Chapter 7 : Disulfide Bond Formation in the Periplasm

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Disulfide Bond Formation in the Periplasm, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap07-2.gif


This chapter reviews the process of disulfide bond formation in the periplasm by following the life of a protein, from the “birth” of a protein at the ribosome to its entrance into the periplasm as an unfolded infant, to the oxidation of the maturing protein. In eukaryotic cells the protein disulfide isomerase (PDI) represents the counterpart of DsbA, being responsible for the formation of disulfide bonds in the endoplasmic reticulum. DsbA can act to generate disulfide bonds in proteins as nascent polypeptide chains emerge into the periplasm. Several features of disulfide bond formation discovered in recent years illustrate complexity. First, disulfide bond formation likely occurs on nascent poly-peptide chains as they are being translocated into the periplasm in bacteria and into the endoplasmic reticulum in eukaryotic cells. Second, for efficient formation of disulfide bonds, proteins require enzyme catalysts whose prototypes are DsbA in bacterial cells and protein disulfide isomerase in eukaryotic cells. Third, the formation of the correct disulfide bonds requires enzyme catalysts such as DsbC. Bioinformatic analysis conducted in the authors' lab revealed that at least 90% of the periplasmic proteins with more than one cysteine contain disulfide bonds. For those periplasmic proteins with only a single free cysteine, their crystal structures showed these cysteines to be buried within the protein structure (AlsB, AraF, FhuD, GlpQ, and Tpx). These findings are consistent with the proposal that any protein that appears in the periplasm with more than one cysteine will be acted on by DsbA.

Citation: Mehmet B, Dana B, Jon B. 2007. Disulfide Bond Formation in the Periplasm, p 122-140. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The mechanism of disulfide bond formation. DsbA catalyzes the formation of disulfide bonds in a polypeptide with reduced cysteines. The cysteines within the Cys-X-X-Cys active site of DsbA are oxidized (S—S) and the thiol side groups of cysteine residues in the substrate are reduced (SH) ➀. Disulfide bond formation is initiated by deprotonation of a thiol group in the substrate ➁. The resulting thiolate anion can initiate a nucleophilic attack on the disulfide bond of DsbA ➂. The resolution of the mix-disulfide-bonded complex could occur by deprotonation of another thiol group ➃, which can attack the substrate-DsbA disulfide bond ➄. The result of this reaction is the oxidation of the substrate and the reduction of DsbA ➅.

Citation: Mehmet B, Dana B, Jon B. 2007. Disulfide Bond Formation in the Periplasm, p 122-140. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Topology of DsbB. The topology of DsbB based on alkaline phos-phatase fusion studies ( ). The active site cysteines are shown in their oxidized state, and the putative transmem-brane domain amino acids are highlighted.

Citation: Mehmet B, Dana B, Jon B. 2007. Disulfide Bond Formation in the Periplasm, p 122-140. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Proposed mechanism of isomerization by DsbC. For the purpose of clarity only a monomer of DsbC is shown. Reduced active DsbC recognizes misoxidized substrate ➀ and forms a mix-disulfide-bonded complex. This complex ➁ could be resolved by the reduction of the disulfide bond in the substrate, resulting in the oxidation of DsbC ➂. A secondary cycle of reduction is necessary for the substrate to be fully reduced ➄, allowing DsbA to reoxidize the substrate ➅. Alternatively, the disulfide bonds in the complex could be shuffled ➆ by the iso-merase action of DsbC, resulting in native disulfide-bonded substrate and reduced DsbC ➆.

Citation: Mehmet B, Dana B, Jon B. 2007. Disulfide Bond Formation in the Periplasm, p 122-140. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akiyama, Y.,, S. Kamitani,, N. Kusukawa, and, K. Ito. 1992. In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product. J. Biol. Chem. 267: 2244022445.
