Chapter 15 : The Biosynthesis of the Molybdenum Cofactor and Its Incorporation into Molybdoenzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Biosynthesis of the Molybdenum Cofactor and Its Incorporation into Molybdoenzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap15-2.gif


Molybdenum cofactor (Moco) biosynthesis is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. ModE enhances the transcription of molybdenum-dependent enzymes like DMSO reductase or nitrate reductase A and also of the molybdenum cofactor biosynthesis operon . The biosynthesis of Moco can be divided into four steps in : (i) formation of precursor Z, (ii) formation of molybdopterin (MPT) from precursor Z, (iii) insertion of molybdenum to form Moco, and (iv) additional modification of Moco with the attachment of GMP, forming the MPT-guanine dinucleotide cofactor (MGD). It was shown that in most molybdoenzymes the molybdenum atom is coordinated by the dithiolene groups of two MGD molecules, forming the bis-MGD cofactor. It was shown that in the proteins for the biosynthesis of Moco are located in the cytoplasm and that the insertion of Moco occurs before the translocation of molybdoenzymes either to the membrane or the periplasmic space. The biosynthesis of Moco is conserved in all organisms and genes for Moco biosynthesis are found in bacteria, archaea, fungi, plants, and animals. In humans, possessing solely three molybdoenzymes, a defect in Moco biosynthesis is lethal because of the loss of sulfite oxidase activity. The elucidation of Moco biosynthesis, the analysis of assembly of molybdoenzymes, insertion of Moco into the apoproteins, and translocation of the mature proteins to different compartments are fascinating topics of ongoing research.

Citation: Silke L. 2007. The Biosynthesis of the Molybdenum Cofactor and Its Incorporation into Molybdoenzymes, p 260-275. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Synthesis of precursor Z from GTP. All carbon atoms of the GTP are found within precursor Z. The C8 atom transferred as formyl is inserted between the C2’ and C3’ atoms of the ribose. Precursor Z is shown in the tetrahydropyrano form and in a hydrated product with a geminal diol at the C1’ position.

Citation: Silke L. 2007. The Biosynthesis of the Molybdenum Cofactor and Its Incorporation into Molybdoenzymes, p 260-275. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Active site structures of mononuclear molybdenum enzymes. (A) The three molybdenumcontaining enzyme families are divided into the xanthine oxidase, sulfite oxidase, and DMSO-reductase families according to their active site structures. (B) Representative models of subunit and cofactor composition of molybdenum-containing enzymes, from which the X-ray structures have been solved: bovine milk XDH/XO ( ), chicken liver sulfite oxidase ( ), and DMSO reductase ( ).

Citation: Silke L. 2007. The Biosynthesis of the Molybdenum Cofactor and Its Incorporation into Molybdoenzymes, p 260-275. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Proposed localization of molybdoenzymes that are part of respiratory systems. FdhGHI is a component of the nitrate respiratory pathway, in which formate oxidation is coupled to nitrate reduction (NarGHI) via lipid-soluble quinone/hydroquinone (Q/QH2).TMAO is reduced to TMA by at least two respiratory systems, TorCAD and DmsABC (also reducing DMSO to dimethyl sulfide [DMS]). NapABCGH is produced under nitrate-limiting conditions and are believed to be involved in redox balancing. The physiological substrates for YedY, a member of the sulfite-oxidase family binding the MPT form of Moco, are not known to date.

Citation: Silke L. 2007. The Biosynthesis of the Molybdenum Cofactor and Its Incorporation into Molybdoenzymes, p 260-275. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abaibou, H.,, J. Pommier,, S. Benoit,, G. Giordano, and, M. A. Mandrand-Berthelot. 1995. Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J. Bacteriol. 177: 71417149.
2. Aguilar, M.,, K. Kalakoutskii,, J. Cardenas, and, E. Fernandez. 1992. Direct transfer of molybdopterin cofactor to aponitrate reductase from a carrier protein in Chlamydomonas reinhardtii. FEBS Lett. 307: 162163.
