Chapter 19 : Osmoregulation in the Periplasm

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Osmoregulation in the Periplasm, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap19-2.gif


Osmoregulated periplasmic glucans (OPGs) were detected during the study of phospholipid turnover in by E. P. Kennedy’s group. In absence of OPGs, one may wonder if other periplasmic components can substitute for OPGs. The chapter talks about genomic overview of OPG biosynthesis, and mechanisms of OPG biosynthesis. The protein was recently shown to be composed of six transmembrane segments determining four large cytoplasmic domains and three very small periplasmic regions. OPG synthesis has been shown to be osmotically regulated in a wide range of proteobacteria. The virulence of depends on transport of OPGs to the periplasm, and the virulence of cannot be restored by coinoculation of mutant bacteria with purified OPGs. OPG-defective mutants characterized in various bacterial species have in common a highly pleiotropic phenotype, which is indicative of a global alteration of their envelope properties. Kennedy proposed that OPGs function as periplasmic osmoprotectants on the basis of their anionic character, where OPGs would participate in the Donnan equilibrium through the outer membrane, and he found, according to this hypothesis, that OPG synthesis is osmoregulated in . In an opgH mutant this system is constitutively opgH mutant regulator system is constitutively activated, and RcsC or/and RcsD could sense directly the OPGs present in the periplasm.

Citation: Jean-Pierre B, Jean-Marie L. 2007. Osmoregulation in the Periplasm, p 325-341. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Working model of the OPG biosynthetic complex of The variety of backbone structures and patterns of substitution are schematically represented (see text for details). In the inset is a typical DEAE-Sephacel anion-exchange column chromatography profile of [U-C]glucose-labeled OPGs according to ( ). Each peak consists of various backbone structures with similar charge/mass ratios (A. Bohin and J.-P. Bohin, unpublished observation).

Citation: Jean-Pierre B, Jean-Marie L. 2007. Osmoregulation in the Periplasm, p 325-341. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Altabe, S. G,, N. Inon de Iannino,, D. de Mendoza, and, R. A. Ugalde. 1994. New osmoregulated β(1–3),β(1–6) glucosyltransferase(s) in Azospirillum brasilense.J. Bacteriol. 176: 48904898.
2. Altabe, S. G.,, P. Talaga,, J.-M. Wieruszeski,, G. Lippens,, R. Ugalde, and, J.-P. Bohin. 1998. Periplasmic glucans of Azospirillum brasilense, p. 390. In C. Elmerich,, A. Kondorosi, and, W. E. Newton (ed.), Biological Nitrogen Fixation for the 21st Century. Kluwer Academic Publishers, Dordrecht, The Netherlands.
3. Arellano-Reynoso, B.,, N. Lapaque,, S. Salcedo,, G. Briones,, A. E. Ciocchini,, R. Ugalde,, E. Moreno,, I. Moriyon, and, J.-P. Gorvel. 2005. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival .Nat. Immunol. 6: 618625.
4. Astua-Monge, G.,, J. Freitas-Astua,, G. Bacocina,, J. Roncoletta,, S. A. Carvalho, and, A. Machado. 2005. Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J. Bacteriol. 187: 12011205.
5. Banta, L. M.,, J. Bohne,, S. D. Lovejoy, and, K. Dostal. 1998. Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaptation. J.Bacteriol. 180: 65976606.
6. Bhagwat, A. A.,, K. C. Gross,, R. E. Tully, and, D. L. Keister. 1996. Beta-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing β-(1→6) linkages. J. Bacteriol. 178: 46354642.
7. Bhagwat, A. A.,, R. E. Tully, and, D. L. Keister. 1993. Identification and cloning of a cyclic β-(1→3),(1→6)-D-glucan synthesis locus from Bradyrhizobium japonicum. FEMS Microbiol. Lett. 114: 139144.
8. Bohin, J.-P., 2000. Osmoregulated periplasmic glucans in Proteobacteria—a minireview. FEMS Microbiol. Lett. 186: 1119.
