Chapter 17 : Periplasmic ABC Transporters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Periplasmic ABC Transporters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap17-2.gif


Primary active transporters, such as ATP-binding cassette (ABC) transporters, directly utilize the free energy released upon the hydrolysis of ATP to pump substrates against a concentration gradient. The fundamental biological role of the ABC is to couple the energy of ATP hydrolysis to an impressively large variety of essential biological phenomena comprising not only transmembrane transport but also several non-transport-related processes such as translation elongation, translation regulation, ribosome biogenesis, and DNA repair. The nature of the substrates handled by ABC transporters is extraordinarily wide, including mono-and oligosaccharides, organic and inorganic ions, amino acids and short peptides, iron-siderophores, metals, polyamine cations, opines, and vitamins. The major finding is that the ABC proteins or domains fall into three main subdivisions or classes: class 1 comprises systems with fused ABC and IM domains, class 2 comprises systems with two duplicated fused ABC domains and no transmembrane domains, and class 3 contains systems with IM and ABC domains carried by independent polypeptide chains. It can be speculated that at least some membrane proteins C (BMPCs) might be involved in the uptake of an as-yet unidentified monosaccharide. Genes encoding the ATPase of ABC systems constitute about 2% of total genes in most and . A closer look at the distribution of ABC systems among the sequenced genomes reveals several interesting features. Efforts are required to experimentally analyze in detail the functions of ABC transporters.

Citation: Dassa E. 2007. Periplasmic ABC Transporters, p 287-303. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abramson, J.,, I. Smirnova,, V. Kasho,, G. Verner,, H. R. Kaback, and, S. Iwata. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301: 610615.
2. Adhikari, P.,, S. A. Berish,, A. J. Nowalk,, K. L. Veraldi,, S. A. Morse, and, T. A. Mietzner. 1996. The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron.J. Bacteriol. 178: 21452149.
3. Aguilar-Bryan, L.,, J. P. T. Clement,, G. Gonzalez,, K. Kunjilwar,, A. Babenko, and, J. Bryan. 1998. Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227245.
4. Ashcroft, S. J. H., 2000. The beta-cell K-ATP channel. J. Membr. Biol. 176: 187206.
5. Bavoil, P.,, H. Nikaido, and, K. von Meyenburg. 1977. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol. Gen. Genet. 158: 2333.
6. Beck, S.,, A. Kelly,, E. Radley,, F. Khurshid,, R. P. Alderton, and, J. Trowsdale. 1992. DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing. J. Mol. Biol. 228: 433441.
7. Biville, F.,, H. Cwerman,, S. Letoffe,, M. S. Rossi,, V. Drouet,, J. M. Ghigo, and, C. Wandersman. 2004. Haemophore-mediated signalling in Serratia marcescens:a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition. Mol. Microbiol. 53: 12671277.
8. Blight, M. A., and, I. B. Holland. 1990. Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol. Microbiol. 4: 873880.
9. Boos, W., and, A. Bohm. 2000. Learning new tricks from an old dog—MaIT of the Escherichia coli maltose system is part of a complex regulatory network. Trends Genet. 16: 404409.
10. Boos, W., and, J. M. Lucht. 1996. Periplasmic binding protein-dependent ABC transporters, p., 11751209. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
11. Boos, W., and, H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli:transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62: 204229.
12. Borths, E. L.,, K. P. Locher,, A. T. Lee, and, D. C. Rees. 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. USA 99: 1664216647.
13. Bos, M. P., and, J. Tommassen. 2004. Biogenesis of the gram-negative bacterial outer membrane. Curr. Opin. Microbiol. 7: 610616.
14. Braibant, M.,, P. Gilot, and, J. Content. 2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24: 449467.
15. Brass, J. M.,, W. Boos, and, R. Hengge. 1981. Re-constitution of maltose transport in malB mutants of Escherichia coli through calcium-induced disruptions of the outer membrane.J. Bacteriol. 146: 1017.
16. Braun, V., and, M. Braun. 2002. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol. 5: 194201.
17. Broccardo, C.,, M. Luciani, and, G. Chimini. 1999. The ABCA subclass of mammalian transporters. Biochim. Biophys. Acta 1461: 395404.
