Chapter 6 : Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815738/9781555814649_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815738/9781555814649_Chap06-2.gif


The adaptation of viruses to changing environments determines the types and numbers of viral particles present in any physical context, be it food or other, and hence the probability of encountering a susceptible host to cause disease. Genes encoding nonstructural proteins of viruses are generally more highly conserved than are genes encoding structural proteins such as capsid proteins of naked viruses and surface glycoproteins of enveloped viruses. Mutation is the most universal form of genetic variation of viruses. The mechanisms of genetic variation of viruses are blind processes that generate repertoires of variants which are then subjected to selection and random (chance) expansions in each particular environment in which virus replication takes place. In general, virus transmission by food or water should be considered a chance event; it should be regarded as a special case of fecal-oral transmission, with the virus being present in food or the environment for short or long periods. Transmission via food is an opportunity for an unlikely transmission event to occur relatively easily. Cross-species transmission is an event with strong selective pressure at the level of virus entry. Since virus entry involves protein rather than nucleic acid, the relevance of genetic variation is limited if it does not result in phenotypic variation. Contamination at the source occurs when irrigation water contains sewage or when filter-feeding bivalve mollusks grow in sewage-contaminated water.

Citation: Domingo E, Vennema H. 2008. Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology, p 147-169. In Koopmans M, Cliver D, Bosch A, Doyle M (ed), Food-Borne Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555815738.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Quasispecies are dynamic distributions of mutant and recombinant genomes characterized by a mutant spectrum and a consensus sequence. In this scheme, genomes are depicted as horizontal lines and mutations are depicted as symbols on the lines. (A) Multiple quasispecies can coexist in an infected organism, even within an organ. (B) Large population passages (large black arrow) lead to competitive optimization of the quasispecies and to fitness gain in the environment being considered (triangle at the bottom). In contrast, bottleneck events (small arrows) lead to random accumulation of mutations (compare consensus sequences) and a decrease in fitness. At high and low fitness values, fluctuations of fitness values may occur. (Adapted from reference with permission.)

Citation: Domingo E, Vennema H. 2008. Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology, p 147-169. In Koopmans M, Cliver D, Bosch A, Doyle M (ed), Food-Borne Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555815738.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agol, V. I. 2006. Molecular mechanisms of poliovirus variation and evolution. Curr. Top. Microbiol. Immunol. 299: 211259.
2. Anderson, J. P.,, R. Daifuku, and, L. A. Loeb. 2004. Viral error catastrophe by mutagenic nucleosides. Annu. Rev. Microbiol. 58:183–205.
3. Arnold, J. J.,, M. Vignuzzi,, J. K. Stone,, R. Andino, and, C. E. Cameron. 2005. Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol. Chem. 280: 2570625716.
4. Batschelet, E.,, E. Domingo, and, C. Weissmann. 1976. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1: 2732.
5. Briones, C.,, A. de Vicente,, C. Molina-Paris, and, E. Domingo. 2006. Minority memory genomes can influence the evolution of HIV–1 quasispecies in vivo. Gene 384: 129138.
6. Briones, C.,, E. Domingo, and, C. Molina-Paris. 2003. Memory in retroviral quasispecies: experimental evidence and theoretical model for human immunodeficiency virus. J. Mol. Biol. 331: 213229.
7. Chetverin, A. B.,, D. S. Kopein,, H. V. Chetverina,, A. A. Demidenko, and, V. I. Ugarov. 2005. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J. Biol. Chem. 280: 87488755.
8. Chohan, B.,, L. Lavreys,, S. M. Rainwater, and, J. Overbaugh. 2005. Evidence for frequent reinfection with human immunodeficiency virus type 1 of a different subtype. J. Virol. 79: 1070110708.
9. Cicin-Sain, L.,, J. Podlech,, M. Messerle,, M.J. Reddehase, and, U. H. Koszinowski. 2005. Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J. Virol. 79: 9492502.
10. Crowder, S., and, K. Kirkegaard. 2005. Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat. Genet. 37: 701709.
11. Deboosere, N.,, O. Legeay,, Y. Caudrelier, and, M. Lange. 2004. Modelling effect of physical and chemical parameters on heat inactivation kinetics of hepatitis A virus in a fruit model system. Int. J. Food Microbiol. 93: 7385.
