas, P. C.,, M. E. Tolmasky, and, J. H. Crosa. 1989. Regulation of the iron uptake system in Vibrio anguillarum: evidence for a cooperative effect between two transcriptional activators. Proc. Natl. Acad. Sci. USA 86: 35293533.
86. Schiewe, M. H. 1983. Vibrio ordalii as a cause of vibriosis in salmonid fish, p. 3140. In J. H. Crosa (ed.), Bacterial and Viral Diseases of Fish. Washington Sea Grant, Seattle, Wash.
87. Schiewe, M. H., and, J. H. Crosa. 1981. Molecular characterization of Vibrio anguillarum biotype 2. Can. J. Microbiol. 27: 10111018.
88. Schiewe, M. H.,, J. H. Crosa, and, E. Ordal. 1977. Deoxyribonu-cleic acid relationships among marine vibrios pathogenic to fish. Can. J. Microbiol. 23: 954958.
89. Schiewe, M. H.,, T. Trust, and, J. H. Crosa. 1981. Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr. Microbiol. 6: 343348.
90. Shewan, J.,, W. Hodgkiss, and, J. Liston. 1954. A method for the rapid differentiation of certain non-pathogenic asporogenous bacilli. Nature 173: 208209.
91. Singer, J.,, W. Choe, and, K. A. Schmidt. 1991. Use of a restriction-defective variant for the construction of stable attenuated strains of the marine fish pathogen Vibrio anguillarum. J. Microbiol. Methods 13: 4960.
92. Sorensen, U. B., and, J. L. Larsen. 1986. Serotyping of Vibrio anguillarum. Appl. Environ. Microbiol. 51: 593597.
93. Sparagano, O. A.,, P. A. Robertson,, I. Purdom,, J. McInnes,, Y. Li,, D. H. Yu,, Z. J. Du,, H. S. Xu, and, B. Austin. 2002. PCR and molecular detection for differentiating Vibrio species. Ann. N. Y. Acad. Sci. 969: 6065.
94. Staroscik, A. M.,, S. M. Denkin, and, D. R. Nelson. 2005. Regulation of the Vibrio anguillarum metalloprotease EmpA by post-translational modification. J. Bacteriol. 187: 22572260.
95. Stokes, H. W., and, R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3: 16691683.
96. Stork, M.,, M. Di Lorenzo,, S. Mourino,, C. R. Osorio,, M. L. Lemos, and, J. H. Crosa. 2004. Two tonB systems function in iron transport in Vibrio anguillarum, but only one is essential for virulence. Infect. Immun. 72: 73267329.
97. Tajima, K.,, Y. Ezura, and, T. Kimura. 1987a. The possibility of use of a thermolabile antigen in detection of Vibrio anguillarum. Fish Pathol. 22: 237242.
98. Tajima, K.,, Y. Ezura, and, T. Kimura. 1987b. Serological analysis of the thermolabile antigens of Vibrio anguillarum. Fish Pathol. 22: 221226.
99. Tassin, M. G.,, R. J. Siebeling,, N. C. Roberts, and, A. D. Larson. 1983. Presumptive identification of Vibrio species with H antiserum. J. Clin. Microbiol. 18: 400407.
100. Tiainen, T.,, K. Pedersen, and, J. L. Larsen. 1995. Ribotyping and plasmid profiling of Vibrio anguillarum serovar O2 and Vibrio ordalii. J. Appl. Bacteriol. 79: 384392.
101. Tolmasky, M. E.,, L. A. Actis, and, J. H. Crosa. 1988a. Genetic analysis of the iron uptake region of the Vibrio anguillarum plasmid pJM1: molecular cloning of genetic determinants encoding a novel trans activator of siderophore biosynthesis. J. Bacteriol. 170: 19131919.
102. Tolmasky, M. E.,, P. C. Salinas,, L. A. Actis, and, J. H. Crosa. 1988b. Increased production of the siderophore anguibactin mediated by pJM1-like plasmids in Vibrio anguillarum. Infect. Immun. 56: 16081614.
103. Tolmasky, M. E.,, L. A. Actis, and, J. H. Crosa. 1993. A single amino acid change in AngR, a protein encoded by pJM1-like virulence plasmids, results in hyperproduction of anguibactin. Infect. Immun. 61: 32283233.
104. Tolmasky, M. E.,, L. A. Actis,, A. E. Toranzo,, J. L. Barja, and, J. H. Crosa. 1985. Plasmids mediating iron uptake in Vibrio anguillarum strains isolated from turbot in Spain. J. Gen. Microbiol. 131: 19891997.
105. Tolmasky, M. E., and, J. H. Crosa. 1995. Iron transport genes of the pJM1-mediated iron uptake system of Vibrio anguillarum are included in a transposonlike structure. Plasmid 33: 180190.
106. Tolmasky, M. E., and, J. H. Crosa. 1990. Plasmid-mediated iron transport and virulence in the fish pathogen Vibrio anguillarum, p. 4954. In O. Olsvik and, G. Bukholm (ed.), A pplication of Molecular Biology in Diagnosis of Infectious Diseases. Norwegian College of Veterinary Medicine, Oslo, Norway.
107. Tolmasky, M. E., and, J. H. Crosa. 1991. Regulation of plasmid-mediated iron transport and virulence in Vibrio anguillarum. Biol. Methods 4: 3335.