18. Bruns, C. M.,, A. J. Nowalk,, A. S. Arvai,, M. A. McTigue,, K. G. Vaughan,, T. A. Mietzner, and, D. E. McRee. 1997. Structure of Haemophilus in-fluenzae Fe(+3)-binding protein reveals convergent evolution within a superfamily. Nat. Struct. Biol. 4: 919924.
19. Chakraburtty, K., 2001. Translational regulation by ABC systems. Res. Microbiol. 152: 391399.
20. Claverys, J. P., 2001. A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 152: 231243.
21. Dassa, E., and, P. Bouige. 2001. The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152: 211229.
22. Dassa, E.,, M. Hofnung,, I. T. Paulsen, and, M. H. Saier, Jr., 1999. The Escherichia coli ABC transporters: an update. Mol. Microbiol. 32: 887889.
23. Dassa, E., and, S. Muir. 1993. Membrane topology of MalG, an inner membrane protein from the maltose transport system of Escherichia coli. Mol. Microbiol. 7: 2938.
24. Davidson, A. L., 2002. Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J. Bacteriol. 184: 12251233.
25. Davidson, A. L., and, J. Chen. 2004. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73: 241268.
26. Davidson, A. L., and, H. Nikaido. 1991. Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli.J. Biol. Chem. 266: 89468951.
27. Dean, M., and, T. Annilo. 2005. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6: 123142.
28. Decottignies, A., and, A. Goffeau. 1997. Complete inventory of the yeast ABC proteins. Nat. Genet. 15: 137145.
29. Deka, R. K.,, L. Neil,, K. E. Hagman,, M. Machius,, D. R. Tomchick,, C. A. Brautigam, and, M. V. Norgard. 2004. Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an L-methionine-binding protein. J. Biol. Chem. 279: 5564455650.
30. Detmers, F. J. M.,, F. C. Lanfermeijer, and, B. Poolman. 2001. Peptides and ATP binding cassette peptide transporters. Res. Microbiol. 152: 245258.
31. Diederichs, K.,, J. Diez,, G. Greller,, C. Müller,, J. Breed,, C. Schnell,, C. Vonrhein,, W. Boos, and, W. Welte. 2000. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 19: 59515961.
32. Dintilhac, A.,, G. Alloing,, C. Granadel, and, J. P. Claverys. 1997. Competence and virulence of Streptococcus pneumoniae—adc and psaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25: 727739.
33. Dong, J. S.,, R. Lai,, K. Nielsen,, C. A. Fekete,, H. F. Qiu, and, A. G. Hinnebusch. 2004. The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J. Biol. Chem. 279: 4215742168.
34. Dosch, D. C.,, G. L. Helmer,, S. H. Sutton,, F. F. Salvacion, and, W. Epstein. 1991. Genetic analysis of potassium transport loci in Escherichia col:evi-dence for three constitutive systems mediating uptake of potassium. J. Bacteriol. 173: 687696.
35. Elferink, M. G. L.,, S. V. Albers,, W. N. Konings, and, A. J. M. Driessen. 2001. Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39: 14941503.
36. Enz, S.,, H. Brand,, C. Orellana,, S. Mahren, and, V. Braun. 2003. Sites of interaction between the FecA and FecR signal transduction proteins of ferric citrate transport in Escherichia coli K-12. J. Bacteriol. 185: 37453752.
37. Faraldo-Gomez, J. D., and, M. S. Sansom. 2003. Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell. Biol. 4: 105116.
38. Fath, M. J., and, R. Kolter. 1993. ABC transporters–bacterial exporters. Microbiol. Rev. 57: 9951017.
39. Fenno, J. C.,, A. Shaikh,, G. Spatafora, and, P. Fives-Taylor. 1995. The fimA locus of Streptococcus parasanguis encodes an ATP-binding membrane transport system. Mol. Microbiol. 15: 849863.
40. Ferguson, A. D., and, J. Deisenhofer. 2004. Metal import through microbial membranes. Cell 116: 1524.
41. Fukami-Kobayashi, K.,, Y. Tateno, and, K. Nishikawa. 1999. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. J. Mol. Biol. 286: 279290.
42. Gal, J.,, A. Szvetnik,, R. Schnell, and, M. Kalman. 2002. The metD D-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. J. Bacteriol. 184: 49304932.