2. Alksne, L. E.,, D. Keeney, and, B. A. Rasmussen. 1995. A mutation in either dsbA or dsbB, a gene encoding a component of a periplasmic disulfide bond-catalyzing system, is required for high-level expression of the Bacteroides fragilis metallo-beta-lactamase, CcrA, in Escherichia coli. J. Bacteriol. 177: 462464.
3. Andersen, C. L.,, A. Matthey-Dupraz,, D. Missi-akas, and, S. Raina. 1997. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol. Microbiol. 26: 121132.
4. Anfinsen, C. B., and, E. Haber. 1961. Studies on the reduction and re-formation of protein disulfide bonds. J. Biol. Chem. 236: 13611363.
5. Anfinsen, C. B.,, E. Haber,, M. Sela, and, F. H. White, Jr., 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA 47: 13091314.
6. Bader, M.,, W. Muse,, D. P. Ballou,, C. Gassner, and, J. C. Bardwell. 1999. Oxidative protein folding is driven by the electron transport system. Cell 98: 217227.
7. Bader, M. W.,, A. Hiniker,, J. Regeimbal,, D. Gold- stone,, P. W. Haebel,, J. Riemer,, P. Metcalf, and, J. C. Bardwell. 2001. Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. EMBOJ 20: 15551562.
8. Bader, M. W.,, T. Xie,, C. A. Yu, and, J. C. Bardwell. 2000. Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275: 2608226088.
9. Bardwell, J. C.,, K. McGovern, and, J. Beckwith. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581589.
10. Beck, R.,, H. Crooke,, M. Jarsch,, J. Cole, and, H. Burtscher. 1994. Mutation in dipZ leads to reduced production of active human placental alkaline phosphatase in Escherichia coli. FEMS. Microbiol. Lett. 124: 209214.
11. Belin, P., and, P. L. Boquet. 1994. The Escherichia coli dsbA gene is partly transcribed from the promoter of a weakly expressed upstream gene .Micro-biology 140(Pt 12): 33373348.
12. Bergman, L.W., and, W. M. Kuehl. 1979. Co-trans-lational modification of nascent immunoglobulin heavy and light chains. J. Supramol. Struct. 11: 924.
13. Berkmen, M.,, D. Boyd, and, J. Beckwith. 2005. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J. Biol. Chem. 280: 1138711394.
14. Bessette, P. H.,, J. J. Cotto,, H. F. Gilbert, and, G. Georgiou. 1999. In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidore-ductase DsbG. J. Biol. Chem. 274: 77847792.
15. Bouwman, C. W.,, M. Kohli,, A. Killoran,, G. A. Touchie,, R. J. Kadner, and, N. L. Martin. 2003. Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J. Bacteriol. 185: 9911000.
16. Charbonnier, J. B.,, P. Belin,, M. Moutiez,, E. A. Stura, and, E. Quemeneur. 1999. On the role of the cis-proline residue in the active site of DsbA. Protein Sci. 8: 96105.
17. Chen, J.,, J. L. Song,, S. Zhang,, Y. Wang,, D. F. Cui, and, C. C. Wang. 1999. Chaperone activity of DsbC. J. Biol. Chem. 274: 1960119605.
18. Chung, J.,, T. Chen, and, D. Missiakas. 2000. Trans-fer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol. Microbiol. 35: 10991109.
19. Collet, J. F.,, J. Riemer,, M. W. Bader, and, J. C. Bardwell. 2002. Reconstitution of a disulfide isomerization system. J. Biol. Chem. 277: 2688626892.
20. Crooke, H., and, J. Cole. 1995. The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol. Microbiol. 15: 11391150.
21. Danese, P. N., and, T. J. Silhavy. 1997. The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev. 11: 11831193.
22. Darby, N. J.,, S. Raina, and, T. E. Creighton. 1998. Contributions of substrate binding to the catalytic activity of DsbC. Biochemistry 37: 783791.
23. Dartigalongue, C.,, D. Missiakas, and, S. Raina. 2001. Characterization of the Escherichia coli sigma E regulon.J. Biol. Chem. 276: 2086620875.
