14 Mycobacterial Sigma Factors and Surface Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

14 Mycobacterial Sigma Factors and Surface Biology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap14-2.gif


Sigma factors are interchangeable subunits of bacterial RNA polymerase that are required for promoter selectivity and transcription initiation. Sigma factors regulate processes involved in cell surface biology in many bacterial species. The characterization of stress response systems used by bacteria to respond to surface stress is extremely important because it can contribute to a better understanding of both bacterial sensing and signaling through different cell compartments, and cell envelope physiology and biogenesis. Cell integrity stress, like other forms of stress, may lead to increased expression of chaperone/heat shock genes, and the activity of these heat shock proteins (Hsps) is likely to be essential for maintaining cell envelope homeostasis. Mpt53 is a secreted DsbE-like protein containing a thioredoxin-active site. This protein was recently characterized and hypothesized to be a functional homologue of DsbA, able to catalyze the formation of disulfide bonds in unfolded secreted proteins. Even though at the current state of knowledge it is difficult to assign many of the sigma factors specific functions, one can hypothesize that some of them, such as σ, σ and σ, regulate genes responsible for the maintenance of surface homeostasis following damage that can occur during stationary phase or following exposure to surface damaging host effector molecules. Others such as σ and σ appear to be involved in the regulation of the composition of the mycobacterial surface in response to still unknown stimuli and can play an important role in modulating interactions with the host.

Citation: Raman S, Cascioferro A, N. Husson R, Manganelli R. 2008. 14 Mycobacterial Sigma Factors and Surface Biology, p 223-233. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Regulated intramembrane proteolysis (RIP) of RseA in . Two proteases, S1P and S2P, act sequentially in processing the transmembrane anti-sigma factor RseA. These cleavage events release the cytoplasmic domain of RseA, which is still able to bind and exert its action on σ. ClpXP, Lon and other ATP-dependent cytoplasmic proteases are involved in the final degradation of RseA and σ release.

