Chapter 2 : The Tat Protein Export Pathway

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Tat Protein Export Pathway, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap02-2.gif


Protein transport by the Tat pathway is powered solely by the proton electrochemical gradient. This paper describes what is known about the targeting and transport of proteins to the periplasm by the Tat pathway, focusing particularly on the model organism . Prediction programs such as TatFind and TatP use the salient features of the Tat signal peptide to identify candidate Tat substrates. It is not known which of the Tat components is responsible for transducing the proton motive force nor whether the proton motive force is required for stages beyond formation of the TatABC complex. Proteins are targeted to the Tat transport machinery by means of N-terminal signal peptides. Tat signal peptides often have very extended n-regions prior to the twin-arginine motif. It has been reported that the Tat system of both thylakoids and has an intrinsic “quality control” activity that allows it to distinguish between folded and unfolded substrates. Whether and how this quality control interrelates with the chaperone-mediated proofreading process remains to be established.

Citation: Palmer T, Berks B. 2007. The Tat Protein Export Pathway, p 16-29. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Chromosomal location and organization of genes encoding components of the Tat pathway. Genes that are known or likely to be found in the same transcriptional unit ( ) have the same fill. The spacing between each gene is shown in base pairs (bp) above the figure. (B) Schematic representation of the topological organization of the Tat components.

Citation: Palmer T, Berks B. 2007. The Tat Protein Export Pathway, p 16-29. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

The Tat protein transport cycle. In the resting state, TatA and TatBC form separate, oligomeric complexes (top). A substrate docks at the TatBC complex, with the twin-arginine motif of the signal peptide interacting with TatC (right). This activated complex now interacts with TatA in an energy-dependent step (bottom). The substrate is transported through a channel made up of TatA. The energetic requirements for this are unknown (left). At some stage during the transport cycle the signal peptide is cleaved and the exported protein is released at the periplasmic face of the membrane (or integrated into the lipid bilayer for the membrane-anchored Tat substrates). The TatA and TatBC components dissociate and the system returns to the initial state (top). (Figure adapted from Ben C. Berks, Tracy Palmer, and Frank Sargent, Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. :174–181. Copyright [2005], with permission from Elsevier.)

Citation: Palmer T, Berks B. 2007. The Tat Protein Export Pathway, p 16-29. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

A model for chaperone-mediated assembly of a cofactor-containing Tat substrate based on studies with the paradigm TorD/TorA binary system. A de novo-synthesized, unfolded, precursor protein is initially recognized and bound by a specific chaperone. In some cases, the chaperone could bind to at least two sites on the protein, one being the signal peptide itself and the second site being elsewhere on the mature portion of the protein ( ). This is probably achieved by the independent binding of two chaperone molecules, but an alternative model would involve the binding of a single chaperone that contains two separate interaction sites. Association of the chaperone with the precursor leads to conformational changes in both. A binding site for GTP would be exposed on the chaperone ( ) (left), and the precursor would bind its cofactor(s). Once cofactor loading is complete, the mature portion of precursor would attain its final fully folded conformation and this would result in the release of at least one of the bound chaperones. Chaperone release may be triggered by GTP hydrolysis (bottom). If the Tat substrate precursor forms a cotranslocation complex with other proteins, they are probably associated at this stage. At this juncture, if the signal-bound chaperone also acts as an “escortase,” the folded substrate will be targeted to the Tat machinery by the chaperone (left). Alternatively, release of the signal peptide-bound chaperone would allow the substrate to follow a generic route to the Tat machinery.