3. Anderson, L. A.,, E. McNairn,, T. Lubke,, R. N. Pau, and, D. H. Boxer. 2000. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli. J. Bacteriol. 182: 70357043.
4. Ataya, F. S.,, C. P. Witte,, A. Galvan,, M. I. Igeno, and, E. Fernandez. 2003. Mcp1 encodes the molybdenum cofactor carrier protein in Chlamydomonas reinhardtii and participates in protection, binding, and storage functions of the cofactor. J. Biol. Chem. 278: 1088510890.
5. Berks, B. C., 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22: 393404.
6. Berks, B. C.,, T. Palmer, and, F. Sargent. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8: 174181.
7. Bilous, P. T., and, J. H. Weiner. 1988. Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon.J. Bacteriol. 170: 15111518.
8. Blasco, F.,, J. P. Dos Santos,, A. Magalon,, C. Frixon,, B. Guigliarelli,, C. L. Santini, and, G. Giordano. 1998. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol. Microbiol. 28: 435447.
9. Borner, G.,, M. Karrasch, and, R. K. Thauer. 1991. Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Lett. 290: 3134.
10. Boyington, J. C.,, V. N. Gladyshev,, S. V. Khangulov,, T. C. Stadtman, and, P. D. Sun. 1997. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe 4S 4 cluster. Science 275: 13051308.
11. Brokx, S. J.,, R. A. Rothery,, G. Zhang,, D. P. Ng, and, J. H.Weiner. 2005. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 44: 1033910348.
12. Brondijk, T. H.,, A. Nilavongse,, N. Filenko,, D. J. Richardson, and, J. A. Cole. 2004. NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem. J. 379: 4755.
13. Chan, M. K.,, S. Mukund,, A. Kletzin,, M. W. W. Adams, and, D. C. Rees. 1995. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267: 14631469.
14. Chang, L.,, L. I. Wei,, J. P. Audia,, R. A. Morton, and, H. E. Schellhorn. 1999. Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol. Microbiol. 34: 756766.
15. Cole, J., 1996. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136: 111.
16. Davidson, A. L., and, J. Chen. 2004. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73: 24168.
17. Eady, R. R., 1995. Vanadium nitrogenase of Azotobacter., p. 363405. In H. Sigel., and, A. Sigel (ed.), Metal Ions in Biological Systems. Vanadium and Its Role in Life. Marcel Dekker, New York, N.Y.
18. Eaves, D. J.,, T. Palmer, and, D. H. Boxer. 1997. The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein. Eur. J. Biochem. 246: 690697.
19. Enroth, C.,, B. T. Eger,, K. Okamoto,, T. Nishino, and, E. F. Pai. 2000. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 97: 1072310728.
20. Genest, O.,, M. Ilbert,, V. Mejean, and, C. IobbiNivol. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J. Biol. Chem. 280: 1564415648.
21. Gon, S.,, M. T. Giudici-Orticoni,, V. Mejean, and, C. Iobbi-Nivol. 2001. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J. Biol. Chem. 276: 1154511551.
22. Grunden, A. M., and, K. T. Shanmugam. 1997. Molybdate transport and regulation in bacteria. Arch. Microbiol. 168: 345354.
23. Hanzelmann, P.,, H. L. Hernandez,, C. Menzel,, R. Garcia-Serres,, B. H. Huynh,, M. K. Johnson,, R. R. Mendel, and, H. Schindelin. 2004. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 279: 3472134732.
24. Hanzelmann, P., and, H. Schindelin. 2004. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc. Natl. Acad. Sci. USA 101: 1287012875.
