Chapter 40 : Studying Fungal Virulence by Using Genomics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Studying Fungal Virulence by Using Genomics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap40-1.gif /docserver/preview/fulltext/10.1128/9781555815776/9781555813680_Chap40-2.gif


This chapter makes evident, genomics, in particular genomic microarrays, hold great promise for mycological research. To this end, the chapter covers the current state of fungal genome sequencing and the advantages of and obstacles to using this emerging data for genomic projects, the "pregenomic" methods used for finding in vivo-expressed genes and how these efforts provide intellectual support for expression profiling studies, and a discussion of options for microarray development. It reviews a few selected microarray-based studies directly relevant to fungal pathogenesis. The process by which chromosome III and the rest of the genome was sequenced produced extremely high-quality sequence data, in terms of both accuracy and completeness. Like differential display, serial analysis of gene expression (SAGE) is a simple idea backed by complicated molecular biology. Indeed, in the SAGE study of from rabbit cerebrospinal fluid 35% of the tags found only in vivo are orphans. Microarray analysis of phagocytosed cells identified 36% of upregulated genes as unique to this species, roughly twice what would have been expected if the distribution was random. Genomics, along with proteomics, large-scale and signature-tagged mutagenesis, and sequencing efforts, have added powerful new approaches to our repertoire. Although most of these have not been fully utilized to date, the incorporation of these technologies into mycological studies will allow unprecedented progress in understanding the biology and pathology of these fascinating and important organisms.

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Schematics for array experiments. (A) All samples are compared to the precursor ( = 0) sample. (B) All samples are compared to time-matched controls. (C) Reference sample design in which all samples are compared to a constant RNA population. See the text for a description of the merits of each design.

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Microarray analysis of pheromone response pathway components. The induction of each gene is indicated after treatment with 50 nM α-factor for 30 min. Data from reference .