24. De Lorenzo, F.,, R. F. Goldberger,, E. Steers, Jr.,, D. Givol, and, B. Anfinsen. 1966. Purification and properties of an enzyme from beef liver which catalyzes sulfhydryl-disulfide interchange in proteins. J. Biol. Chem. 241: 15621567.
25. Dumoulin, A.,, U. Grauschopf,, M. Bischoff,, L. Thony-Meyer, and, B. Berger-Bachi. 2005. Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity. Arch. Microbiol. 184: 117128.
26. Frech, C.,, M. Wunderlich,, R. Glockshuber, and, F. X. Schmid. 1996. Preferential binding of an unfolded protein to DsbA. EMBO J. 15: 392398.
27. Gane, P. J.,, R. B. Freedman, and, J. Warwicker. 1995. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations./. Mol. Biol. 249: 376387.
28. Genevaux, P.,, P. Bauda,, M. S. DuBow, and, B. Oudega. 1999. Identification of Tn10 insertions in the dsbA gene affecting Escherichia coli biofilm formation. FEMS Microbiol. Lett. 173: 403409.
29. Goldberger, R. F.,, C. J. Epstein, and, C. B. Anfinsen. 1963. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. Biol. Chem. 238: 628635.
30. Gonzalez, M. D.,, C. A. Lichtensteiger, and, E. R. Vimr. 2001. Adaptation of signature-tagged muta-genesis to Escherichia coli K1 and the infant-rat model of invasive disease. FEMS Microbiol. Lett. 198: 125128.
31. Goulding, C. W.,, M. R. Sawaya,, A. Parseghian,, V. Lim,, D. Eisenberg, and, D. Missiakas. 2002. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. Biochemistry 41: 69206927.
32. Grauschopf, U.,, A. Fritz, and, R. Glockshuber. 2003. Mechanism of the electron transfer catalyst DsbB from Escherichia coli. EMBO J. 22: 35033513.
33. Grauschopf, U.,, J. R. Winther,, P. Korber,, T. Zander,, P. Dallinger, and, J. C. Bardwell. 1995. Why is DsbA such an oxidizing disulfide catalyst? Cell 83: 947955.
34. Guddat, L. W.,, J. C. Bardwell, and, J. L. Martin. 1998. Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure 6: 757767.
35. Guddat, L. W.,, J. C. Bardwell,, T. Zander, and, J. L. Martin. 1997. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci. 6: 11481156.
36. Guilhot, C.,, G. Jander,, N. L. Martin, and, J. Beck-with. 1995. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. P->roc. Natl. Acad. Sci. USA 92: 98959899.
37. Haebel, P.W.,, D. Goldstone,, F. Katzen,, J. Beckwith, and, P. Metcalf. 2002. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-Dsb-Dalpha complex. EMBO J. 21: 47744784.
38. Hayashi, S.,, M. Abe,, M. Kimoto,, S. Furukawa, and, T. Nakazawa. 2000. The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol. Immunol. 44: 4150.
39. Heras, B.,, M. A. Edeling,, H. J. Schirra,, S. Raina, and, J. L. Martin. 2004. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. P->roc. Natl. Acad. Sci. USA 101: 88768881.
40. Hiniker, A., and, J. C. Bardwell. 2004. In vivo substrate specificity of periplasmic disulfide oxidore-ductases. J. Biol. Chem. 279: 1296712973.
41. Huber, D.,, D. Boyd,, Y. Xia,, M. H. Olma,, M. Ger-stein, and, J. Beckwith. 2005. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187: 29832991.
42. Inaba, K.,, Y. H. Takahashi,, N. Fujieda,, K. Kano,, H. Miyoshi, and, K. Ito. 2004. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation.J. Biol. Chem. 279: 67616768.
43. Inaba, K.,, Y. H. Takahashi, and, K. Ito. 2005. Reactivities of quinone-free DsbB from Escherichia coli. J Biol. Chem. 280: 3303533044.