25. Higgins, C. F., 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell. Biol. 8: 67113.
26. Hille, R., 1996. The mononuclear molybdenum enzymes. Chem. Rev. 96: 27572816.
27. Hille, R., 2002. Molybdenum and tungsten in biology. Trends Biochem. Sci. 27: 360367.
28. Hilton, J. C., and, K. V. Rajagopalan. 1996. Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinu cleotide)molybdenum. Arch. Biochem. Biophys. 325: 139143.
29. Hu, Y.,, S. Rech,, R. P. Gunsalus, and, D. C. Rees. 1997. Crystal structure of the molybdate binding protein ModA. Nat. Struct. Biol. 4: 703707.
30. Ilbert, M.,, V. Mejean,, M. T. Giudici-Orticoni,, J. P. Samama, and, C. Iobbi-Nivol. 2003. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J. Biol. Chem. 278: 28782879.
31. Ilbert, M.,, V. Mejean, and, C. Iobbi-Nivol. 2004. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150: 935943.
32. Jack, R. L.,, G. Buchanan,, A. Dubini,, K. Hatzix-anthis,, T. Palmer, and, F. Sargent. 2004. Coordi-nating assembly and export of complex bacterial proteins. EMBO J. 23: 39623972.
33. Johnson, J. L.,, L. W. Indermaur, and, K. V. Rajagopalan. 1991. Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. J. Biol. Chem. 266: 1214012145.
34. Johnson, J. L.,, K. V. Rajagopalan, and, O. Meyer. 1990. Isolation and characterization of a second molybdopterin dinucleotide: molybdopterin cytosine dinucleotide. Arch. Biochem. Biophys. 283: 542545.
35. Johnson, J. L.,, M. M. Wuebbens, and, K. V. Rajagopalan. 1989. The structure of a molybdopterin precursor. Characterization of a stable, oxidized derivative. J. Biol. Chem. 264: 1344013447.
36. Johnson, M. K.,, D. C. Rees, and, M. W. Adams. 1996. Tungstoenzymes. Chem. Rev. 96: 28172840.
37. Jormakka, M.,, B. Byrne, and, S. Iwata. 2003. Formate dehydrogenase–a versatile enzyme in changing environments. Curr. Opin. Struct. Biol. 13: 418423.
38. Kisker, C.,, H. Schindelin,, A. Pacheco,, W. A. Wehbi,, R. M. Garrett,, K. V. Rajagopalan,, J. H. Enemark, and, D. C. Rees. 1997a. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91: 973983.
39. Kisker, C.,, H. Schindelin, and, D. C. Rees. 1997b. Molybdenum-cofactor-containing enzymes:structure and mechanism. Ann. Rev. Biochem. 66 :233267.
40. Kletzin, A., and, M. W. Adams. 1996. Tungsten in biological systems. FEMS Microbiol. Rev. 18: 563.
41. Kniemeyer, O., and, J. Heider. 2001. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J. Biol. Chem. 276: 2138121386.
42. Kuper, J.,, A. Llamas,, H. J. Hecht,, R. R. Mendel, and, G. Schwarz. 2004. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430: 803806.
43. Lake, M. W.,, C. A. Temple,, K. V. Rajagopalan, and, H. Schindelin. 2000. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J. Biol. Chem. 275: 4021140217.
44. Leimkuhler, S.,, M. Kern,, P. S. Solomon,, A. G. McEwan,, G. Schwarz,, R. R. Mendel, and, W. Klipp. 1998. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol. Microbiol. 27: 853869.
45. Leimkuhler, S., and, W. Klipp. 1999. Role of XDHC in molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. J. Bacteriol. 181: 27452751.
46. Leimkuhler, S., and, K.V. Rajagopalan. 2001a. An Escherichia coli NifS-like sulfurtransferase is required for the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z. J. Biol. Chem. 276: 2202422031.
47. Leimkuhler, S., and, K. V. Rajagopalan. 2001b. In vitro incorporation of nascent molybdenum cofactor into human sulfite oxidase. J. Biol. Chem. 276: 18371844.
