Chapter 10 : Risk Assessment of Viruses in Food: Opportunities and Challenges

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Risk Assessment of Viruses in Food: Opportunities and Challenges, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815738/9781555814649_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815738/9781555814649_Chap10-2.gif


Microbiological risk analysis originated in the 1980s, with the publication of a seminal paper on dose-response assessment by Haas (23). Building on this, the first studies concerned the safety of drinking water. Viruses were important target organisms in these first studies. Most early risk assessments focused on enteroviruses and rotaviruses, for which culture methods and dose-response information were available (19, 20, 24, 37). These studies demonstrated that risks of viral contamination can be analyzed by the risk assessment paradigm. Risk assessments in the domain of food safety have focused primarily on bacterial pathogens, for which routine culture methods are generally available; quantitative information on the occurrence of bacteria along the food chain has been produced at an increasing pace. Methods to quantify infectious viruses (and protozoa) in foods are generally more complex or not available at all. This implies that quantitative risk assessment for these organisms is hampered by limited data availability even more than are risk assessments of bacterial pathogens.

Citation: Havelaar A, Rutjes S. 2008. Risk Assessment of Viruses in Food: Opportunities and Challenges, p 221-236. In Koopmans M, Cliver D, Bosch A, Doyle M (ed), Food-Borne Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555815738.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Albinana-Gimenez, N.,, P. Clemente-Casares,, S. Bofill-Mas,, A. Hundesz,, F. Ribas, and, R. Girones., R. Girones., 2006. Distribution of human polyomaviruses, adenoviruses, and hepatitis E virus in the environment and in a drinking-water treatment plant. Environ. Sci. Technol. 40: 74167422.
2. Allwood, P. B.,, Y. S. Malik,, S. Maherchandani,, K. Vought,, L. A. Johnson,, C. Braymen,, C. W. Hedberg, and, S. M. Goyal. 2004. Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce. J. Food Prot. 67: 23872390.
3. Atmar, R. L.,, F. H. Neill,, J. L. Romalde,, F. LeGuyader,, C. M. Woodley,, T. G. Metcalf, and, M. K. Estes. 1995. Detection of Norwalk virus and hepatitis A virus in shellfish tissues with the PCR. Appl. Environ. Microbiol. 61: 30143018.
4. Boni, M. F.,, J. R. Gog,, V. Andreasen, and, F. B. Christiansen. 2004. Influenza drift and epidemic size: the race between generating and escaping immunity. Theor. Popul. Biol. 65: 179191.
5. Boni, M. F.,, J. R. Gog,, V. Andreasen, and, M. W. Feldman. 2006. Epidemic dynamics and antigenic evolution in a single season of influenza A. Proc. Biol. Sci. 273: 13071316.
6. Boom, R.,, C. J. Sol,, M. M. Salimans,, C. L. Jansen,, P. M. Wertheim-Van Dillen, and, J. Van Der Noordaa. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28: 495503.
7. Croci, L.,, D. De Medici,, S. Di Pasquale, and, L. Toti. 2005. Resistance of hepatitis A virus in mussels subjected to different domestic cookings. Int. J. Food Microbiol. 105: 139144.
8. De Medici, D.,, L. Croci,, S. Di Pasquale,, A. Fiore, and, L. Toti. 2001. Detecting the presence of infectious hepatitis A virus in molluscs positive to RT-nested-PCR. Lett. Appl. Microbiol. 33: 362366.
9. Doré, W. J.,, K. Henshilwood, and, D. N. Lees. 2000. Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. Appl. Environ. Microbiol. 66: 12801285.
10. Dubois, E.,, C. Agier,, O. Traore,, C. Hennechart,, G. Merle,, C. Cruciere, and, H. Laveran. 2002. Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture. J. Food Prot. 65: 19621969.
11. Dubois, E.,, C. Hennechart,, N. Deboosére,, G. Merle,, O. Legeay,, C. Burger,, M. Le Calve,, B. Lombard,, V. Ferré, and, O. Traoré. 2005. Intra-laboratory validation of a concentration method adapted for the enumeration of infectious F-specific RNA coliphage, enterovirus, and hepatitis A virus from inoculated leaves of salad vegetables. Int. J. Food Microbiol. 108: 164171.
12. Dubois, E.,, C. Hennechart,, G. Merle,, C. Burger,, N. Hmila,, S. Ruelle,, S. Perelle, and, V. Ferre. 2007. Detection and quantification by real-time RT-PCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: characterization of the method performances. Int. J. Food Microbiol. 117: 141149.
13. Duizer, E.,, P. Bijkerk,, B. Rockx,, A. De Groot,, F. Twisk, and, M. Koopmans. 2004. Inactivation of caliciviruses. Appl. Environ. Microbiol. 70: 45384543.