108. Toranzo, A. E., and, J. A. Barja. 1990. A review of the taxonomy and seroepizootiology of Vibrio anguillarum, with special reference to aquaculture in the northwest of Spain. Dis. Aquat. Organ. 9: 7382.
109. Toranzo, A. E.,, P. Combarro,, M. L. Lemos, and, J. L. Barja. 1984. Plasmid coding for transferable drug resistance in bacteria isolated from cultured rainbow trout. Appl. Environ. Microbiol. 48: 872877.
110. Toranzo, A. E.,, Y. Santos, and, J. L. Barja. 1997. Immunization with bacterial antigens: Vibrio infections. Dev. Biol. Stand. 90: 93105.
111. Trust, T.,, I. Courtice,, A. G. Khouri,, J. H. Crosa, and, M. H. Schiewe. 1981. Serum resistance and hemagglutination ability of marine vibrios pathogenic for fish. Infect. Immun. 34: 702707.
112. Vervarcke, S.,, F. Ollevier,, R. Kinget, and, A. Michoel. 2004. Oral vaccination of African catfish with Vibrio anguillarum O2: effect on antigen uptake and immune response by absorption enhancers in lag time coated pellets. Fish Shellfish Immunol. 16: 407414.
113. Villegas, M. V., and, A. I. Hartstein. 2003. Acinetobacter outbreaks, 1977–2000. Infect. Control Hosp. Epidemiol. 24: 284295.
114. Vivian, A. 1991. Genetic organization of Acinetobacter, p. 191200. In K. J. Towner,, E. Bergogne-Berenzin, and, C. A. Fewson (ed.), The Biology of Acinetobacter. Plenum Press, New York, N.Y.
115. Walter, M. A.,, S. A. Potter, and, J. H. Crosa. 1983. Iron uptake system medicated by Vibrio anguillarum plasmid pJM1. J. Bacteriol. 156: 880887.
116. Wang, S. Y.,, J. Lauritz,, J. Jass, and, D. L. Milton. 2003. Role for the major outer-membrane protein from Vibrio anguillarum in bile resistance and biofilm formation. Microbiology 149: 10611071.
117. Wang, S. Y.,, J. Lauritz,, J. Jass, and, D. L. Milton. 2002. A ToxR homolog from Vibrio anguillarum serotype O1 regulates its own production, bile resistance, and biofilm formation. J. Bacteriol. 184: 16301639.
118. Ward, P.,, M. Tatner, and, M. Horne. 1985. Factors influencing the efficacy of vaccines against vibriosis caused by Vibrio anguillarum, p. 221229. In M. Manning and, M. Tatner (ed.), Fish Immunology. Academic Press, Inc., London, England.
119. Watanabe, T.,, Y. Ogata, and, S. Egusa. 1971. R factors related to fish culturing. Ann. N. Y. Acad. Sci. 182: 383410.
120. Westerdahl, A.,, J. C. Olsson,, S. Kjelleberg, and, P. L. Conway. 1991. Isolation and characterization of turbot ( Scophtalmus maximus)-associated bacteria with inhibitory effects against Vibrio anguillarum. Appl. Environ. Microbiol. 57: 22232228.
121. Wiik, R.,, K. A. Hoff,, K. Andersen, and, F. L. Daae. 1989. Relationships between plasmids and phenotypes of presumptive strains of Vibrio anguillarum isolated from different fish species. Appl. Environ. Microbiol. 55: 826831.
122. Wiik, R.,, E. Stackebrandt,, O. Valle,, F. L. Daae,, O. M. Rodseth, and, K. Andersen. 1995. Classification of fish-pathogenic vibrios based on comparative 16S rRNA analysis. Int. J. Syst. Bacteriol. 45: 421428.
123. Wu, H.,, Y. Ma,, Y. Zhang, and, H. Zhang. 2004. Complete sequence of virulence plasmid pEIB1 from the marine fish pathogen Vibrio anguillarum strain MVM425 and location of its replication region. J. Appl. Microbiol. 97: 10211028.
124. Xia, Y. J.,, W. H. Wen,, W. Q. Huang, and, B. C. Huang. 2005. Development of a phage displayed disulfide-stabilized Fv fragment vaccine against Vibrio anguillarum. Vaccine 23: 31743180.
125. Yamamoto, S.,, N. Okujo, and, Y. Sakakibara. 1994. Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch. Microbiol. 162: 249254.
126. Zhao, J., and, T. Aoki. 1992a. Cloning and nucleotide sequence analysis of a chloramphenicol acetyltransferase gene from Vibrio anguillarum. Microbiol. Immunol. 36: 695705.
127. Zhao, J., and, T. Aoki. 1992b. Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol. Immunol. 36: 10511060.


Generic image for table

Phenotypic properties used to differentiate from

Citation: Crosa J, Actis L, Tolmasky M. 2006. The Biology and Pathogenicity of and , p 251-265. In Thompson F, Austin B, Swings J (ed), The Biology of Vibrios. ASM Press, Washington, DC. doi: 10.1128/9781555815714.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error