9. Bohin, J.-P., and, E. P. Kennedy. 1984a. Mapping of a locus (mdoA) that affects the biosynthesis of membrane-derived oligosaccharides in Escherichia coli.J. Bacteriol. 157: 956957.
10. Bohin, J.-P., and, E. P. Kennedy. 1984b. Regulation of the synthesis of membrane-derived oligosaccharides in Escherichia coli. Assay of phosphoglycerol transferase I in vivo. J. Biol. Chem. 259: 83888393.
11. Bohringer, J.,, D. Fischer,, G. Mosler, and, R. Hengge-Aronis. 1995. UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli.J. Bacteriol. 177: 413422.
12. Boos, W.,, U. Ehmann,, E. Bremer,, A. Middendorf, and, P. Postma. 1987. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J. Biol. Chem. 262: 1321213218.
13. Breedveld, M. W., and, K. J. Miller. 1994. Cyclic β-glucans of the family Rhizobiaceae. Microbiol. Rev. 58: 145161.
14. Breedveld, M. W.,, L. P. T. M. Zevenhuizen, and, A. J. B. Zehnder. 1992. Synthesis of β-(1,2)-glucans by Rhizobium leguminosarum biovar trifolii TA-1: factors influencing excretion. J. Bacteriol. 174: 63366342.
15. Briones, G.,, N. Inon de Iannino,, M. Steinberg, and, R. A. Ugalde. 1997. Periplasmic cyclic 1,2-β-glucan in Brucella spp. is not osmoregulated. Microbiology 143: 11151124.
16. Brown, D. G., and, C. Allen. 2004. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol. Microbiol. 53: 16411660.
17. Cangelosi, G. A.,, G. Martinetti, and, E. W. Nester. 1990. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic β–1,2-glucan. J. Bacteriol. 172: 21722174.
18. Case, C. C.,, B. Bukau,, S. Granett,, M. R.Villarejo, and, W. Boos. 1986. Contrasting mechanisms of envZ control of mal and pho regulon genes in Escherichia coli.J. Bacteriol. 166: 706712.
19. Cayley, D. S.,, H.J. Guttman, and, M. T. Record, Jr., 2000. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys.J. 78: 17481764.
20. Chen, R.,, A. A. Bhagwat,, R. Yaklich, and, D. L. Keister. 2002. Characterization of ndvD, the third gene involved in the synthesis of cyclic 3), (1–6)-D-glucans in Bradyrhizobium japonicum. Can. J. Microbiol. 48: 10081016.
21. Choma, A., and, I. Komaniecka. 2003. Characterization of Mesorhizobium huakuii cyclic beta-glucan. Acta Biochim. Pol. 50: 12731281.
22. Ciocchini, A. E.,, M. S. Roset,, N. Inon de Ian-nino, and, R. A. Ugalde. 2004. Membrane topology analysis of cyclic glucan synthase, a virulence determinant of Brucella abortus. J. Bacteriol. 186: 72057213.
23. Cogez, V.,, E. Gak,, A. Puskas,, S. Kaplan, and, J.-P. Bohin. 2002. The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans. Eur. J. Biochem. 269: 24732484.
24. Cogez, V.,, P. Talaga,, J. Lemoine, and, J.-P. Bohin. 2001. Osmoregulated periplasmic glucans of Er-winia chrysanthemi.J. Bacteriol. 183: 31273133.
25. Csonka, L. N., 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53: 121147.
26. Dartigalongue, C.,, D. Missiakas, and, S. Raina. 2001. Characterization of the Escherichia coli c E regulon.J. Biol. Chem. 276: 2086620875.
27. de Souza, A. A.,, M. A.T akita,, H. D. Coletta-Filho,, C. Caldana,, G. M.Y anai,, N. H. Muto,, R. C. de Oliveira,, L. R. Nunes, and, M. A. Machado. 2004. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol. Lett. 237: 341353.