Citation: Raman S, Cascioferro A, N. Husson R, Manganelli R. 2008. 14 Mycobacterial Sigma Factors and Surface Biology, p 223-233. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ades, S. E. 2004. Control of the alternative sigma factor SigE in Escherichia coli. Curr. Opin. Microbiol. 7: 157162.
2. Agarwal, N.,, S. C. Woolwine,, S. Tyagi, and, W. R. Bishai. 2007. Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect. Immun. 75: 452461.
3. Alland, D.,, A. J. Steyn,, T. Weisbrod,, K. Aldrich, and, W. R. Jacobs, Jr. 2000. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol. 182: 18021811.
4. Appia-Ayme, C., and, B. C. Berks. 2002. SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem. Biophys. Res. Commun. 296: 737741.
5. Beaucher, J.,, S. Rodrigue,, P. E. Jacques,, I. Smith,, R. Brzezinski, and, L. Gaudreau. 2002. Novel Mycobacterium tuberculosis anti-sigma factor antagonists control SigF activity by distinct mechanisms. Mol. Microbiol. 45: 15271540.
6. Braun, V., and, S. Mahren. 2005. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol. Rev. 29: 673684.
7. Briken, V.,, S. A. Porcelli,, G. S. Besra, and, L. Kremer. 2004. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53: 391403.
8. Brodin, P.,, I. Rosenkrands,, P. Andersen,, S. T. Cole, and, R. Brosch. 2004. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 12: 500508.
9. Brown, M. S.,, J. Ye,, R. B. Rawson, and, J. L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391398.
10. Butcher, B. G., and, J. D. Helmann. 2006. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol. Microbiol. 60: 765782.
11. Campbell, E. A.,, J. L. Tupy,, T. M. Gruber,, S. Wang,, M. M. Sharp,, C. A. Gross, and, S. A. Darst. 2003. Crystal structure of Escherichia coli SigE with the cytoplasmic domain of its anti-sigma RseA. Mol. Cell 11: 10671078.
12. Cao, M.,, P. A. Kobel,, M. M. Morshedi,, M. F. Wu,, C. Paddon, and, J. D. Helmann. 2002a. Defining the Bacillus subtilis SigW regulon: a comparative analysis of promoter consensus search, runoff transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J. Mol. Biol. 316: 443457.
13. Cao, M.,, T. Wang,, R. Ye, and, J. D. Helmann. 2002b. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis SigW and SigM regulons. Mol. Microbiol. 45: 12671276.
14. Cao, M., and, J. D. Helmann. 2004. The Bacillus subtilis extracytoplasmic-function SigX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol. 186: 11361146.
15. Carr, M. D.,, M. J. Bloemink,, E. Dentten,, A. O. Whelan,, S. V. Gordon,, G. Kelly,, T. A. Frenkiel,, R. G. Hewinson, and, R. A. Williamson. 2003. Solution structure of the Mycobacterium tuberculosis complex protein MPB70: from tuberculosis pathogenesis to inherited human corneal desease. J. Biol. Chem. 278: 4373643743.
16. Chaba, R.,, I. L. Grigorova,, J. M. Flynn,, T. A. Baker, and, C. A. Gross. 2007. Design principles of the proteolytic cascade governing the SigE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev. 21: 124136.
17. Charlet, D.,, S. Mostowy,, D. Alexander,, L. Sit,, H. G. Wiker, and, M. A. Behr. 2005. Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol. Microbiol. 56: 13021313.
18. Chen, P.,, R. E. Ruiz,, Q. Li,, R. F. Silver, and, W. R. Bishai. 2000. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect. Immun. 68: 55755580.
19. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry, III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
20. Converse, S. E., and, J. S. Cox. 2005. A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J. Bacteriol. 187: 12381245.
21. Cunningham, A. F.,, P. R. Ashton,, C. L. Spreadbury,, D. A. Lammas,, R. Craddock,, C. W. Wharton, and, P. R. Wheeler. 2004. Tubercle bacilli generate a novel cell wall-associated pigment after long-term anaerobic culture. FEMS Microbiol. Lett. 235: 191198.
22. Dainese, E.,, S. Rodrigue,, G. Delogu,, R. Provvedi,, L. Laflamme,, R. Brzezinski,, G. Fadda,, I. Smith,, L. Gaudreau,, G. Palú, and, R. Manganelli. 2006. Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor SigL and roles in virulence and in global regulation of gene expression. Infect. Immun. 74: 24572461.
23. Dartigalongue, C.,, D. Missiakas, and, S. Raina. 2001. Characterization of the Escherichia coli SigE regulon. J. Biol. Chem. 276: 2086620875.
24. Darwin, A. J. 2005. The phage-shock-protein response. Mol. Microbiol. 57: 621628.
25. De Voss, J. J.,, K. Rutter,, B. G. Schroeder,, H. Su,, Y. Zhu, and, C. E. Barry III. 2000. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. USA 97: 12521257.
26. Dubey, V. S.,, T. D. Sirakova,, M. H. Cynamon, and, P. E. Kolattukudy. 2003. Biochemical function of msl5 ( pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. J. Bacteriol. 185: 46204625.