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barker, K. S.,, S. Crisp,, N. Wiederhold,, R. E. Lewis,, B. Bareither,, J. Eckstein,, R. Barbuch,, M. Bard, and, P. D. Rogers. 2004. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J. Antimicrob. Chemother. 54: 376385.
2. Bensen, E. S.,, S. G. Filler, and, J. Berman. 2002. A fork-head transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1: 787798.
3. Bensen, E. S.,, S. J. Martin,, M. Li,, J. Berman, and, D. A. Davis. 2004. Transcriptional profiling in Candida albi-cans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54: 13351351.
4. Braun, B. R.,, M. van het Hoog,, C. d’Enfert,, M. Martchenko,, J. Dungan,, A. Kuo,, D. O. Inglis,, M. A. Uhl,, H. Hogues,, M. Berriman,, M. C. Lorenz,, A. Levitin,, U. Oberholzer,, C. Bachewich,, D. Harcus,, A. Marcil,, D. Dignard,, T. Iouk,, R. Zito,, L. Frangeul,, F. Tekaia,, K. Rutherford,, E. Wang,, N. A. Gow,, L. L. Hoyer,, G. Kohler,, J. Morschhauser,, G. Newport,, S. Znaidi,, M. Raymond,, B. Turcotte,, G. Sherlock,, M. Costanzo,, J. Ihmels,, J. Berman,, D. Sanglard,, N. Agabian,, A. P. Mitchell,, A. D. Johnson,, M. Whiteway, and, A. Nantel. 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet. 1: 3657.
5. Brazma, A.,, P. Hingamp,, J. Quackenbush,, G. Sherlock,, P. Spellman,, C. Stoeckert,, J. Aach,, W. Ansorge,, C. A. Ball,, H. C. Causton,, T. Gaasterland,, P. Glenisson,, F. C. Holstege,, I. F. Kim,, V. Markowitz,, J. C. Matese,, H. Parkinson,, A. Robinson,, U. Sarkans,, S. Schulze-Kremer,, J. Stewart,, R. Taylor,, J. Vilo, and, M. Vingron. 2001. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 29: 365371.
6. Brown, A. J. 2002. Morphogenetic signaling pathways in Candida albicans, p. 95–106. In R. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington, D.C.
7. Camilli, A.,, D. T. Beattie, and, J. J. Mekalanos. 1994. Use of genetic recombination as a reporter of gene expression. Proc. Natl. Acad. Sci. USA 91: 26342638.
8. Chauhan, N.,, D. Inglis,, E. Roman,, J. Pla,, D. Li,, J. A. Calera, and, R. Calderone. 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot. Cell 2: 10181024.
9. Cheng, S.,, C. J. Clancy,, M. A. Checkley,, M. Handfield,, J. D. Hillman,, A. Progulske-Fox,, A. S. Lewin,, P. L. Fidel, and, M. H. Nguyen. 2003. Identification of Candida albi-cans genes induced during thrush offers insight into pathogenesis. Mol. Microbiol. 48: 12751288.
10. Cliften, P.,, P. Sudarsanam,, A. Desikan,, L. Fulton,, B. Fulton,, J. Majors,, R. Waterston,, B. A. Cohen, and, M. Johnston. 2003. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 7176.
11. Colonna-Romano, S.,, A. Porta,, A. Franco,, G. S. Kobayashi, and, B. Maresca. 1998. Identification and isolation by DDRT-PCR of genes differentially expressed by Histoplasma capsulatum during macrophages infection. Microb. Pathog. 25: 5566.
12. Dean, R. A.,, N. J. Talbot,, D. J. Ebbole,, M. L. Farman,, T. K. Mitchell,, M. J. Orbach,, M. Thon,, R. Kulkarni,, J. R. Xu,, H. Pan,, N. D. Read,, Y. H. Lee,, I. Carbone,, D. Brown,, Y. Y. Oh,, N. Donofrio,, J. S. Jeong,, D. M. Soanes,, S. Djonovic,, E. Kolomiets,, C. Rehmeyer,, W. Li,, M. Harding,, S. Kim,, M. H. Lebrun,, H. Bohnert,, S. Coughlan,, J. Butler,, S. Calvo,, L. J. Ma,, R. Nicol,, S. Purcell,, C. Nusbaum,, J. E. Galagan, and, B. W. Birren. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980986.
13. De Backer, M. D.,, T. Ilyina,, X. J. Ma,, S. Vandoninck,, W. H. Luyten, and, H. Vanden Bossche. 2001. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob. Agents Chemother. 45: 16601670.
14. Dietrich, F. S.,, S. Voegeli,, S. Brachat,, A. Lerch,, K. Gates,, S. Steiner,, C. Mohr,, R. Pohlmann,, P. Luedi,, S. Choi,, R. A. Wing,, A. Flavier,, T. D. Gaffney, and, P. Philippsen. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304307.
15. Doedt, T.,, S. Krishnamurthy,, D. P. Bockmuhl,, B. Tebarth,, C. Stempel,, C. L. Russell,, A. J. Brown, and, J. F. Ernst. 2004. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol. Biol. Cell 15: 31673180.