28. Debarbieux, L.,, A. Bohin, and, J.-P. Bohin. 1997. Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli. J. Bacteriol. 179: 66926698.
29. Delcour, A. H.,, J. Adler,, C. Kung, and, B. Martinac. 1992. Membrane-derived oligosaccharides (MDO’s) promote closing of an E. coli porin channel. FEBS Lett. 304: 216220.
30. Dunlap, J.,, E. Minami,, A. A. Bhagwat,, D. L. Keister, and, G. Stacey. 1996. Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic 3 -glucan synthesis. Mol. Plant Microbe Interact. 9: 546555.
31. Dylan, T.,, D. R. Helinski, and, G. S. Ditta. 1990a. Hypoosmotic adaptation in Rhizobium meliloti requires β-(1→2)-glucan. J. Bacteriol. 172: 14001408.
32. Dylan, T.,, L. Ielpi,, S. Stanfield,, L. Kashyap,, C. Douglas,, M. Yanofsky,, E. Nester,, D. R. Helinski, and, G. Ditta. 1986. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 83: 44034407.
33. Dylan, T.,, P. Nagpal,, D. R. Helinski, and, G. S. Ditta. 1990b. Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J. Bacteriol. 172: 14091417.
34. Ebel, W.,, G. J. Vaughn,, H. K. Peters III, and, J. E. Trempy. 1997. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli.J. Bacteriol. 179: 68586861.
35. Fiedler, W., and, H. Rotering. 1988. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J. Biol. Chem. 263: 1468414689.
36. Forns, N.,, A. Juarez,, C. Madrid. 2005. Osmoregulation of the HtrA (DegP) protease of Escherichia coli: an Hha-H-NS complex represses HtrA expression at low osmolarity. FEMS Microbiol. Lett. 251: 7580.
37. Hanoulle, X.,, E. Rollet,, B. Clantin,, I. Landrieu,, C. Odberg-Ferragut,, G. Lippens,, J.-P. Bohin, and, V. Villeret. 2004. Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J. Mol. Biol. 342: 195205.
38. Hengge-Aronis, R., 2002. Stationary phase gene regulation: what makes an Escherichia coli promoter c S-selective? Curr. Opin. Microbiol. 5: 591595.
39. Hiniker, A., and, J. C. Bardwell. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases.J. Biol. Chem. 279: 1296712973.
40. Holtje, J.V.,, W. Fiedler,, H. Rotering,, B. Walderich, and, J. van Duin. 1988. Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. J. Biol. Chem. 263: 35393541.
41. Horlacher, R.,, K. Uhland,, W. Klein,, M. Ehrmann, and, W. Boos. 1996. Characterization of a cytoplasmic trehalase of Escherichia coli. J. Bacteriol. 178: 62506257.
42. Inon de Iannino, N.,, G. Briones,, M. Tolmasky, and, R. A. Ugalde. 1998. Molecular cloning and characterization of cgs, the Brucella abortus cyclic 3(1–2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J. Bacteriol. 180: 43924400.
43. Jackson, B. J., and, E. P. Kennedy. 1983. The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase. J. Biol. Chem. 258: 23942398.
44. Jackson, B. J.,, J.-P. Bohin, and, E. P. Kennedy. 1984. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J. Bacteriol. 160: 976981.
45. Kennedy, E. P., 1982. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 10921095.
46. Kennedy, E. P., 1996. Membrane derived oligosaccharides (periplasmic beta-D-glucans) of Escherichia coli, p. 10641074. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maga-nasik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella. Cellular and Molecular Biology,2nd ed. ASM Press, Washington, D.C.
47. Koch, A. L., 1998. The biophysics of the gram-negative periplasmic space. Crit. Rev. Microbiol. 24: 2359.
48. Kolbe, A.,, A. Tiessen,, H. Schluepmann,, M. Paul,, S. Ulrich, and, P. Geigenberger. 2005. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc. Natl. Acad. Sci. USA 102: 1111811123.