48. Leimkuhler, S.,, M. M. Wuebbens, and, K. V. Rajagopalan. 2001. Characterization of Escherichia coli MoeB and its involvement in the activation of MPT synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276: 3469534701.
49. Liu, M. T.,, M. M. Wuebbens,, K. V. Rajagopalan, and, H. Schindelin. 2000. Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. J. Biol. Chem. 275: 18141822.
50. Llamas, A.,, R. R. Mendel, and, G. Schwarz. 2004. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J. Biol. Chem. 279: 5524155246.
51. Loschi, L.,, S. J. Brokx,, T. L. Hills,, G. Zhang,, M. G. Bertero,, A. L. Lovering,, J. H. Weiner, and, N. C. Strynadka. 2004. Structural and biochemical identification of a novel bacterial oxidoreductase. J. Biol. Chem. 279: 5039150400.
52. Matthies, A.,, K. V. Rajagopalan,, R. R. Mendel, and, S. Leimkuhler. 2004. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc. Natl. Acad. Sci. USA 101: 59465951.
53. McDevitt, C. A.,, P. Hugenholtz,, G. R. Hanson, and, A. G. McEwan. 2002. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterincontaining enzymes. Mol. Microbiol. 44: 15751587.
54. McGrath, J. P.,, S. Jentsch, and, A. Varshavsky. 1991. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10: 227236.
55. McNicholas, P. M.,, M. M. Mazzotta,, S. A. Rech, and, R. P. Gunsalus. 1998. Functional dissection of the molybdate-responsive transcription regulator, ModE, from Escherichia coli. J. Bacteriol. 180: 46384643.
56. McNicholas, P. M.,, S. A. Rech, and, R. P. Gunsalus. 1997. Characterization of the ModE DNAbinding sites in the control regions of modABCD and moaABCDE of Escherichia coli. Mol. Microbiol. 23: 515524.
57. Mejean, V.,, C. Iobbi-Nivol,, M. Lepelletier,, G. Giordano,, M. Chippaux, and, M. C. Pascal. 1994. TMAO anaerobic respiration in Escherichia coli:involvement of the tor operon. Mol. Microbiol. 11: 11691179.
58. Nichols, J., and, K. V. Rajagopalan. 2002. Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis. J. Biol. Chem. 277: 2499525000.
59. Nichols, J. D., and, K. V. Rajagopalan. 2005. In vitro molybdenum ligation to molybdopterin using purified components. J. Biol. Chem. 280: 78177822.
60. Oresnik, I. J.,, C. L. Ladner, and, R. J. Turner. 2001. Identification of a twin-arginine leader-binding protein. Mol. Microbiol. 40: 323331.
61. Palmer, T.,, I. P. Goodfellow,, R. E. Sockett,, A. G. McEwan, and, D. H. Boxer. 1998. Characterisation of the mob locus from Rhodobacter sphaeroides required for molybdenum cofactor biosynthesis. Biochim. Biophys. Acta 1395: 135140.
62. Palmer, T.,, C.-L. Santini,, C. Iobbi-Nivol,, D. J. Eaves,, D. H. Boxer, and, G. Giordano. 1996. Involvement of the narJand mob gene products in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol. Microbiol. 20: 875884.
63. Palmer, T.,, A. Vasishta,, P. W. Whitty, and, D. H. Boxer. 1994. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Eur. J. Biochem. 222: 687692.
64. Pau, R. N., and, D. M. Lawson. 2002. Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met. Ions Biol. Syst. 39: 3174.
65. Pilato, R. S., and, E. I. Stiefel. 1999. Molybdenum and tungsten enzymes, p. 81152. In J. Reedijk., and, E. Bouwman. (ed.) Bioinorganic Catalysis, 2nd ed. Dekker, New York, N.Y.
66. Pitterle, D. M.,, J. L. Johnson, and, K. V. Rajagopalan. 1993. In vitro synthesis of molybdopterin from precursor Z using purified converting factor. Role of protein-bound sulfur in formation of the dithiolene.J. Biol. Chem. 268: 1350613509.