Citation: Palmer T, Berks B. 2007. The Tat Protein Export Pathway, p 16-29. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alder, N. N., and, S. M. Theg. 2003. Energetics of protein transport across biological membranes. A study of the thylakoid DeltapH–dependent/cpTat pathway. Cell 112: 231242.
2. Alami, M.,, I. Luke,, S. Deitermann,, G. Eisner,, H. G. Koch,, J. Brunner, and, M. Müller. 2003. Differential interactions between a twin–arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12: 937946.
3. Behrendt, J.,, K. Standar,, U. Lindenstrauss, and, T. Bruser. 2004. Topological studies on the twin–arginine translocase component TatC. FEMS Microbiol. Lett. 234: 303308.
4. Bendtsen, J. D.,, H. Nielsen,, D. Widdick,, T. Palmer,and, S. Brunak. 2005. Prediction of twin–arginine signal peptides. BMC Bioinformatics 6: 167175.
5. Berks, B. C., 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22: 393404.
6. Berks, B. C.,, T. Palmer, and, F. Sargent. 2003. The Tat protein translocation pathway and its role in microbial physiology. Advances Microb. Physiolol. 47: 187254.
7. Berks, B. C.,, F. Sargent, and, T. Palmer. 2000. The Tat protein export pathway. Mol. Microbiol. 35: 260274.
8. Bernhardt, T. G., and, P. A. de Boer. 2003. The Es– cherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin–arginine transport pathway. Mol. Microbiol. 48: 11711182.
9. Blaudeck, N.,, P. Kreutzenbeck,, R. Freudl, and, G. A. Sprenger. 2003. Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J. Bacteriol. 185: 28112819.
10. Blaudeck, N.,, P. Kreutzenbeck,, M. Müller,, G. A. Sprenger, and, R. Freudl. 2005. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat–dependent protein translocation in the absence of TatB. J. Biol. Chem. 280: 34263432.
11. Bogsch, E.,, S. Brink, and, C. Robinson. 1997. Pathway specificity for a ApH–dependent precursor thylakoid lumen protein is governed by a ‘Sec–avoidance’ motif in the transfer peptide and a ‘Sec–incompatible’ mature protein. EMBO J. 16: 38513859.
12. Bogsch, E.,, F. Sargent,, N. R. Stanley,, B. C. Berks,, C. Robinson, and, T. Palmer. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J. Biol. Chem. 273: 1800318006.
13. Bolhuis, A.,, J. E. Mathers,, J. D. Thomas,, C. M. Barrett, and, C. Robinson. 2001. TatB and TatC form a functional and structural unit of the twin– arginine translocase from Escherichia coli. J. Biol. Chem. 276: 2021320219.
14. Buchanan, G.,, E. de Leeuw,, N. R. Stanley,, M. Wexler,, B. C. Berks,, F. Sargent, and, T. Palmer. 2002. Functional complexity of the twin–arginine translocase TatC component revealed by site–directed mutagenesis. Mol. Microbiol. 43: 14571470.
15. Caldelari, I.,, S. Mann,, C. Crooks, and, T. Palmer. 2006. The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence. Mol. Plant–Microbe Interact. 19: 200212.
16. Chanal, A.,, C.–L. Santini, and, L.–F. Wu. 1998. Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin–arginine signal sequence–dependent metalloen–zyme translocation pathway in Escherichia coli. Mol. Microbiol. 30: 674676.
17. Cline, K., and, H. Mori. 2001. Thylakoid ΔpH–dependent precursor proteins bind to a cpTatC–Hcf106 complex before Tha4–dependent transport. J. Cell. Biol. 154: 719729.
18. Cristóbal, S.,, J.–W. de Gier,, H. Nielsen, and, G. von Heijne. 1999. Competition between Sec–and Tat–dependent protein translocation in Es cherichia coli. EMBO J. 18: 29822990.