49. Komaniecka, I., and, A. Choma. 2003. Isolation and characterization of periplasmic cyclic beta-glucans of Azorhizobium caulinodans. FEMS Microbiol Lett. 227: 263269.
50. Lacour, S., and, P. Landini. 2004. c S-Dependent gene expression at the onset of stationary phase in Escherichia coli: function of c S-dependent genes and identification of their promoter sequences. J. Bacteriol. 186: 71867195.
51. Lacroix, J.-M., 1989. Etude genetique et physiologique de la regulation osmotique de la biosynthese du MDO chez Escherichia coli. Ph.D. thesis. Universite de Paris-Sud, Centre d’Orsay, France.
52. Lacroix, J.-M.,, E. Lanfroy,, V. Cogez,, Y. Lequette,, A. Bohin, and, J.-P. Bohin. 1999. The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans. J. Bacteriol. 181: 36263631.
53. Lacroix, J.-M.,, I. Loubens,, M. Tempete,, B. Menichi, and, J.-P. Bohin. 1991. The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol. Microbiol. 5: 17451753.
54. Lequette, Y.,, C. Odberg-Ferragut,, J.-P. Bohin, and, J.-M. Lacroix. 2004. Identification of mdoD, an mdoG paralog which encodes a twin-argininedependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J. Bacteriol. 186: 36953702.
55. Lequette, Y., 2002. Biosynthese des glucanes periplasmiques osmoregules chez Escherichia coli: analyse fonctionnelle des proteines MdoG et MdoH et caracterisation de deux nouvelles activites. Ph.D. thesis. Universite des Sciences et Technologie de Lille, France.
56. Levina, N.,, S. Totemeyer,, N. R. Stokes,, P. Louis,, M. A. Jones, and, I. R. Booth. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18: 17301737.
57. Link, A. J.,, K. Robison, and, G. M. Church. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18: 12591313.
58. Lippens, G.,, J.-M. Wieruszeski,, D. Horvath,, P. Talaga, and, J.-P. Bohin. 1998. Slow dynamics of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum as revealed by heteronuclear relaxation studies. J. Am. Chem. Soc. 120: 170177.
59. Loubens, I.,, L. Debarbieux,, A. Bohin,, J.-M. Lacroix, and, J.-P. Bohin. 1993. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol. Microbiol. 10: 329340.
60. Mah, T. F.,, B. Pitts,, B. Pellock,, G. C. Walker,, P. S. Stewart, and, G. A. O’Toole. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306310.
61. Mahajan-Miklos, S.,, M.-W. Tan,, L. G. Rahme, and, F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 4756.
62. Majdalani, N., and, S. Gottesman. 2005. The Rcs phosphorelay: a complex signal transduction system. Annu. Rev. Microbiol. 59: 379405.
63. Majdalani, N.,, M. Heck,, V. Stout, and, S. Gottesman. 2005. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli.J. Bacteriol. 187: 67706778.
64. Miller, K. J.,, E. P. Kennedy, and, V. N. Reinhold. 1986. Osmotic adaptation in Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231: 4851.
65. Mills, D., and, P. Mukhopadhyay. 1990. Organization of the hrpM locus of Pseudomonas syringae pv. syringae and its potential function in pathogenesis, p. 4757. In S. Silver,, A. M. Chakrabarty,, B. Iglewski, and, S. Kaplan (ed.), Pseudomonas: Biotransformation, Pathogenesis, and Evolving Biotechnology. ASM Press, Washington, D.C.
66. Minsavage, G.V.,, M. B. Mudgett,, R. E. Stall, and, J. B.J ones. 2004. Importance of opgH X cv of Xanthomonas campestris pv. vesicatoria in host-parasite interactions. Mol. Plant Microbe Interact. 17: 152161.
67. Mogensen, J. E., and, D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57: 326346.
68. Oliver, D. B., 1996. Periplasm, p. 88103. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maganasik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
69. Page, F.,, S. Altabe,, N. Hugouvieux-Cotte-Pattat,, J.-M. Lacroix,, J. Robert-Baudouy, and, J.-P. Bohin. 2001. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J. Bacteriol. 183: 31343141.