44. Jacob-Dubuisson, F.,, J. Pinkner,, Z. Xu,, R. Striker,, A. Padmanhaban, and, S. J. Hultgren. 1994. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc. Natl. Acad. Sci. USA 91: 1155211556.
45. Jander, G.,, N. L. Martin, and, J. Beckwith. 1994. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO. J. 13: 51215127.
46. Joly, J. C., and, J. R. Swartz. 1997. In vitro and in vivo redox states of the Escherichia coli periplasmic oxi-doreductases DsbA and DsbC. Biochemistry 36: 1006710072.
47. Kadokura, H.,, M. Bader,, H. Tian,, J. C. Bardwell, and, J. Beckwith. 2000. Roles of a conserved argi-nine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 1088410889.
48. Kadokura, H., and, J. Beckwith. 2002. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. EMBO J. 21: 23542363.
49. Kadokura, H.,, L. Nichols II, and, J. Beckwith. 2005. Mutational alterations of the key cis proline residue that cause accumulation of enzymatic reaction intermediates of DsbA, a member of the thioredoxin superfamily. J. Bacteriol. 187: 15191522.
50. Kadokura, H.,, H. Tian,, T. Zander,, J. C. Bardwell, and, J. Beckwith. 2004. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303: 534537.
51. Katzen, F., and, J. Beckwith. 2000. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103: 769779.
52. Kim, J. H.,, S. J. Kim,, D. G. Jeong,, J. H. Son, and, S. E. Ryu. 2003. Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity(1). FEBS Lett. 543: 164169.
53. Kishigami, S.,, Y. Akiyama, and, K. Ito. 1995. Re-dox states of DsbA in the periplasm of Escherichia coli. FEBS Lett. 364: 5558.
54. Kobayashi, T.,, S. Kishigami,, M. Sone,, H. Inokuchi,, T. Mogi, and, K. Ito. 1997. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl. Acad. Sci. USA 94: 1185711862.
55. Kortemme, T., and, T. E. Creighton. 1995. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J. Mol. Biol. 253: 799812.
56. Krupp, R.,, C. Chan, and, D. Missiakas. 2001. DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. J. Biol. Chem. 276: 36963701.
57. Leichert, L. I., and, U. Jakob. 2004. Protein thiol modifications visualized in vivo. PLoS. Biol. 2: e333.
58. Liu, X., and, C. C. Wang. 2001. Disulfide-dependent folding and export of Escherichia coli DsbC .J. Biol. Chem. 276: 11461151.
59. Martin, J. L., 1995. Thioredoxin—a fold for all reasons. Structure 3: 245250.
60. Martin, J. L.,, J. C. Bardwell, and, J. Kuriyan. 1993. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365: 464468.
61. Martin, J. L.,, G. Waksman,, J. C. Bardwell,, J. Beckwith, and, J. Kuriyan. 1993. Crystallization of DsbA, an Escherichia coli protein required for disul-phide bond formation in vivo. J. Mol. Biol. 230: 10971100.
62. McCarthy, A. A.,, P. W. Haebel,, A. Torronen,, V. Ry-bin,, E. N. Baker, and, P. Metcalf. 2000. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7: 196199.
63. Mirsky, A. E., and, L. Pauling. 1936. On the structure of native, denatured and coagulated proteins. Proc. Natl. Acad. Sci. USA 22: 439447.
64. Missiakas, D.,, C. Georgopoulos, and, S. Raina. 1993. Identification and characterization of the Es-cherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc. Natl. Acad. Sci. USA 90: 70847088.
65. Missiakas, D.,, C. Georgopoulos, and, S. Raina. 1994. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 13: 20132020.
66. Mossner, E.,, M. Huber-Wunderlich,, A. Rietsch,, J. Beckwith,, R. Glockshuber, and, F. Aslund. 1999. Importance of redox potential for the in vivo function of the cytoplasmic disulfide reductant thioredoxin from Escherichia coli. J. Biol. Chem. 274: 2525425259.