19. de Leeuw, E.,, T. Granjon,, I. Porcelli,, M. Alami,, S. B. Carr,, M. Müller,, F. Sargent,, T. Palmer, and, B. C. Berks. 2002. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J. Mol. Biol. 322: 11351146.
20. DeLisa, M. P.,, P. Samuelson,, T. Palmer, and, G. Georgiou. 2002. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J. Biol. Chem. 277: 2982529831.
21. DeLisa, M. P.,, D. Tullman, and, G. Georgiou. 2003. Folding quality control in the export of proteins by the bacterial twin–arginine translocation pathway. Proc. Natl. Acad. Sci. USA 100: 61156120.
22. Dilks, K.,, W. R. Rose,, E. Hartmann, and, M. Pohlschroder. 2003. Prokaryotic utilization of the twin–arginine translocation pathway: a genomic survey. J. Bacteriol. 185: 14781483.
23. Drew, D.,, D. Sjostrand,, J. Nilsson,, T. Urbig,, C. N. Chin,, J. W. de Gier, and, G. von Heijne. 2002. Rapid topology mapping of Escherichia coli inner–membrane proteins by prediction and PhoA/GFP fusion analysis. Proc. Natl. Acad. Sci. USA 99: 2690 2695.
24. Dubini, A., and, F. Sargent. 2003. Assembly of Tat–dependent NiFe hydrogenases: identification of precursor–binding accessory proteins. FEBS Lett. 549: 141146.
25. Gohlke, U.,, L. Pullan,, C. A. McDevitt,, I. Porcelli,, E. de Leeuw,, T. Palmer,, H. Saibil, and, B. C. Berks. 2005. The TatA component of the twin–arginine protein transport system forms channel complexes of variable diameter. Proc. Natl. Acad. Sci. USA 102: 1048210486.
26. Gouffi, K.,, F. Gerard,, C. L. Santini, and, L.–F. Wu. 2004. Dual topology of the Escherichia coliTatA pro–teinj. Biol. Chem. 279: 1160811615.
27. Halbig, D.,, T. Wiegert,, N. Blaudeck,, R. Freudl, and, G. A. Sprenger. 1999. The efficient export of NADP–containing glucose–fructose oxidoreduc–tase to the periplasm of Zymomonas mobilis depends both on an intact twin–arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur. J. Biochem. 263: 543551.
28. Hatzixanthis, K.,, T. A. Clarke,, A. Oubrie,, D. J. Richardson,, R. J. Turner, and, F. Sargent. 2005. Signal peptide–chaperone interactions on the twin–arginine protein transport pathway. Proc. Natl. Acad. Sci. USA 102: 84608465.
29. Hatzixanthis K.,, T. Palmer, and, F. Sargent. 2003. A subset of bacterial inner membrane proteins integrated by the twin–arginine translocase. Mol. Microbiol. 49: 13771390.
30. Hinsley, A. P.,, N. R. Stanley,, T. Palmer, and, B. C. Berks. 2001. A naturally–occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett. 49: 4549.
31. Ignatova, Z.,, C. Hörnle,, A. Nurk, and, V. Kasche. 2002. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat transloca–tion machinery. Biochem. Biophys. Res. Comm. 291: 146149.
32. Ize, B.,, F. Gerard, and, L.–F. Wu. 2002a. In vivo assessment of the Tat signal peptide specificity in Escherichia coli. Arch. Microbiol. 178: 548553.
33. Ize, B.,, F. Gerard,, M. Zhang,, A. Chanal,, R. Vol–houx,, T. Palmer,, A. Filloux, and, L.–F. Wu. 2002b. In vivo dissection of the Tat translocation pathway in Escherichia coli. J. Mol. Biol. 317: 327335.
34. Ize, B.,, I. Porcelli,, S. Lucchini,, J. C. Hinton,, B. C. Berks, and, T. Palmer. 2004. Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis. J. Biol. Chem. 279: 4754347554.
35. Ize, B.,, N. R. Stanley,, G. Buchanan, and, T. Palmer. 2003. Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol. Microbiol. 48: 11831193.
36. Jack, R. L.,, G. Buchanan,, A. Dubini,, K. Hatzix–anthis,, T. Palmer, and, F. Sargent. 2004. Coordinating assembly and export of complex bacterial proteins. EMBO J. 23: 39623972.