14. Duizer, E.,, K. J. Schwab,, F. H. Neill,, R. L. Atmar,, M. P. G. Koopmans, and, M. K. Estes. 2004. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85: 7987.
15. Eisenberg, J. N.,, E. Y. Seto,, A. W. Olivieri, and, R. C. Spear. 1996. Quantifying water pathogen risk in an epidemiological framework. Risk Anal. 16: 549563.
16. Eisenberg, J. N.,, J. A. Soller,, J. Scott,, D. M. Eisenberg, and, J. M. Colford, Jr., 2004. A dynamic model to assess microbial health risks associated with beneficial uses of biosolids. Risk Anal. 24: 221236.
17. Environmental Protection Agency. 1989. National primary drinking water regulations: filtration, disinfection; turbidity, Giardia lamblia, viruses, Legionella and heterotrophic bacteria. Final rule. Fed. Regist. 54: 27486.
18. Gassilloud, B., and, C. Gantzer. 2005. Adhesion-aggregation and inactivation of Poliovirus 1 in groundwater stored in a hydrophobic container. Appl. Environ. Microbiol. 71: 912920.
19. Gerba, C. P.,, J. B. Rose,, C. N. Haas, and, K. D. Crabtree. 1996. Waterborne rotavirus: a risk-assessment. Water Res. 30: 29292940.
20. Gerba, C. P., and, C. N. Haas. 1988. Assessment of risks associated with enteric viruses in contaminated drinking water, p. 489494. In J. J. Lichtenberg,, J. A. Winter,, C. I. Weber, and, L. Fradkin (ed.), Chemical and Biological Characterization of Sludges, Sediments, Dredge Spoils and Drilling Muds. American Society for Testing and Materials, Philadelphia, PA.
21. Gog, J. R., and, J. Swinton. 2002. A status-based approach to multiple strain dynamics. J. Math. Biol. 44: 169184.
22. Gulati, B. R.,, P. B. Allwood,, C. W. Hedberg, and, S. M. Goyal. 2001. Efficacy of commonly used disinfectants for the inactivation of calicivirus on strawberry, lettuce, and a food-contact surface. J. Food Prot. 64: 14301434.
23. Haas, C. N. 1983. Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am. J. Epidemiol. 118: 573582.
24. Haas, C. N.,, J. B. Rose,, C. Gerba, and, S. Regli. 1993. Risk assessment of virus in drinking water. Risk Anal. 13: 545552.
25. Hamilton, A. J.,, F. Stagnitti,, R. Premier,, A. M. Boland, and, G. Hale. 2006. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl. Environ. Microbiol. 72: 32843290.
26. Haramoto, E.,, H. Katayama,, O. Kumiko,, H. Yamashita,, E. Nakajima, and, S. Ohgaki. 2005. One-year monthly monitoring of Torque teno virus (TTV) in wastewater treatment plants in Japan. Water Res. 39: 20082013.
27. Havelaar, A. H.,, M. van Olphen, and, Y. C. Drost. 1993. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl. Environ. Microbiol. 59: 29562962.
28. Hutson, A. M.,, R. L. Atmar,, D. Y. Graham, and, M. K. Estes. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185: 13351337.
29. Jothikumar, N.,, J. A. Lowther,, K. Henshilwood,, D. N. Lees,, V. R. Hill, and, J. Vinje. 2005. Rapid and sensitive detection of noroviruses by using TaqMan-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Appl. Environ. Microbiol. 71: 18701875.
30. Kostenbader, K. D., Jr., and, D. O. Cliver. 1973. Filtration methods for recovering enteroviruses from foods. Appl. Microbiol. 26: 149154.
31. Kreader, C. A. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62: 11021106.
32. Larsson, M. M.,, G. E. Rydell,, A. Grahn,, J. Rodriguez-Diaz,, B. Akerlind,, A. M. Hutson,, M. K. Estes,, G. Larson, and, L. Svensson. 2006. Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. J. Infect. Dis. 194: 14221427.
33. Le Guyader F.,, A. C. Schultz,, L. Haugarreau,, L. Croci,, L. Maunula,, E. Duizer,, F. Lodder-Verschoor,, C. H. von Bonsdorff,, E. Suffredini,, W. H. M. van der Poel,, R. Reymundo, and, M. Koopmans. 2004. Round-robin comparison of methods for the detection of human enteric viruses in lettuce. J. Food Prot. 67: 23152319.
34. Lindesmith, L.,, C. Moe,, S. Marionneau,, N. Ruvoen,, X. Jiang,, L. Lindblad,, P. Stewart,, J. LePendu, and, R. Baric. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9: 548553.
35. Lodder, W. J., and, A. M. de Roda Husman. 2005. Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Appl. Environ. Microbiol. 71: 14531461.
36. Masago, Y.,, H. Katayama,, T. Watanabe,, E. Haramoto,, A. Hashimoto,, T. Omura,, T. Hirata, and, S. Ohgaki. 2006. Quantitative risk assessment of noroviruses in drinking water based on qualitative data in Japan. Environ. Sci. Technol. 40: 74287433.
37. Mena, K. D.,, C. P. Gerba,, C. N. Haas, and, J. B. Rose. 2003. Risk assessment of water-borne coxsackievirus. J. Am. Water Works Assoc. 95: 122133.
38. Myrmel, M.,, E. M. Berg,, E. Rimstad, and, B. Grinde. 2004. Detection of enteric viruses in shellfish from the Norwegian coast. Appl. Environ. Microbiol. 70: 26782684.