16. Dujon, B.,, D. Sherman,, G. Fischer,, P. Durrens,, S. Casaregola,, I. Lafontaine,, J. De Montigny,, C. Marck,, C. Neuveglise,, E. Talla,, N. Goffard,, L. Frangeul,, M. Aigle,, V. Anthouard,, A. Babour,, V. Barbe,, S. Barnay,, S. Blanchin,, J. M. Beckerich,, E. Beyne,, C. Bleykasten,, A. Boisrame,, J. Boyer,, L. Cattolico,, F. Confanioleri,, A. De Daruvar,, L. Despons,, E. Fabre,, C. Fairhead,, H. Ferry-Dumazet,, A. Groppi,, F. Hantraye,, C. Hennequin,, N. Jauniaux,, P. Joyet,, R. Kachouri,, A. Kerrest,, R. Koszul,, M. Lemaire,, I. Lesur,, L. Ma,, H. Muller,, J. M. Nicaud,, M. Nikolski,, S. Oztas,, O. Ozier-Kalogeropoulos,, S. Pellenz,, S. Potier,, G. F. Richard,, M. L. Straub,, A. Suleau,, D. Swennen,, F. Tekaia,, M. Wesolowski-Louvel,, E. Westhof,, B. Wirth,, M. Zeniou-Meyer,, I. Zivanovic,, M. Bolotin-Fukuhara,, A. Thierry,, C. Bouchier,, B. Caudron,, C. Scarpelli,, C. Gaillardin,, J. Weissenbach,, P. Wincker, and, J. L. Souciet. 2004. Genome evolution in yeasts. Nature 430: 3544.
17. Eisen, M. B.,, P. T. Spellman,, P. O. Brown, and, D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 1486314868.
18. Enjalbert, B.,, A. Nantel, and, M. Whiteway. 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14: 14601467.
19. Fradin, C.,, M. Kretschmar,, T. Nichterlein,, C. Gaillardin,, C. d’Enfert, and, B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47: 15231543.
20. Galagan, J. E.,, S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. P. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach,, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859868.
21. Galagan, J. E., et al. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 11051115.
22. Goffeau, A.,, B. G. Barrell,, H. Bussey,, R. W. Davis,, B. Dujon,, H. Feldmann,, F. Galibert,, J. D. Hoheisel,, C. Jacq,, M. Johnston,, E. J. Louis,, H. W. Mewes,, Y. Murakami,, P. Philippsen,, H. Tettelin, and, S. G. Oliver. 1996. Life with 6000 genes. Science 274:546, 563–567.
23. Howard, D. H.,, R. Rafie,, A. Tiwari, and, K. F. Faull. 2000. Hydroxamate siderophores of Histoplasma capsulatum. Infect. Immun. 68: 23382343.
24. Hwang, L.,, D. Hocking-Murray,, A. K. Bahrami,, M. Andersson,, J. Rine, and, A. Sil. 2003. Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol. Biol. Cell 14: 23142326.
25. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101: 73297334.
26. Keath, E. J., and, F. E. Abidi. 1994. Molecular cloning and sequence analysis of yps-3, a yeast-phase-specific gene in the dimorphic fungal pathogen Histoplasma capsulatum. Microbiology 140: 759767.
27. Kellis, M.,, N. Patterson,, M. Endrizzi,, B. Birren, and, E. S. Lander. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241254.
28. Kraus, P. R.,, M. J. Boily,, S. S. Giles,, J. E. Stajich,, A. Allen,, G. M. Cox,, F. S. Dietrich,, J. R. Perfect, and, J. Heitman. 2004. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot. Cell 3: 12491260.
29. Lan, C. Y.,, G. Newport,, L. A. Murillo,, T. Jones,, S. Scherer,, R. W. Davis, and, N. Agabian. 2002. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 99: 1490714912.
30. Lan, C. Y.,, G. Rodarte,, L. A. Murillo,, T. Jones,, R. W. Davis,, J. Dungan,, G. Newport, and, N. Agabian. 2004. Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53: 14511469.
31. Lane, S.,, C. Birse,, S. Zhou,, R. Matson, and, H. Liu. 2001. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 276: 4898848996.
32. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti, and, G. R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939949.
33. Loftus, B. J.,, E. Fung,, P. Roncaglia,, D. Rowley,, P. Amedeo,, D. Bruno,, J. Vamathevan,, M. Miranda,, I. J. Anderson,, J. A. Fraser,, J. E. Allen,, I. E. Bosdet,, M. R. Brent,, R. Chiu,, T. L. Doering,, M. J. Donlin,, C. A. D’Souza,, D. S. Fox,, V. Grinberg,, J. Fu,, M. Fukushima,, B. J. Haas,, J. C. Huang,, G. Janbon,, S. J. Jones,, H. L. Koo,, M. I. Kryzwinski,, K. J. Kwon-Chung,, K. B. Lengeler,, R. Maiti,, M. Marra,, R. E. Marra,, C. A. Mathewson,, T. G. Mitchell,, M. Pertea,, F. R. Riggs,, S. L. Salzberg,, J. E. Schein,, A. Shvartsbeyn,, H. Shin,, M. Shumway,, C. A. Specht,, B. B. Suh,, A. Tenney,, T. R. Utterback,, B. L. Wickes,, J. R. Wortman,, N. H. Wye,, J. W. Kronstad,, J. K. Lodge,, J. Heitman,, R. W. Davis,, C. M. Fraser, and, R. W. Hyman. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307: 13211324.