43. Galvez, T.,, M. L. Parmentier,, C. Joly,, B. Mal-itschek,, K. Kaupmann,, R. Kuhn,, H. Bittiger,, W. Froestl,, B. Bettler, and, J. P. Pin. 1999. Muta-genesis and modeling of the GABA(B) receptor extracellular domain support aVenus flytrap mechanism for ligand binding.J. Biol. Chem. 274: 1336213369.
44. Garcia, O.,, P. Bouige,, C. Forestier, and, E. Dassa. 2004. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J. Mol. Biol. 343: 249265.
45. Gilson, E.,, G. Alloing,, T. Schmidt,, J. P. Claverys,, R. Dudler, and, M. Hofnung. 1988. Evidence for high affinity binding protein-dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO J. 7: 39713974.
46. Gorbacheva, V.Y.,, H. P. Godfrey, and, F. C. Cabello. 2000. Analysis of the bmp gene family in Borrelia burgdorferi sensu lato. J. Bacteriol. 182: 20372042.
47. Gottesman, M. M.,, T. Fojo, and, S. E. Bates. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2: 4858.
48. Haardt, M., and, E. Bremer. 1996. Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J. Bacteriol. 178: 53705381.
49. Hashimoto, W.,, J. S. He,, Y. Wada,, H. Nankai,, B. Mikami, and, K. Murata. 2005. Proteomicsbased identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp A1: alginate-binding flagellin on the cell surface. Biochemistry 44: 1378313794.
50. Hashimoto, W.,, K. Momma,, H. Miki,, Y. Mishima,, E. Kobayashi,, O. Miyake,, S. Kawai,, H. Nankai,, B. Mikami, and, K. Murata. 1999. Enzymatic and genetic bases on assimilation, depolymerization, and transport of heteropolysaccharides in bacteria. J. Biosci. Bioeng. 87: 123136.
51. Hayman, G. T.,, S. B. Von Bodman,, H. Kim,, P. Jiang, and, S. K. Farrand. 1993. Genetic analysis of the agrocinopine catabolic region of Agrobacterium tumefaciensTi plasmid pTiC58, which encodes genes required for opine and agrocin 84 transport. J. Bacteriol. 175: 55755584.
52. Henderson, D. P., and, S. M. Payne. 1994. Vibrio cholerae iron transport system: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect. Immun. 62: 51205125.
53. Hennessey, E. S., and, J. K. Broome-Smith. 1993. Gene fusion techniques for determining membrane protein topology. Curr. Opin. Struct. Biol. 3: 524531.
54. Higgins, C. F., and, G. F. L. Ames. 1981. Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequences. Proc. Natl. Acad. Sci. USA 78: 60386042.
55. Holland, I. B., and, M. A. Blight. 1999. ABCATPases, adaptable energy generators fuelling trans-membrane movement of a variety of molecules organisms from bacteria to humans. J. Mol. Biol. 293: 381399.
56. Hopfner, K. P., and, J. A.T ainer. 2003. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13: 249255.
57. Hosie, A. H. F., and, P. S. Poole. 2001. Bacterial ABC transporters of amino acids. Res. Microbiol. 152: 259270.
58. Hughes, A. L., 1994. Evolution of the ATP-bindingcassette transmembrane transporters of vertebrates. Mol. Biol. Evol. 11: 899910.
59. Hullo, M. F.,, S. Auger,, E. Dassa,, A. Danchin, and, I. Martin-Verstraete. 2004. The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D- and L-methionine. Res. Microbiol. 155: 8086.
60. Hung, L. W.,, I. X.Y. Wang,, K. Nikaido,, P. Q. Liu,, G. F. L. Ames, and, S. H. Kim. 1998. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396: 703707.
61. Hunke, S.,, M. Mourez,, M. Jehanno,, E. Dassa, and, E. Schneider. 2000. ATP modulates subunitsubunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking. J. Biol. Chem. 275: 1552615534.
62. Igarashi, K.,, K. Ito, and, K. Kashiwag i. 2001. Polyamine uptake systems in Escherichia coli. Res. Microbiol. 152: 271278.
63. Janulczyk, R.,, S. Ricci, and, L. Bjorck. 2003. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect. Immun. 71: 26562664.
64. Joly, N.,, A. Bohm,, W. Boos, and, E. Richet. 2004. MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding. J. Biol. Chem. 279: 3312333130.