39. Nauta, M. J. 2007. The modular process risk model (MPRM): a structured approach to food chain exposure assessment, p. 99136. In D. W. Schaffner (ed.), Microbial Risk Analysis of Foods. ASM Press, Washington, DC.
40. O’Mahony, J.,, M. O’Donoghue,, J. G. Morgan, and, C. Hill. 2000. Rotavirus survivial and stability in foods as determined by an optimised plaque assay procedure. Int. J. Food Microbiol. 61: 177185.
41. Petterson, S. R.,, N. J. Ashbolt, and, A. Sharma. 2001. Microbial risks from wastewater irrigation of salad crops: a screening-level risk assessment. Water Environ. Res. 73: 667672.
42. Pina, S.,, M. Puig,, F. Lucena,, J. Jofre, and, R. Girones. 1998. Viral pollution in the environment and in shellfish: human adenovirus detection by PCR as an index of human viruses. Appl. Environ. Microbiol. 64: 33763382.
43. Potasman I.,, A. Paz, and, M. Odeh. 2002. Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin. Infect. Dis. 35: 921928.
44. Richards, G. P. 1999. Limitations of molecular biological techniques for assessing the virological safety of foods. J. Food Prot. 62: 691697.
45. Rockx, B. H.,, H. Vennema,, C. J. Hoebe,, E. Duizer, and, M. P. Koopmans. 2005. Association of histo-blood group antigens and susceptibility to norovirus infections. J. Infect. Dis. 191: 749754.
46. Rose, J. B., and, M. D. Sobsey. 1993. Quantitative risk assessment for viral contamination of shellfish and coastal waters. J. Food Prot. 56: 10431050.
47. Rutjes, S. A.,, R. Italiaander,, H. H. J. L. van den Berg,, W. J. Lodder, and, A. M. de Roda Husman. 2005. Isolation and detection of enterovirus RNA from large-volume water samples by using the NucliSens miniMAG system and real-time nucleic acid sequence-based amplification. Appl. Environ. Microbiol. 71: 37343740.
48. Rutjes, S. A.,, F. Lodder-Verschoor,, W. H. M. Van der Poel,, Y. T. H. P. Van Duijnhoven, and, A. M. De Roda Husman. 2006. Detection of noroviruses in foods: a study on virus extraction procedures in foods implicated in outbreaks of human gastroenteritis. J. Food Prot. 69: 19491956.
49. Rutjes, S. A.,, H. H. J. L. van den Berg,, W. J. Lodder, and, A. M. de Roda Husman. 2006. Real-time detection of noroviruses in surface water by a broadly reactive nucleic acid based amplification assay. Appl. Environ. Microbiol. 72: 53495358.
50. Rzezutka, A.,, M. Alotaibi,, M. D’Agostino, and, N. Cook. 2005. A centrifugation-based method for extraction of norovirus from raspberries. J. Food Prot. 68: 19231925.
51. Stine, S. W.,, I. Song,, C. Y. Choi, and, C. P. Gerba. 2005. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce. J. Food Prot. 68: 913918.
52. Teunis, P. F., and,, A. H. Havelaar. 2000. The beta Poisson dose-response model is not a single-hit model. Risk Anal. 20: 513520.
53. Teunis, P. F. M.,, W. J. Lodder,, S. H. Heisterkamp, and, A. M. de Roda Husman. 2005. Mixed plaques: statistical evidence how plaque assays may underestimate virus concentrations. Water Res. 39: 42404250.
54. Teunis, P. F. M.,, G. J. Medema,, L. Kruidenier, and, A. H. Havelaar. 1997. Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from a surface water source. Water Res. 31: 13331346.
55. Thorven, M.,, A. Grahn,, K. O. Hedlund,, H. Johansson,, C. Wahlfrid,, G. Larson, and, L. Svensson. 2005. A homozygous nonsense mutation (428G→A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79: 1535115355.
56. Vega, E.,, J. Smith,, J. Garland,, A. Matos, and, S. D. Pillai. 2005. Variability of virus attachement patterns to butterhead lettuce. J. Food Prot. 68: 21122117.
57. Vennema, H.,, E. de Bruin, and, M. Koopmans. 2002. Rational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction. J. Clin. Virol. 25: 233235.
58. World Health Organization and Food and Agriculture Organization. 2003. Hazard Characterization of Pathogens in Food and Water-Guidelines. Geneva, Rome: World Health Organization, Food and Agricultural Organization of the United Nations, Geneva, Switzerland.
59. Zwietering, M. H., and, A. H. Havelaar. 2006. Dose-response relationships and foodborne disease, p. 422439. In M. Potter (ed.), Food Consumption and Disease Risk. Woodhead Publishing, Cambridge, United Kingdom.


Generic image for table
Table 1

Dose-response models for virus infection in human volunteer experiments

Citation: Havelaar A, Rutjes S. 2008. Risk Assessment of Viruses in Food: Opportunities and Challenges, p 221-236. In Koopmans M, Cliver D, Bosch A, Doyle M (ed), Food-Borne Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555815738.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error