34. Lorenz, M. C.,, J. A. Bender, and, G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3: 10761087.
35. Lorenz, M. C., and, G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 8386.
36. Lotz, H.,, K. Sohn,, H. Brunner,, F. A. Muhlschlegel, and, S. Rupp. 2004. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot. Cell 3: 776784.
37. Machida, M., et al. 2005. Genome sequencing and anlysis of Aspergillus oryzae. Nature 438: 11571161.
38. Mahan, M. J.,, J. M. Slauch, and, J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686688.
39. Martinez, D.,, L. F. Larrondo,, N. Putnam,, M. D. Gelpke,, K. Huang,, J. Chapman,, K. G. Helfenbein,, P. Ramaiya,, J. C. Detter,, F. Larimer,, P. M. Coutinho,, B. Henrissat,, R. Berka,, D. Cullen, and, D. Rokhsar. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22: 695700.
40. McKinney, J. D.,, K. Honer zu Bentrup,, E. J. Munoz-Elias,, A. Miczak,, B. Chen,, W. T. Chan,, D. Swenson,, J. C. Sacchettini,, W. R. Jacobs, Jr., and, D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.
41. Murad, A. M.,, C. d’Enfert,, C. Gaillardin,, H. Tournu,, F. Tekaia,, D. Talibi,, D. Marechal,, V. Marchais,, J. Cottin, and, A. J. Brown. 2001. Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42: 981993.
42. Nantel, A.,, D. Dignard,, C. Bachewich,, D. Harcus,, A. Marcil,, A. P. Bouin,, C. W. Sensen,, H. Hogues,, M. van het Hoog,, P. Gordon,, T. Rigby,, F. Benoit,, D. C. Tessier,, D. Y. Thomas, and, M. Whiteway. 2002. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 13: 34523465.
43. Nierman, W. C., et al. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 11511156.
44. Oliver, S. G.,, Q. J. van der Aart,, M. L. Agostoni-Carbone,, M. Aigle,, L. Alberghina,, D. Alexandraki,, G. Antoine,, R. Anwar,, J. P. Ballesta,, P. Benit,, et al. 1992. The complete DNA sequence of yeast chromosome III. Nature 357: 3846.
45. Patel, J. B.,, J. W. Batanghari, and, W. E. Goldman. 1998. Probing the yeast phase-specific expression of the CBP1 gene in Histoplasma capsulatum. J. Bacteriol. 180: 17861792.
46. Porta, A.,, S. Colonna-Romano,, I. Callebaut,, A. Franco,, L. Marzullo,, G. S. Kobayashi, and, B. Maresca. 1999. An homologue of the human 100-kDa protein (p100) is differentially expressed by Histoplasma capsulatum during infection of murine macrophages. Biochem. Biophys. Res. Commun. 254: 605613.
47. Powell, J. 2000. SAGE: the serial analysis of gene expression. Methods Mol. Biol. 99: 297319.
48. Prigneau, O.,, A. Porta,, J. A. Poudrier,, S. Colonna-Romano,, T. Noel, and, B. Maresca. 2003. Genes involved in beta-oxidation, energy metabolism and glyoxylate cycle are induced by Candida albicans during macrophage infection. Yeast 20: 723730.
49. Pukkila-Worley, R.,, Q. D. Gerrald,, P. R. Kraus,, M. J. Boily,, M. J. Davis,, S. S. Giles,, G. M. Cox,, J. Heitman, and, J. A. Alspaugh. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4: 190201.
50. Quackenbush, J. 2001. Computational analysis of microarray data. Nat. Rev. Genet. 2: 418427.
51. Ramanan, N., and, Y. Wang. 2000. A high-affinity iron permease essential for Candida albicans virulence. Science 288: 10621064.
52. Retallack, D. M.,, G. S. Deepe, Jr., and, J. P. Woods. 2000. Applying in vivo expression technology (IVET) to the fungal pathogen Histoplasma capsulatum. Microb. Pathog. 28: 169182.
53. Roberts, C. J.,, B. Nelson,, M. J. Marton,, R. Stoughton,, M. R. Meyer,, H. A. Bennett,, Y. D. He,, H. Dai,, W. L. Walker,, T. R. Hughes,, M. Tyers,, C. Boone, and, S. H. Friend. 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287: 873880.
54. Rogers, P. D., and, K. S. Barker. 2002. Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob. Agents Chemother. 46: 34123417.
55. Rubin-Bejerano, I.,, I. Fraser,, P. Grisafi, and, G. R. Fink. 2003. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl. Acad. Sci. USA 100: 1100711012.
56. Saville, S. P.,, A. L. Lazzell,, C. Monteagudo, and, J. L. Lopez-Ribot. 2003. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2: 10531060.