37. Jack, R. L.,, F. Sargent,, B. C. Berks,, G. Sawers, and, T. Palmer. 2001. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin–arginine translocase during aerobic and anaerobic growth. J. Bacteriol. 183: 18011804.
38. Jongbloed, J. D.,, U. Grieger,, H. Antelmann,, M. Hecker,, R. Nijland,, S. Bron, and, J.–M. van Dijl. 2004. Two minimal Tat translocases in Bacillus. Mol. Microbiol. 545: 13191325.
39. Jormakka, M.,, S. Törnroth,, B. Byrne, and, S. Iwata. 2002. Molecular basis of proton motive force generation: structure of formate dehydro– genase–N. Science 295: 18631868.
40. Kasche, V.,, Z. Ignatova,, H. Markl,, W. Plate,, N. Punckt,, D. Schmidt,, K. Wiegandt, and, B. Ernst. 2005. Ca 2+ is a cofactor required for membrane transport and maturation and is a yield–determining factor in high cell density penicillin amidase production. Biotechnol. Prog. 21: 432438.
41. Ki, J. J.,, Y. Kawarasaki,, J. Gam,, B. R. Harvey,, B. L. Iverson, and, G. Georgiou. 2004. A periplasmic fluorescent reporter protein and its application in high–throughput membrane protein topology analysis.J. Mol. Biol. 341: 901909.
42. Lequette, Y.,, C. Odberg–Ferragut,, J.–P. Bohin, and, J.–M. Lacroix. 2004. Identification of mdoD, and mdoG paralog which encodes a twin–arginine–dependent periplasmic protein that controls osmo–regulated periplasmic glucan backbone structures. J. Bacteriol. 186: 36953702.
43. Ma, X., and, K. Cline. 2000. Precursors bind to specific sites on thylakoid membranes prior to transport on the delta pH protein translocation system. J. Biol. Chem. 275: 1001610022.
44. McDevitt, C. A.,, M. G. Hicks,, T. Palmer, and, B. C. Berks. 2005. Characterisation of Tat protein transport complexes carrying inactivating mutations. Biochem. Biophys. Res. Commun. 329: 693698.
45. Mori, H., and, K. Cline. 2002. A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J. Cell Biol. 157: 205210.
46. Musser, S. M., and, S. M. Theg. 2000. Characterization of the early steps of OE17 precursor transport by the thylakoid ΔpH/Tat machinery. Eur. J. Biochem. 167: 25882598.
47. Oates, J.,, C. M. Barrett,, J. P. Barnett,, K. G. Byrne,, A. Bolhuis, and, C. Robinson. 2005. The Es–cherichia coli twin–arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex.J. Mol. Biol. 346: 295305.
48. Oates, J.,, J. Mathers,, D. Mangels,, W. Kuhlbrandt,, C. Robinson, and, K. Model. 2003. Consensus structural features of purified bacterial TatABC complexes. J. Mol. Biol. 330: 277286.
49. Oresnik, I.J.,, C. L. Ladner, and, R. J. Turner. 2001. Identification of a twin–arginine leader–binding protein. Mol. Microbiol. 40: 323331.
50. Outten, F. W.,, C. E. Outten,, J. Hale, and, T. V. O’Halloran. 2000. Transcriptional activation of the Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275: 3102431029.
51. Papish, A. L.,, C. L. Ladner, and, R. J. Turner. 2003. The twin–arginine leader–binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin–arginine translocase. J. Biol. Chem. 278: 3250132506.
52. Pommier, J.,, V. Mejean,, G. Giordano, and, C. Iobbi–Nivol. 1998. TorD, a cytoplasmic chaper–one that interacts with the unfolded trimethylamine N–oxide reductase enzyme (TorA) in Escherichia coli. J. Biol. Chem. 273: 1661516620.
53. Pop, O.,, U. Martin,, C. Abel, and, J. P. Müller. 2002. The twin–arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J. Biol. Chem. 277: 32683273.