12. de Wit, M. A.,, M. A. Widdowson,, H. Vennema,, E. de Bruin,, T. Fernandes, and, M. Koopmans. 2007. Large outbreak of norovirus: the baker who should have known better. J. Infect. 55: 188193.
13. Domingo, E. 2003. Quasispecies and the development of new antiviral strategies. Prog. Drug Res. 60: 133158.
14. Domingo, E.(ed.). 2005. Virus entry into error catastrophe as a new antiviral strategy. Virus Res. 107: 115228.
15. Domingo, E.,, V. Martin,, C. Perales,, A. Grande-Perez,, J. Garcia-Arriaza, and, A. Arias. 2006. Viruses as quasispecies: biological implications. Curr. Top. Microbiol. Immunol. 299: 5182.
16. Domingo, E. 2007. Virus evolution, p. 389421. In D. M. Knipe,, P. M. Howley,, D. E. Griffin,, R. A. Lamb,, M. A. Martin,, B. Roizman, and, S. E. Straus (ed.), Fields Virology, 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
17. Domingo, E.,, C. Biebricher,, M. Eigen, and, J.J. Holland. 2001. Quasispecies and RNA Virus Evolution: Principles and Consequences. Landes Bioscience, Austin, TX.
18. Domingo, E.,, A. Brun,, J. I. Nunez,, J. Cristina,, C. Briones, and, C. Escarmis. 2006. Genomics of viruses, p. 369388. In J. Hacker, and, U. Dobrindt, (ed.), Pathogenomics: Genome Analysis of Pathogenic Microbes. Wiley –VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
19. Domingo, E., and, J. Gomez. 2007. Quasispecies and its impact on viral hepatitis. Virus Res. 127: 131150.
20. Domingo, E.,, D. Sabo,, T. Taniguchi, and, C. Weissmann. 1978. Nucleotide sequence heterogeneity of an RNA phage population. Cell 13: 735744.
21. Drake, J. W., and, J. J. Holland. 1999. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96: 1391013913.
22. Earl, D. J., and, M. W. Deem. 2004. Evolvability is a selectable trait. Proc. Natl. Acad. Sci. USA 101: 1153111536.
23. Eigen, M. 1971. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465523.
24. Eigen, M. 2002. Error catastrophe and antiviral strategy. Proc. Natl. Acad. Sci. USA 99: 1337413376.
25. Eigen, M., and, P. Schuster 1979. The Hypercycle.A Principle of Natural Self-Organization. Springer-Verlag KG, Berlin, Germany.
26. Farci, P.,, A. Shimoda,, A. Coiana,, G. Diaz,, G. Peddis,, J. C. Melpolder,, A. Strazzera,, D. Y. Chien,, S. J. Munoz,, A. Balestrieri,, R. H. Purcell, and, H. J. Alter. 2000. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288: 339344.
27. Farci, P.,, R. Strazzera,, H. J. Alter,, S. Farci,, D. Degioannis,, A. Coiana,, G. Peddis,, F. Usai,, G. Serra,, L. Chessa,, G. Diaz,, A. Balestrieri, and, R. H. Purcell. 2002. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc. Natl. Acad. Sci. USA 99: 30813086.
28. Ferrer-Orta, C.,, A. Arias,, C. Escarmis, and, N. Verdaguer. 2006. A comparison of viral RNA-dependent RNA polymerases. Curr. Opin. Struct. Biol. 16: 2734.
29. Forterre, P. 2006. The origin of viruses and their possible roles in maj’or evolutionary transitions. Virus Res. 117: 516.
30. Friedberg, E. C.,, G. C. Walker,, W. Siede,, R. D. Wood,, R. A. Schultz, and, T. Ellenberger. 2006. DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC.
31. Gallimore, C. I.,, J. S. Cheesbrough,, K. Lamden,, C. Bingham, and, J. J. Gray. 2005. Multiple norovirus genotypes characterised from an oyster-associated outbreak of gastroenteritis. Int. J. Food Microbiol. 103: 323330.
32. Gavrilin, G. V.,, E. A. Cherkasova,, G. Y. Lipskaya,, O. M. Kew, and, V. I. Agol. 2000. Evolution of circulating wild poliovirus and of vaccine-derived poliovirus in an immunodeficient patient: a unifying model. J. Virol. 74: 73817390.
33. Gmyl, A. P.,, S. A. Korshenko,, E. V. Belousov,, E. V. Khitrina, and, V. I. Agol. 2003. Nonreplicative homologous RNA recombination: promiscuous j’oining of RNA pieces? RNA 9: 12211231.