67. Moutiez, M.,, T. V. Burova,, T. Haertle, and, E. Quemeneur. 1999. On the non-respect of the thermodynamic cycle by DsbA variants. Protein Sci. 8: 106112.
68. Nelson, J. W., and, T. E. Creighton. 1994. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33: 59745983.
69. Ondo-Mbele, E.,, C. Vives,, A. Kone, and, L. Serre. 2005. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant. J. Mol. Biol. 347: 555563.
70. Peek, J. A., and, R. K. Taylor. 1992. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 89: 62106214.
71. Pogliano, J.,, A. S. Lynch,, D. Belin,, E. C. Lin, and, J. Beckwith. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 11: 11691182.
72. Porat, A.,, S. H. Cho, and, J. Beckwith. 2004. The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Res. Microbiol. 155: 617622.
73. Prinz, W. A.,, F. Aslund,, A. Holmgren, and, J. Beckwith. 1997. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272: 1566115667.
74. Raczko, A. M.,, J. M. Bujnicki,, M. Pawlowski,, R. Godlewska,, M. Lewandowska, and, E. K. Jagusztyn-Krynicka. 2005. Characterization of new DsbB-like thiol-oxidoreductases of Campy-lobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151: 219231.
75. Regeimbal, J.,, S. Gleiter,, B. L. Trumpower,, C. A. Yu,, M. Diwakar,, D. P. Ballou, and, J. C. Bard-well. 2003. Disulfide bond formation involves a quinhydrone-type charge-transfer complex. Proc. Natl. Acad. Sci. USA 100 :1377913784.
76. Rietsch, A.,, P. Bessette,, G. Georgiou, and, J. Beckwith. 1997. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacte-riol. 179: 66026608.
77. Rozhkova, A.,, C. U. Stirnimann,, P. Frei,, U. Grauschopf,, R. Brunisholz,, M. G. Grutter,, G. Capitani, and, R. Glockshuber. 2004. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO. J. 23: 17091719.
78. Schierle, C. F.,, M. Berkmen,, D. Huber,, C. Ku-mamoto,, D. Boyd, and, J. Beckwith. 2003. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J. Bacteriol. 185: 57065713.
79. Schirra, H. J.,, C. Renner,, M. Czisch,, M. Huber-Wunderlich,, T. A. Holak, and, R. Glockshuber. 1998. Structure of reduced DsbA from Escherichia coli in solution. Biochemistry 37: 62636276.
80. Segatori, L.,, P. J. Paukstelis,, H. F. Gilbert, and, G. Georgiou. 2004. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: reconciling two competing pathways. Proc. Natl. Acad. Sci. USA 101: 1001810023.
81. Sevier, C. S.,, H. Kadokura,, V. C. Tam,, J. Beck-with,, D. Fass, and, C. A. Kaiser. 2005. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Sci. 14: 16301642.
82. Shao, F.,, M. W. Bader,, U. Jakob, and, J. C. Bard-well. 2000. DsbG, a protein disulfide isomerase with chaperone activity. J. Biol. Chem. 275: 1334913352.
83. Shevchik, V. E.,, G. Condemine, and, J. Robert-Baudouy. 1994. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Es-cherichia coli with disulfide isomerase activity .EMBO J. 13: 20072012.
84. Stafford, S. J.,, D. P. Humphreys, and, P. A. Lund. 1999. Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg 2+ and Cd 2+. FEMS Microbiol. Lett. 174: 179184.
85. Stenson, T. H., and, A. A. Weiss. 2002. DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect. Immun. 70: 22972303.
86. Stewart, E. J.,, F. Aslund, and, J. Beckwith. 1998. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredox-ins. EMBO J. 17: 55435550.
87. Stirnimann, C. U.,, A. Rozhkova,, U. Grauschopf,, M. G. Grutter,, R. Glockshuber, and, G. Capi-tani. 2005. Structural basis and kinetics of DsbD-dependent cytochrome c maturation .Structure (Camb.) 13: 985993.
88. Sun, X. X., and, C. C. Wang. 2000. The N-terminal sequence (residues 1-65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J. Biol. Chem. 275: 2274322749.