57. Sebghati, T. S.,, J. T. Engle, and, W. E. Goldman. 2000. Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science 290: 13681372.
58. Staib, P.,, M. Kretschmar,, T. Nichterlein,, H. Hof, and, J. Morschhauser. 2000. Differential activation of a Candida albicans virulence gene family during infection. Proc. Natl. Acad. Sci. USA 97: 61026107.
59. Steen, B. R.,, T. Lian,, S. Zuyderduyn,, W. K. MacDonald,, M. Marra,, S. J. Jones, and, J. W. Kronstad. 2002. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res. 12: 13861400.
60. Steen, B. R.,, S. Zuyderduyn,, D. L. Toffaletti,, M. Marra,, S. J. Jones,, J. R. Perfect, and, J. Kronstad. 2003. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot. Cell 2: 13361349.
61. Sturtevant, J. 2000. Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin. Microbiol. Rev. 13: 408427.
62. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389399.
63. Vartivarian, S. E.,, E. J. Anaissie,, R. E. Cowart,, H. A. Sprigg,, M. J. Tingler, and, E. S. Jacobson. 1993. Regulation of cryptococcal capsular polysaccharide by iron. J. Infect. Dis. 167: 186190.
64. Velculescu, V. E.,, L. Zhang,, B. Vogelstein, and, K. W. Kinzler. 1995. Serial analysis of gene expression. Science 270: 484487.
65. Voisard, C.,, J. Wang,, J. L. McEvoy,, P. Xu, and, S. A. Leong. 1993. urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol. Cell. Biol. 13: 70917100.
66. Wood, V.,, R. Gwilliam,, M. A. Rajandream,, M. Lyne,, R. Lyne,, A. Stewart,, J. Sgouros,, N. Peat,, J. Hayles,, S. Baker,, D. Basham,, S. Bowman,, K. Brooks,, D. Brown,, S. Brown,, T. Chillingworth,, C. Churcher,, M. Collins,, R. Connor,, A. Cronin,, P. Davis,, T. Feltwell,, A. Fraser,, S. Gentles,, A. Goble,, N. Hamlin,, D. Harris,, J. Hidalgo,, G. Hodgson,, S. Holroyd,, T. Hornsby,, S. Howarth,, E. J. Huckle,, S. Hunt,, K. Jagels,, K. James,, L. Jones,, M. Jones,, S. Leather,, S. McDonald,, J. McLean,, P. Mooney,, S. Moule,, K. Mungall,, L. Murphy,, D. Niblett,, C. Odell,, K. Oliver,, S. O’Neil,, D. Pearson,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, S. Rutter,, D. Saunders,, K. Seeger,, S. Sharp,, J. Skelton,, M. Simmonds,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, R. G. Taylor,, A. Tivey,, S. Walsh,, T. Warren,, S. Whitehead,, J. Woodward,, G. Volckaert,, R. Aert,, J. Robben,, B. Grymonprez,, I. Weltjens,, E. Vanstreels,, M. Rieger,, M. Schafer,, S. Muller-Auer,, C. Gabel,, M. Fuchs,, C. Fritzc,, E. Holzer,, D. Moestl,, H. Hilbert,, K. Borzym,, I. Langer,, A. Beck,, H. Lehrach,, R. Reinhardt,, T. M. Pohl,, P. Eger,, W. Zimmermann,, H. Wedler,, R. Wambutt,, B. Purnelle,, A. Goffeau,, E. Cadieu,, S. Dreano,, S. Gloux,, V. Lelaure,, S. Mottier,, F. Galibert,, S. J. Aves,, Z. Xiang,, C. Hunt,, K. Moore,, S. M. Hurst,, M. Lucas,, M. Rochet,, C. Gaillardin,, V. A. Tallada,, A. Garzon,, G. Thode,, R. R. Daga,, L. Cruzado,, J. Jimenez,, M. Sanchez,, F. del Rey,, J. Benito,, A. Dominguez,, J. L. Revuelta,, S. Moreno,, J. Armstrong,, S. L. Forsburg,, L. Cerrutti,, T. Lowe,, W. R. McCombie,, I. Paulsen,, J. Potashkin,, G. V. Shpakovski,, D. Ussery,, B. G. Barrell, and, P. Nurse. 2002. The genome sequence of Schizosaccharomyces pombe. Nature 415: 871880.


Generic image for table
Table 1

Published fungal genome sequences

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Generic image for table
Table 2

Selected unpublished fungal sequences of medical or agricultural importance

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Generic image for table
Table 3

Comparison of expression-based approaches

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Generic image for table
Table 4

Relevant features of microarray types

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40
Generic image for table
Table 5

Top 20 genes induced by α-factor in microarray experiments

Citation: Lorenz M. 2006. Studying Fungal Virulence by Using Genomics, p 591-609. In Heitman J, Filler S, Edwards, Jr. J, Mitchell A (ed), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555815776.ch40

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error