34. Gonzalez-Lopez, C.,, A. Arias,, N. Pariente,, G. Gomez-Mariano, and, E. Domingo. 2004. Preextinction viral RNA can interfere with infectivity. J. Virol. 78: 33193324.
35. Grande-Perez, A.,, E. Lazaro,, P. Lowenstein,, E. Domingo, and, S. C. Manrubia. 2005. Suppression of viral infectivity through lethal defection. Proc. Natl. Acad. Sci. USA 102: 44484452.
36. Green, K. Y.,, R. M. Chanock,, A. Z. Kapikian. 2001. Human caliciviruses, p. 841874. In D. M. Knipe and, P. M. Howley(ed.) Fields Virology, 4th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
37. Harris, K. S.,, W. Brabant,, S. Styrchak,, A. Gall, and, R. DaifUku. 2005. KP–1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res. 67: 19.
38. Holland, J. 2006. Transitions in understanding of RNA viruses: an historical perspective. Curr. Top. Microbiol. Immunol. 299: 371401.
39. Keng, C. T.,, Y. W. Choi,, M. R. Welkers,, D. Z. Chan,, S. Shen,, S. Gee Lim,, W. Hong, and, Y. J. Tan. 2006. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology 354: 132142.
40. Kingsley, D. H.,, D. Guan,, D. G. Hoover, and, H. Chen. 2006. Inactivation of hepatitis A virus by high-pressure processing: the role of temperature and pressure oscillation. J. Food Prot. 69: 24542459.
41. Le Guyader, F. S.,, F. Bon,, D. DeMedici,, S. Parnaudeau,, A. Bertone,, S. Crudeli,, A. Doyle,, M. Zidane,, E. SuffTedini,, E. Kohli,, F. Maddalo,, M. Monini,, A. Gallay,, M. Pommepuy,, P. Pothier, and, F. M. Ruggeri. 2006. Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. J. Clin. Microbiol. 44: 38783882.
42. Li, T. C.,, K. Chijiwa,, N. Sera,, T. Ishibashi,, Y. Etoh,, Y. Shinohara,, Y. Kurata,, M. Ishida,, S. Sakamoto,, N. Takeda, and, T. Miyamura. 2005. Hepatitis E virus transmission from wild boar meat. Emerg. Infect. Dis. 11: 19581960.
43. Martin, D. P.,, C. Williamson, and, D. Posada. 2005. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260262.
44. Matthijnssens, J.,, M. Rahman,, V. Martella,, Y. Xuelei,, S. De Vos,, K. De Leener,, M. Ciarlet,, C. Buonavoglia, and, M. Van Ranst. 2006. Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J. Virol. 80: 38013810.
45. Menendez-Arias, L. 2002. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. Prog. Nucleic Acid Res. Mol. Biol. 71: 91147.
46. Minskaia, E.,, T. Hertzig,, A. E. Gorbalenya,, V. Campanacci,, C. Cambillau,, B. Canard, and, J. Ziebuhr. 2006. Discovery of an RNA virus 3’–5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103: 51085113.
47. Moreno, I. M.,, J. M. Malpica,, E. Rodriguez-Cerezo, and, F. Garcia-Arenal. 1997. A mutation in tomato aspermy cucumovirus that abolishes cell-to-cell movement is maintained to high levels in the viral RNA population by complementation. J. Virol. 71: 91579162.
48. Nagy, P. D., and, A. E. Simon. 1997. New insights into the mechanisms of RNA recombination. Virology 235: 19.
49. Nainan, O. V.,, L. Lu,, F. X. Gao,, E. Meeks,, B. H. Robertson, and, H. S. Margolis. 2006. Selective transmission of hepatitis C virus genotypes and quasispecies in humans and experimentally infected chimpanzees. J. Gen. Virol. 87: 8391.
50. Page, R. D. M., and, E. C. Holmes. 1998. Molecular Evolution. A Phylogenetic Approach. Blackwell Science Ltd., Oxford, United Kingdom.
51. Parrish, C. R., and, Y. Kawaoka. 2005. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu. Rev. Microbiol. 59: 553586.
52. Pawlotsky, J. M. 2000. Hepatitis C virus resistance to antiviral therapy. Hepatology 32: 889896.
53. Pawlotsky, J. M. 2006. Hepatitis C virus population dynamics during infection. Curr. Top. Microbiol. Immunol. 299: 261284.