54. Porcelli, I.,, E. de Leeuw,, R. Wallis,, E. van den Brink–van der Laan,, B. de Kruijff,, B. A. Wallace,, T. Palmer, and, B. C. Berks. 2002. Characterisation and membrane assembly of the TatA component of the Escherichia coli twin–arginine protein transport system. Biochemistry 41: 13690 13697.
55. Rodrigue, A.,, A. Chanal,, K. Beck,, M. Müller, and, L.–F. Wu. 1999. Co–translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J. Biol. Chem. 274: 1322313228.
56. Rose, R. W.,, T. Bruser,, J. C. Kissinger, and, M. Pohlschroder. 2002. Adaptation of protein secretion to extremely high–salt conditions by extensive use of the twin–arginine translocation pathway. Mol. Microbiol. 45: 943950.
57. Sanders, C.,, N. Wethkamp, and, H. Lill. 2001. Transport of cytochrome c derivatives by the bacterial Tat protein translocation system. Mol. Micro– biol. 41: 241246.
58. Sargent, F.,, E. Bogsch,, N. R. Stanley,, M. Wexler,, C. Robinson,, B. C. Berks, and, T. Palmer. 1998. Overlapping functions of components of a bacterial Sec–independent protein export pathway. EMBOJ. 17: 36403650.
59. Sargent, F.,, U. Gohlke,, E. de Leeuw,, N. R. Stanley,, T. Palmer,, H. R. Saibil, and, B. C. Berks. 2001. Purified components of the Escherichia coli Tat pro– tein transport system form a double–layered ring structure. Eur.J. Biochem. 268: 33613367.
60. Sargent, F.,, N. R. Stanley,, B. C. Berks, and, T. Palmer. 1999. Sec–independent protein trans–location in Escherichia coli: a distinct and pivotal role for the TatB protein. J. Biol. Chem. 274: 3607336083.
61. Settles, A. M.,, A. Yonetani,, A. Baron,, D. R. Bush,, K. Cline, and, R. Martienssen. 1997. Sec–independent protein translocation by the maize Hcf106 protein. Science 278: 14671470.
62. Stanley, N. R.,, K. Findlay,, B. C. Berks, and, T. Palmer. 2001. Escherichia coli strains blocked in Tat–dependent protein export exhibit a defective cell separation morphology. J. Bacteriol. 183: 139144.
63. Stanley, N. R.,, T. Palmer, and, B. C. Berks. 2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec–independent protein targeting in Escherichia coli. J. Biol. Chem. 257: 1159111596.
64. Stevens, J. M.,, O. Daltrop,, J. W. Allen, and, S. J. Ferguson. 2004. c–type cytochrome formation: chemical and biological enigmas. Acc. Chem. Res. 37: 9991007.
65. von Heijne, G., 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positive–inside rule. J. Mol. Biol. 225: 487494.
66. Weiner, J. H.,, P. T. Bilous,, G. M. Shaw,, S. P. Lub–itz,, L. Frost,, G. H. Thomas,, J. A. Cole, and, R. J. Turner. 1998. A novel and ubiquitous system for membrane targeting and secretion of co–factor–containing proteins. Cell 93: 93101.
67. Wexler, M.,, F. Sargent,, R. L. Jack,, N. R. Stanley,, E. G. Bogsch,, C. Robinson,, B. C. Berks, and, T. Palmer. 2000. TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec–independent protein export. J. Biol. Chem. 275: 1671716722.
68. Yahr, T. L., and, W. T. Wickner. 2001. Functional re–constitution of bacterial Tat translocation in vitro. EMBOJ. 20: 24722479.
69. Yen, M.–R.,, Y. H. Tseng,, E. H. Nguyen,, L.–F. Wu, and, M. H. Saier, Jr., 2002. Sequence and phylogenetic analyses of the twin–arginine targeting (Tat) protein export system. Arch. Microbiol. 177: 441450.


Generic image for table

The known or likely Tat-signal peptide-bearing substrate proteins

Citation: Palmer T, Berks B. 2007. The Tat Protein Export Pathway, p 16-29. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error