67. Pitterle, D. M., and, K.V. Rajagopalan. 1989. Two proteins encoded at the chlA locus constitute the converting factor of Escherichia coli chlA1. J. Bacteriol. 171: 33733378.
68. Pitterle, D. M., and, K.V. Rajagopalan. 1993. The biosynthesis of molybdopterin in Escherichia coli. Purification and characterization of the converting factor. J. Biol. Chem. 268: 1349913505.
69. Pope, M. T.,, E. R. Still, and, J. P. Williams. 1980. A comparison between the chemistry and biochemistry of molybdenum and related elements, p. 340. In M. P. Coughlan (ed.) Molybdenum and Molybdenum-Containing Enzymes. Pergamon Press, Oxford, United Kingdom.
70. Rajagopalan, K. V., 1991. Novel aspects of the biochemistry of the molybdenum cofactor, p. 215290. In A. Meister (ed.), Advances in Enzymology and Related Areas of Molecular Biology, vol. 64. John Wiley and Sons, New York, N.Y.
71. Rajagopalan, K. V., 1996. Biosynthesis of the molybdenum cofactor, p. 674679. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.) Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
72. Rajagopalan, K. V., 1997. Biosynthesis and processing of the molybdenum cofactors. Biochem. Soc. Trans. 25: 757761.
73. Rajagopalan, K. V., and, J. L. Johnson. 1992. The pterin molybdenum cofactors. J. Biol. Chem. 267: 1019910202.
74. Rajagopalan, K. V.,, J. L. Johnson,, M. M. Wuebbens,, D. M. Pitterle,, J. C. Hilton,, T. R. Zurick, and, R. M. Garrett. 1993. Chemistry and biology of the molybdenum cofactors. Adv. Exp. Med. Biol. 338: 355362.
75. Ramao, M. J.,, M. Archer,, I. Moura,, J. J. G. Moura,, J. LeGall,, R. Engh,, M. Schneider,, P. Hof, and, R. Huber. 1995. Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Science 270: 11701176.
76. Rudolph, M. J.,, M. M. Wuebbens,, K. V. Rajagopalan, and, H. Schindelin. 2001. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat. Struct. Biol. 8: 4246.
77. Rudolph, M. J.,, M. M. Wuebbens,, O. Turque,, K. V. Rajagopalan, and, H. Schindelin. 2003. Structural studies of molybdopterin synthase provide insights into its catalytic mechanism. J. Biol. Chem. 278: 1451414522.
78. Santamaria-Araujo, J. A.,, B. Fischer,, T. Otte,, M. Nimtz,, R. R. Mendel,, V. Wray, and, G. Schwarz. 2004. The tetrahydropyranopterin structure of the sulfur- and metal-free molybdenum cofactor precursor. J. Biol. Chem. 279: 1599415999.
79. Santini, C. L.,, B. Ize,, A. Chanal,, M. Müller,, G. Giordano, and, L. F. Wu. 1998. A novel sec independent periplasmic protein translocation pathway in Escherichia coli. EMBO J. 17: 101112.
80. Schindelin, H., 2005. Evolutionary origin of the activation step during ubiquitin-dependent protein degradation, p. 2143. In R. J. Mayer,, A. Ciechanover, and, M. Rechsteiner (ed.), Protein Degradation:Ubiquitin and the Chemistry of Life, vol. I. Wiley VCH, Weinheim, Germany.
81. Schindelin, H.,, C. Kisker,, J. Hilton,, K. V. Rajagopalan, and, D. C. Rees. 1996. Crystal structure of DMSO reductase:redox-linked changes in molybdopterin coordination. Science 272: 16151621.
82. Schneider, F.,, J. Löwe,, R. Huber,, H. Schindelin,, C. Kisker, and, J. Knäblein. 1996. Crystal structure of dimethyl sulfoxide reducatase from Rhodobacter capsulatus at 1.88 A resolution. J. Mol. Biol. 263: 5369.