65. Karpel, R.,, T. Alon,, G. Glaser,, S. Schuldiner, and, E. Padan. 1991. Expression of a sodium proton antiporter (NhaA) in Escherichia coli is induced by Na+ and Li+ ions. J. Biol. Chem. 266: 2175321759.
66. Kaur, P., and, J. Russell. 1998. Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius. J. Biol. Chem. 273: 1793317939.
67. Kempf, B., and, E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170: 319330.
68. Kerppola, R. E., and, G. F. L. Ames. 1992. Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparisons with other members of the family. J. Biol. Chem. 267: 23292336.
69. Kerppola, R. E.,, V. K. Shyamala,, P. Klebba, and, G. F. L. Ames. 1991. The membrane-bound proteins of periplasmic permeases form a complex. Identification of the histidine permease HisQMP complex. J. Biol. Chem. 266: 98579865.
70. Kerr, I.D., 2004. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem. Biophys. Res. Commun. 315: 166173.
71. Kertesz, M. A., 2001. Bacterial transporters for sulfate and organosulfur compounds. Res. Microbiol. 152: 279290.
72. Kim, H., and, S. K. Farrand. 1997. Characterization of the acc operon from the nopaline-type Ti plasmid pTic58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84. J. Bacteriol. 179: 75597572.
73. Kolenbrander, P. E.,, R. N. Andersen, and, N. Ganeshkumar. 1994. Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect. Immun. 62: 44694480.
74. Kossman, M.,, C. Wolff, and, M. Manson. 1988. Maltose chemoreceptor of Escherichia coli: interaction of maltose-binding protein and the Tar signal transducer. J. Bacteriol. 170: 45164521.
75. Kuan, G.,, E. Dassa,, W. Saurin,, M. Hofnung, and, M. H. Saier. 1995. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146: 271278.
76. Kung, C., and, P. Blount. 2004. Channels in microbes: so many holes to fill. Mol. Microbiol. 53: 373380.
77. Lampinen, M.,, O. Pentikainen,, M. S. Johnson, and, K. Keinanen. 1998. AMPA receptors and bacterial periplasmic amino acid-binding proteins share the ionic mechanism of ligand recognition. EMBO J. 17: 47044711.
78. Lanfermeijer, F. C.,, A. Picon,, W. N. Konings, and, B. Poolman. 1999. Kinetics and consequences of binding of nona- and dodecapeptides to the oligopeptide binding protein (OppA) of Lactococcus lactis. Biochemistry 38: 1444014450.
79. Leonard, B. A. B.,, A. Podbielski,, P. J. Hedberg, and, G. M. Dunny. 1996. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc. Natl. Acad. Sci. USA 93: 260264.
80. Levdikov, V. M.,, E. V. Blagova,, J. A. Brannigan,, L. Wright,, A. A. Vagin, and, A. J. Wilkinson. 2005. The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide. J. Mol. Biol. 345: 879892.
81. Linton, K. J., and, C. F. Higgins. 1998. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol. Microbiol. 28: 513.
82. Locher, K. P.,, A. T. Lee, and, D. C. Rees. 2002. The E. coli BtuCD structure:a framework for ABC transporter architecture and mechanism. Science 296: 10911098.
83. Lyi, S. M.,, S. Jafri, and, S. C. Winans. 1999. Mannopinic acid and agropinic acid catabolism region of the octopine-type Ti plasmid pTi15955. Mol. Microbiol. 31: 339347.
84. Marra, A.,, S. Lawson,, J. S. Asundi,, D. Brigham, and, A. E. Hromockyj. 2002. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148: 14831491.
85. Merlin, C.,, G. Gardiner,, S. Durand, and, M. Masters. 2002. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J. Bacteriol. 184: 55135517.
86. Mikkat, S., and, M. Hagemann. 2000. Molecular analysis of the ggtBCD gene cluster of Synechocystis sp strain PCC6803 encoding subunits of an ABC transporter for osmoprotective compounds. Arch. Microbiol. 174: 273282.
87. Mills, J.,, N. R. Wyborn,, J. A. Greenwood,, S. G. Williams, and, C. W. Jones. 1998. Characterisation of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus. Eur. J. Biochem. 251: 4553.