54. Perales, C.,, R. Mateo,, M. G. Mateu, and, E. Domingo. 2007. Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J. Mol. Biol. 369: 9851000.
55. Pfeiffer,J. K., and, K. Kirkegaard. 2005. Increased fidelity reduces poliovirus fitness under selective pressure in mice. PLoS Pathogens 1: 102110.
56. Phan, T. G.,, K. Kaneshi,, Y. Ueda,, S. Nakaya,, S. Nishimura,, K. Sugita,, S. Takanashi,, S. Okitsu, and, H. Ushijima. 2007. Genetic heterogeneity, evolution, and recombination in noroviruses. J. Med. Virol. 79: 13881400.
57. Ruiz-Jarabo, C. M.,, A. Arias,, E. Baranowski,, C. Escarmis, and, E. Domingo. 2000. Memory in viral quasispecies. J. Virol. 74: 35433547.
58. Salemi, M., and, A. M. Vandamme, (ed.)., 2004. The Phylogeny Handbook. A Practical Approach to DNA and Protein Phylogeny. Cambridge University Press, Cambridge, United Kingdom.
59. Sanchez, G.,, A. Bosch,, G. Gomez-Mariano,, E. Domingo, and, R. M. Pinto. 2003. Evidence for quasispecies distributions in the human hepatitis A virus genome. Virology 315: 3442.
60. Sierra, M.,, A. Airaksinen,, C. Gonzalez-Lopez,, R. Agudo,, A. Arias, and, E. Domingo. 2007. Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J. Virol. 81: 20122024.
61. Steinhauer, D. A.,, E. Domingo, and, J.J. Holland. 1992. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122: 281288.
62. Takahashi, K.,, N. Kitajima,, N. Abe, and, S. Mishiro. 2004. Complete or near-complete nucleotide sequences of hepatitis E virus genome recovered from a wild boar, a deer, and four patients who ate the deer. Virology 330: 501505.
63. Tei, S.,, N. Kitajima,, K. Takahashi, and, S. Mishiro. 2003. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 362: 371373.
64. Vignuzzi, M.,, J. K. Stone,, J. J. Arnold,, C. E. Cameron, and, R. Andino. 2006. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344348.
65. Villarreal, L. P. 2005. Viruses and the Evolution of Life. ASM Press, Washington, DC.
66. Vinje, J.,, J. Green,, D. C. Lewis,, C. I. Gallimore,, D. W. Brown, and, M. P. Koopmans. 2000. Genetic polymorphism across regions of the three open reading frames of “Norwalk-like viruses.” Arch. Virol. 145: 223241.
67. Walther, B. A., and, P. W. Ewald. 2004. Pathogen survival in the external environment and the evolution of virulence. Biol. Rev. Camb. Philos. Soc. 79: 849869.
68. Wang, Q. H.,, M. G. Han,, S. Cheetham,, M. Souza,, J. A. Funk, and, L.J. Saif. 2005. Porcine noroviruses related to human noroviruses. Emerg. Infect. Dis. 11: 18741881.
69. Weaver, S. C. 2006. Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol. 299: 285314.
70. Webster, R. G. 1999. Antigenic variation in influenza viruses, p. 377390. In E. Domingo,, R. G. Webster, and, J. J. Holland (ed.), Origin and Evolution of Viruses. Academic Press, San Diego, CA.
71. Widdowson, M. A.,, B. Rockx,, R. Schepp,, W. H. van der Poel,, J. Vinje,, Y. T. van Duynhoven, and, M. P. Koopmans. 2005. Detection of serum antibodies to bovine norovirus in veterinarians and the general population in The Netherlands. J. Med. Virol. 76: 119128.
72. Zhang, C. Y.,, J. F. Wei, and, S. H. He. 2006. Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiol. 6: 88.
73. Zheng, D. P.,, T. Ando,, R. L. Fankhauser,, R. S. Beard,, R. I. Glass, and, S. S. Monroe. 2006. Norovirus classification and proposed strain nomenclature. Virology 346: 312323.


Generic image for table
Table 1

Mutation frequencies and rates of evolution for some picornaviruses

Citation: Domingo E, Vennema H. 2008. Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology, p 147-169. In Koopmans M, Cliver D, Bosch A, Doyle M (ed), Food-Borne Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555815738.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error