83. Schrag, J. D.,, W. Huang,, J. Sivaraman,, C. Smith,, J. Plamondon,, R. Larocque,, A. Matte, and, M. Cygler. 2001. The crystal structure of Escherichia coli MoeA, a protein from the molybdopterin synthesis pathway. J. Mol. Biol. 310: 419431.
84. Schuttelkopf, A. W.,, D. H. Boxer, and, W. N. Hunter. 2003. Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J. Mol. Biol. 326: 761767.
85. Self, W. T.,, A. M. Grunden,, A. Hasona, and, K. T. Shanmugam. 1999. Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons. Microbiology 145(Pt 1): 4155.
86. Shanmugam, K. T.,, V. Stewart,, R. P. Gunsalus,, D. H. Boxer,, J. A. Cole,, M. Chippaux,, J. A. DeMoss,, G. Giordano,, E. C. C. Lin, and, K. V. Rajagopalan. 1992. Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium. Mol. Microbiol. 6: 34523454.
87. Sofia, H. J.,, G. Chen,, B. G. Hetzler,, J. F. ReyesSpindola, and, N. E. Miller. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29: 10971106.
88. Stevenson, C. E.,, F. Sargent,, G. Buchanan,, T. Palmer, and, D. M. Lawson. 2000. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at nearatomic resolution. Struct. Fold Des. 8: 11151125.
89. Stewart, V., 1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52: 190232.
90. Stiefel, E. I., 1993. Molybdenum enzymes, cofactors and chemistry, p. 118. In E. I. Stiefel,, D. Coucouvanis, and, W. E. Newton (ed.) Molybdenum Enzymes, Cofactors and Model Systems. American Chemical Society, Washington, D.C.
91. Stiefel, E. I., 2002. The biogeochemistry of molybdenum and tungsten. Met. Ions Biol. Syst. 39: 130.
92. Temple, C. A., and, K. V. Rajagopalan. 2000. Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase. J. Biol. Chem. 275: 4020240210.
93. Tranier, S.,, C. Iobbi-Nivol,, C. Birck,, M. Ilbert,, I. Mortier-Barriere,, V. Mejean, and, J. P. Samama. 2003. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Structure (Camb) 11: 165174.
94. Truglio, J. J.,, K. Theis,, S. Leimkuhler,, R. Rappa,, K. V. Rajagopalan, and, C. Kisker. 2002. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure (Camb) 10: 115125.
95. Vergnes, A.,, K. Gouffi-Belhabich,, F. Blasco,, G. Giordano, and, A. Magalon. 2004. Involvement of the molybdenum cofactor biosynthetic machinery in the maturation of the Escherichia coli nitrate reductase A. J. Biol. Chem. 279: 4139841403.
96. Willsky, G. R., 1990. Vanadium in the bioshere, p. 124. In N. D. Chasteen (ed.) Vanadium in Biological Systems: Physiology and Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
97. Witte, C. P.,, M. I. Igeno,, G. Schwarz, and, E. Fernandez. 1998. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. FEBS Lett. 431: 205209.
98. Wuebbens, M. M., and, K. V. Rajagopalan. 1993. Structural characterization of a molybdopterin precursor. J. Biol. Chem. 268: 1349313498.
99. Wuebbens, M. M., and, K.V. Rajagopalan. 1995. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J. Biol. Chem. 270: 10821087.
100. Wuebbens, M. M., and, K.V. Rajagopalan. 2003. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J. Biol. Chem. 278: 1452314532.
101. Wuebbens, M. M.,, M. T. Liu,, K. Rajagopalan, and, H. Schindelin. 2000. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Struct. Fold Des. 8: 709718.
102. Xiang, S.,, J. Nichols,, K. V. Rajagopalan, and, H. Schindelin. 2001. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure 9: 299310.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error