27. Geiman, D. E.,, D. Kaushal,, C. Ko,, S. Tyagi,, Y. C. Manabe,, B. G. Schroeder,, R. D. Fleischmann,, N. E. Morrison,, P. J. Converse,, P. Chen, and, W. R. Bishai. 2004. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect. Immun. 72: 17331745.
28. Giacomini, E.,, A. Sotolongo,, E. Iona,, M. Severa,, M. E. Remoli,, V. Gafa,, R. Lande,, L. Fattorini,, I. Smith,, R. Manganelli, and, E. M. Coccia. 2006. Infection of human dendritic cells with a Mycobacterium tuberculosis sigE mutant stimulates production of high levels of interleukin-10 but low levels of CXCL10: impact on the T-cell response. Infect. Immun. 74: 32963304.
29. Goulding, C. W.,, M. I. Apostol,, S. Gleiter,, A. Parseghian,, J. Bardwell,, M. Gennaro, and, D. Eisenberg. 2004. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J. Biol. Chem. 279: 35163524.
30. Green, D. H., and, S. M. Cutting. 2000. Membrane topology of the Bacillus subtilis pro-SigK processing complex. J. Bacteriol. 182: 278285.
31. Gruber, T. M., and, C. A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441466.
32. Hahn, M. Y.,, S. Raman,, M. Anaya, and, R. N. Husson. 2005. The Mycobacterium tuberculosis extracytoplasmic-function sigma factor SigL regulates polyketide synthases and secreted or membrane proteins and is required for virulence. J. Bacteriol. 187: 70627071.
33. He, H.,, R. Hovey,, J. Kane,, V. Singh, and, T. C. Zahrt. 2006. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J. Bacteriol. 188: 21342143.
34. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46: 47110.
35. Hilbert, D. W., and, P. J. Piggot. 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68: 234262.
36. Hsu, T.,, S. M. Hingley-Wilson,, B. Chen,, M. Chen,, A. Z. Dai,, P. M. Morin,, C. B. Marks,, J. Padiyar,, C. Goulding,, M. Gingery,, D. Eisenberg,, R. G. Russell,, S. C. Derrick,, F. M. Collins,, S. L. Morris,, C. H. King, and, W. R. Jacobs, Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100: 1242012425.
37. Hughes, K. T., and, K. Mathee. 1998. The anti-sigma factors. Annu. Rev. Microbiol. 52: 231286.
38. Karls, R. K.,, J. Guarner,, D. N. McMurray,, K. A. Birkness, and, F. D. Quinn. 2006. Examination of Mycobacterium tuberculosis sigma factor mutants using low-dose aerosol infection of guinea pigs suggests a role for SigC in pathogenesis. Microbiology 152: 15911600.
39. Le Brun, N. E.,, J. Bengtsson, and, L. Hederstedt. 2000. Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36: 638650.
40. Lonetto, M. A.,, K. L. Brown,, K. E. Rudd, and, M. J. Buttner. 1994. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA 91: 75737577.
41. Makinoshima, H., and, M. S. Glickman. 2005. Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436: 406409.
42. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik, and, I. Smith. 2001. The Mycobacterium tuberculosis ECF sigma factor SigE: role in global gene expression and survival in macrophages. Mol. Microbiol. 41: 423437.
43. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik,, E. Dubnau,, M. Gomez, and, I. Smith. 2002. Role of the extracytoplasmic-function sigma factor SigH in Mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45: 365374.
44. Manganelli, R.,, L. Fattorini,, D. Tan,, E. Iona,, G. Orefici,, G. Altavilla,, P. Cusatelli, and, I. Smith. 2004a. The extra cytoplasmic function sigma factor SigE is essential for Mycobacterium tuberculosis virulence in mice. Infect. Immun. 72: 30383041.
45. Manganelli, R.,, R. Provvedi,, S. Rodrigue,, J. Beaucher,, L. Gaudreau, and, I. Smith. 2004b. Sigma factors and global gene regulation in Mycobacterium tuberculosis. J. Bacteriol. 186: 895902.
46. Mascher, T.,, N. G. Margulis,, T. Wang,, R. W. Ye, and, J. D. Helmann. 2003. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol. Microbiol. 50: 15911604.
47. Minnig, K.,, J. L. Barblan,, S. Kehl,, S. B. Moller, and, C. Mauel. 2003. In Bacillus subtilis W23, the duet SigX-SigM, two sigma factors of the extracytoplasmic function subfamily, are required for septum and wall synthesis under batch culture conditions. Mol. Microbiol. 49: 14351447.
48. Mukamolova, G. V.,, A. S. Kaprelyants,, D. I. Young,, M. Young, and, D. B. Kell. 1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95: 89168921.
49. Mukamolova, G. V.,, A. G. Murzin,, E. G. Salina,, G. R. Demina,, D. B. Kell,, A. S. Kaprelyants, and, M. Young. 2006. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 59: 8498.