88. Montesinos, M. L.,, A. Herrero, and, E. Flores. 1997. Amino acid transport in taxonomically diverse cyanobacteria and identification of two genes encoding elements of a neutral amino acid permease putatively involved in recapture of leaked hydrophobic amino acids. J. Bacteriol. 179: 853862.
89. Mourez, M.,, M. Hofnung, and, E. Dassa. 1997. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J. 16: 20662077.
90. Nanavati, D. M.,, T. N. Nguyen, and, K. M. Noll. 2005. Substrate specificities and expression patterns reflect the evolutionary divergence of maltose ABC transporters in Thermotoga maritima. J. Bacteriol. 187: 20022009.
91. Navarro, C.,, L. F. Wu, and, M. A. Mandrand-Berthelot. 1993. The nik operon of Escherichia coli encodes a periplasmic binding protein-dependent transport system for nickel. Mol. Microbiol. 9: 11811191.
92. Neugebauer, H.,, C. Herrmann,, W. Kammer,, G. Schwarz,, A. Nordheim, and, V. Braun. 2005. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. Bacteriol. 187: 83008311.
93. Obis, D.,, A. Guillot,, J. C. Gripon,, P. Renault,, A. Bolotin, and, M. Y. Mistou. 1999. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J. Bacteriol. 181: 62386246.
94. Orso, E.,, C. Broccardo,, W. E. Kaminski,, A. Bottcher,, G. Liebisch,, W. Drobnik,, A. Gotz,, O. Chambenoit,, W. Diederich,, T. Langmann,, T. Spruss,, M. F. Luciani,, G. Rothe,, K. J. Lackner,, G. Chimini, and, G. Schmitz. 2000. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and ABC1-deficient mice. Nat. Genet. 24: 192196.
95. Parra-Lopez, C.,, R. Lin,, A. Aspedon, and, E. A. Groisman. 1994. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J. 13: 39643972.
96. Pattery, T.,, J. P. Hernalsteens, and, H. De Greve. 1999. Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol. Microbiol. 33: 791805.
97. Paulsen, I. T.,, L. Nguyen,, M. K. Sliwinski,, R. Rabus, and, M. H. Saier. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.J. Mol. Biol. 301: 75100.
98. Paulsen, I. T.,, M. K. Sliwinski, and, M. H. Saier, Jr., 1998. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277: 573592.
99. Pavelka, M. J.,, S. F. Hayes, and, R. P. Silver. 1994. Characterization of KpsT, the ATP-binding component of the ABC transporter involved with the export of capsular polysialic acid in Escherichia coli K1. J. Biol. Chem. 269: 2014920158.
100. Quentin, Y.,, G. Fichant, and, F. Denizot. 1999. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J. Mol. Biol. 287: 467484.
101. Quiocho, F. A., and, P. S. Ledvina. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20: 1725.
102. Reeves, A. R.,, J. N. D’Elia,, J. Frias, and, A. A. Salyers. 1996. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J. Bacteriol. 178: 823830.
103. Reyes, C. L., and, G. Chang. 2005. Structure of the ABC transporter MsbA in complex with ADP-vanadate and lipopolysaccharide. Science 308: 10281031.
104. Richet, E.,, N. Joly, and, O. Danot. 2005. Two domains of MaIT, the activator of the Escherichia coli maltose regulon, bear determinants essential for anti-activation by MalK. J. Mol. Biol. 347: 110.
105. Rince, A.,, A. Dufour,, P. Uguen,, J. P. Lepennec, and, D. Haras. 1997. Characterization of the lacticin 481 operon:the Lactococcus lactisgeneslctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl. Environ. Microbiol. 63: 42524260.
106. Russell, R. R. B.,, J. Aduse-Opoku,, I. C. Sutcliffe,, L. Tao, and, J. J. Ferretti. 1992. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 46314637.
107. Sanders, J. D.,, L. D. Cope, and, E. J. Hansen. 1994. Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect. Immun. 62: 45154525.
108. Saurin, W.,, M. Hofnung, and, E. Dassa. 1999. Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J. Mol. Evol. 48: 2241.
109. Saurin, W.,, W. Koster, and, E. Dassa. 1994. Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol. Microbiol. 12: 9931004.