89. Takahashi, Y. H.,, K. Inaba, and, K. Ito. 2004. Characterization of the menaquinone-dependent disul-fide bond formation pathway of Escherichia coli. J. Biol. Chem. 279: 4705747065.
90. Tinsley, C. R.,, R. Voulhoux,, J. L. Beretti,, J. Tommassen, and, X. Nassif. 2004. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningi-tidis: effects on bacterial growth and biogenesis of functional type IV pili. J. Biol. Chem. 279: 2707827087.
91. Tomb, J. F., 1992. A periplasmic protein disulfide oxi-doreductase is required for transformation of Haemophilus influenzae Rd. Proc. Natl. Acad. Sci. USA 89: 1025210256.
92. Vinci, F.,, J. Couprie,, P. Pucci,, E. Quemeneur, and, M. Moutiez. 2002. Description of the topographical changes associated to the different stages of the DsbA catalytic cycle. Protein Sci. 11: 16001612.
93. Walker, K. W., and, H. F. Gilbert. 1997. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J. Biol. Chem. 272: 88458848.
94. Warwicker, J., 1998. Modeling charge interactions and redox properties in DsbA. J. Biol. Chem. 273: 25012504.
95. White, F. H., Jr., 1960. Regeneration of enzymatic activity by airoxidation of reduced ribonuclease with observations on thiolation during reduction with thioglycolate. J. Biol. Chem. 235: 383389.
96. Wunderlich, M., and, R. Glockshuber. 1993. Re-dox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 2: 717726.
97. Xie, T.,, L. Yu,, M. W. Bader,, J. C. Bardwell, and, C. A. Yu. 2002. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B. J. Biol. Chem. 277: 16491652.
98. Yohannes, E.,, D. M. Barnhart, and, J. L. Slon-czewski. 2004. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12.J. Bacteriol. 186: 192199.
99. Yu, J.,, B. Edwards-Jones,, O. Neyrolles, and, J. S. Kroll. 2000. Key role for DsbA in cell-to-cell spread of Shigella flexneri, permitting secretion of Ipa proteins into interepithelial protrusions. Infect. Immun. 68: 64496456.
100. Zapun, A.,, J. C. Bardwell, and, T. E. Creighton. 1993. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32: 50835092.
101. Zapun, A.,, D. Missiakas,, S. Raina, and, T. E. Creighton. 1995. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34: 50755089.
102. Zhan, X.,, J. Gao,, C. Jain,, M. J. Cieslewicz,, J. R. Swartz, and, G. Georgiou. 2004. Genetic analysis of disulfide isomerization in Escherichia coli:ex-pression of DsbC is modulated by RNase E-depen-dent mRNA processing. J. Bacteriol. 186: 654660.
103. Zhang, M.,, A. F. Monzingo,, L. Segatori,, G. Geor-giou, and, J. D. Robertus. 2004. Structure of DsbC from Haemophilus influenzae. Acta. Crystallogr. D Biol. Crystallogr. 60: 15121518.
104. Zhao, Z.,, Y. Peng,, S. F. Hao,, Z. H. Zeng, and, C. C.W ang. 2003. Dimerization by domain hybridization bestows chaperone and isomerase activities. J. Biol. Chem. 278: 4329243298.
105. Zheng, M.,, X. Wang,, B. Doan,, K. A. Lewis,, T. D. Schneider, and, G. Storz. 2001. Computation-directed identification of OxyR DNA binding sites in Escherichia coli.J. Bacteriol. 183: 45714579.
106. Zheng, W. D.,, H. Quan,, J. L. Song,, S. L. Yang, and, C. C.W ang. 1997. Does DsbA have chaperone-like activity? Arch. Biochem. Biophys. 337: 326331.


Generic image for table

Properties of disulfide bond-fon ming enzymes in the periplasm

Citation: Mehmet B, Dana B, Jon B. 2007. Disulfide Bond Formation in the Periplasm, p 122-140. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error