50. Mulder, N. J.,, R. Apweiler,, T. K. Attwood,, A. Bairoch,, A. Bateman,, D. Binns,, P. Bradley,, P. Bork,, P. Bucher,, L. Cerutti,, R. Copley,, E. Courcelle,, U. Das,, R. Durbin,, W. Fleischmann,, J. Gough,, D. Haft,, N. Harte,, N. Hulo,, D. Kahn,, A. Kanapin,, M. Krestyaninova,, D. Lonsdale,, R. Lopez,, I. Letunic,, M. Madera,, J. Maslen,, J. McDowall,, A. Mitchell,, A. N. Nikolskaya,, S. Orchard,, M. Pagni,, C. P. Ponting,, E. Quevillon,, J. Selengut,, C. J. Sigrist,, V. Silventoinen,, D. J. Studholme,, R. Vaughan, and, C. H. Wu. 2005. InterPro, progress and status in 2005. Nucleic Acids Res. 33: D201D205.
51. Niederweis, M. 2003. Mycobacterial porins: new channel proteins in unique outer membranes. Mol. Microbiol. 49: 11671177.
52. Paget, M. S.,, J. B. Bae,, M. Y. Hahn,, W. Li,, C. Kleanthous,, J. H. Roe, and, M. J. Buttner. 2001. Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch. Mol. Microbiol. 39: 10361047.
53. Parish, T.,, D. A. Smith,, G. Roberts,, J. Betts, and, N. G. Stoker. 2003. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149: 14231435.
54. Quadri, L. E.,, J. Sello,, T. A. Keating,, P. H. Weinreb, and, C. T. Walsh. 1998. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5: 631645.
55. Raman, S.,, T. Song,, X. Puyang,, S. Bardarov,, W. R. Jacobs, Jr., and, R. N. Husson. 2001. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 183: 61196125.
56. Raman, S.,, R. Hazra,, C. C. Dascher, and, R. N. Husson. 2004. Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J. Bacteriol. 186: 66056616.
57. Raman, S.,, X. Puyang,, T. Y. Cheng,, D. C. Young,, D. B. Moody, and, R. N. Husson. 2006. Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis. J. Bacteriol. 188: 84608468.
58. Repoila, F.,, N. Majdalani, and, S. Gottesman. 2003. Small noncoding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol. 48: 855861.
59. Rodrigue, S.,, R. Provvedi,, P. E. Jacques,, L. Gaudreau, and, R. Manganelli. 2006. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 30: 926941.
60. Rousseau, C.,, T. D. Sirakova,, V. S. Dubey,, Y. Bordat,, P. E. Kolattukudy,, B. Gicquel, and, M. Jackson. 2003. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149: 18371847.
61. Russell, D. G. 2007. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5: 3947.
62. Said-Salim, B.,, S. Mostowy,, A. S. Kristof, and, M. A. Behr. 2006. Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Mol. Microbiol. 62: 12511263.
63. Sakoh, M.,, K. Ito, and, Y. Akiyama. 2005. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J. Biol. Chem. 280: 3330533310.
64. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. M. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan, and, G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198: 693704.
65. Sirakova, T. D.,, V. S. Dubey,, M. H. Cynamon, and, P. E. Kolattukudy. 2003. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J. Bacteriol. 185: 29993008.
66. Song, T.,, S. L. Dove,, K. H. Lee, and, R. N. Husson. 2003. RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol. Microbiol. 50: 949959.
67. Tam, C., and, D. Missiakas. 2005. Changes in lipopolysaccharide structure induce the SigE-dependent response of Escherichia coli. Mol. Microbiol. 55: 14031412.
68. Thackray, P. D., and, A. Moir. 2003. SigM, an extracytoplasmic function sigma factor of Bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J. Bacteriol. 185: 34913498.
69. Thakur, K. G.,, A. M. Joshi, and, B. Gopal. 2007. Structural and biophysical studies on two promoter recognition domains of the extracytoplasmic function sigma factor SigC from Mycobacterium tuberculosis. J. Biol. Chem. 282: 47114718.
70. Trivedi, O. A.,, P. Arora,, A. Vats,, M. Z. Ansari,, R. Tickoo,, V. Sridharan,, D. Mohanty, and, R. S. Gokhale. 2005. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell. 17: 631643.
71. Tufariello, J. M.,, W. R. Jacobs, Jr., and, J. Chan. 2004. Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect. Immun. 72: 515526.
72. Vingadassalom, D.,, A. Kolb,, C. Mayer,, T. Rybkine,, E. Collatz, and, I. Podglajen. 2005. An unusual primary sigma factor in the Bacteroidetes phylum. Mol. Microbiol. 56: 888902.
73. Waagmeester, A.,, J. Thompson, and, J. M. Reyrat. 2005. Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol. 13: 505509.
74. Wilson, M.,, J. DeRisi,, H. H. Kristensen,, P. Imboden,, S. Rane,, P. O. Brown, and, G. K. Schoolnik. 1999. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96: 1283312838.
75. Wu, Q. L.,, D. Kong,, K. Lam, and, R. N. Husson. 1997. A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J. Bacteriol. 179: 29222929.


Generic image for table
Table 1.

sigma factors

Citation: Raman S, Cascioferro A, N. Husson R, Manganelli R. 2008. 14 Mycobacterial Sigma Factors and Surface Biology, p 223-233. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error