110. Schäfer, K.,, U. Magnusson,, F. Scheffel,, A. Schiefner,, M. O. J. Sandgren,, K. Diederichs,, W. Welte,, A. Hulsmann,, E. Schneider, and, S. L. Mowbray. 2004. X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J. Mol. Biol. 335: 261274.
111. Schiefner, A.,, G. Holtmann,, K. Diederichs,, W. Welte, and, E. Bremer. 2004. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus.J. Biol. Chem. 279: 4827048281.
112. Schlosser, A.,, T. Kampers, and, H. Schrempf. 1997. The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport. J. Bacteriol. 179: 20922095.
113. Schneider, E., 2001. ABC transporters catalyzing carbohydrate uptake. Res. Microbiol. 152: 303310.
114. Schneider, E., and, S. Hunke. 1998. ATP-bindingcassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing sub-units/domains. FEMS Microbiol. Rev. 22: 120.
115. Schuurman-Wolters, G. K., and, B. Poolman. 2005. Substrate specificity and ionic regulation of GlnPQ from Lactococcus lactis. An ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains.J. Biol. Chem. 280: 2378523790.
116. Self, W. T.,, A. M. Grunden,, A. Hasona, and, K. T. Shanmugam. 2001. Molybdate transport. Res. Microbiol. 152: 311321.
117. Sharff, A. J.,, L. E. Rodseth,, J. C. Spurlino, and, F. A. Quiocho. 1992. Crystallographic evidence of a large ligand-induced hinge-twist motion between the 2 domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31: 1065710663.
118. Sheps, J. A.,, S. Ralph,, Z. Zhao,, D. L. Baillie, and, V. Ling. 2004. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol 5: R15.
119. Stumpe, S., and, E. P. Bakker. 1997. Requirement of a large K+ -uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli. Arch. Microbiol. 167: 126136.
120. Suzuki, H.,, T. Koyanagi,, S. Izuka,, A. Onishi, and, H. Kumagai. 2005. The yliA,-B,-C,and -Dgenes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J. Bacteriol. 187: 58615867.
121. Szmelcman, S., and, M. Hofnung. 1975. Maltose transport in Escherichia coli K-12:involvement of the bacteriophage X receptor. J. Bacteriol. 124: 112118.
122. Tomii, K., and, M. Kanehisa. 1998. A comparative analysis of ABC transporters in complete microbial genomes. Genome Res. 8: 10481059.
123. Touze, T.,, J. Eswaran,, E. Bokma,, E. Koronakis,, C. Hughes, and, V. Koronakis. 2004. Interactions underlying assembly of the Escherichia coli AcrABTolC multidrug efflux system. Mol. Microbiol. 53: 697706.
124. Traxler, B.,, D. Boyd, and, J. Beckwith. 1993. The topological analysis of integral cytoplasmic membrane proteins. J. Membr. Biol. 132: 111.
125. Vazquez de Aldana, C. R.,, M. J. Marton, and, A. G. Hinnebusch. 1995. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 alpha kinase GCN2 in amino acid-starved cells. EMBO J. 14: 31843199.
126. Vazquez, M.,, O. Santana, and, C. Quinto. 1993. The NodI and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccharide secretion proteins from Gram-negative bacteria. Mol. Microbiol. 8: 369377.
127. von Heijne, G., 1994. Membrane proteins: from sequence to structure. Annu. Rev. Biophys. Biomol. Struct. 23: 167192.
128. Wandersman, C., and, P. Delepelaire. 2004. Bacterial iron sources:from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611647.
129. Webb, E.,, K. Claas, and, D. Downs. 1998. thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J. Biol. Chem. 273: 89468950.
130. Weng, J.,, N. L. Mata,, S. M. Azarian,, R. T. Tzekov,, D. G. Birch, and, G. H. Travis. 1999. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in ABCR knockout mice. Cell 98: 1323.
131. Williams, W. A.,, R. G. Zhang,, M. Zhou,, G. Joachimiak,, P. Gornicki,, D. Missiakas, and, A. Joachimiak. 2004. The membrane-associated lipoprotein-9 GmpC from Staphylococcus aureus binds the dipeptide GlyMet via side chain interactions. Biochemistry 43: 1619316202.
132. Yaghmai, R., and, G. L. Hazelbauer. 1993. Strategies for differential sensory responses mediated through the same transmembrane receptor. EMBO J. 12: 18971905.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error