70. Pfeffer, P. E.,, G. Becard,, D. B. Rolin,, J. Uknalis,, P. Cooke, and, S. Tu. 1994. In vivo nuclear magnetic resonance study of the osmoregulation of phosphocholine-substituted 3 -1,3;1,6 cyclic glucan and its associated carbon metabolism in Bradyrhizobium japonicum USDA 110. Appl. Environ. Microbiol. 60: 21372146.
71. Poolman, B.,, P. Blount,, J. H. A. Folgering,, R. H. E. Friesen,, P. C. Moe, and, T. van der Heide. 2002. How do membrane proteins sense water stress? Mol. Microbiol. 44: 889902.
72. Puvanesarajah, V.,, F. M. Schell,, G. Stacey,, C. J. Douglas, and, E. W. Nester. 1985. Role for 2-linked-3 -D-glucan in the virulence of Agrobacterium tumefaciens.J. Bacteriol. 164: 102106.
73. Raina, S.,, R. Raina,, T. V. Venkatesh, and, H. K. Das. 1995. Isolation and characterization of a locus from Azospirillum brasilense Sp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant. Mol. Plant. Microbe Interact. 8: 322326.
74. Rajagopal, S.,, N. Eis,, M. Bhattacharya, and, K. W. Nickerson. 2003. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli. FEMS Microbiol. Lett. 223: 2531.
75. Rolin, D. B.,, P. E. Pfeffer,, S. F. Osman,, B. S. Szwergold,, F. Kappler, and, A. J. Benesi. 1992. Structural studies of a phosphocholine substituted 3 -(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim. Biophys. Acta 1116: 215225.
76. Roset, M. S.,, A. E. Ciocchini,, R. A. Ugalde, and, N. Inon de Iannino. 2004. Molecular cloning and characterization of cgt, the Brucella abortus cyclic 3 -1,2-glucan transporter gene, and its role in virulence. Infect. Immun. 72: 22632271.
77. Ruby, E. G., and, J. B. McCabe. 1988. Metabolism of periplasmic membrane-derived oligosaccharides by the predatory bacterium Bdellovibrio bacteriovorus 109J. J. Bacteriol. 170: 646652.
78. Santini, C.-L.,, A. Bernadac,, M. Zhang,, A. Chanal,, B. Ize,, C. Blanco, and, L.-F. Wu. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic upshock. J. Biol. Chem. 276: 81598164.
79. Sen, K.,, J. Hellman, and, H. Nikaido. 1988. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J. Biol. Chem. 263: 11821187.
80. Stock, J. B.,, B. Rauch, and, S. Roseman. 1977. Periplasmic space in Salmonella typhimurium and Escherichia coli.J. Biol. Chem. 252: 78507861.
81. Strom, A. R., and, I. Kaasen. 1993. Trehalose metabolism in Escherichia coli:stress protection and stress regulation gene expression. Mol. Microbiol. 8: 205210.
82. Swart, S.,, G. Smit,, B. J. J. Lugtenberg, and, J. W. Kijne. 1993. Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin. Mol. Microbiol. 10: 597605.
83. Talaga, P.,, B. Fournet, and, J.-P. Bohin. 1994. Periplasmic glucans of Pseudomonas syringae pv. syringae. J. Bacteriol. 176: 65386544.
84. Talaga, P.,, B. Stahl,, J.-M. Wieruszeski,, F. Hillenkamp,, S. Tsuyumu,, G. Lippens, and, J.-P. Bohin. 1996. Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans. J. Bacteriol. 178: 22632271.
85. Talaga, P.,, V. Cogez,, J.-M. Wieruszeski,, B. Stahl,, J. Lemoine,, G. Lippens, and, J.-P. Bohin. 2002. Osmoregulated periplasmic glucans of the freeliving photosynthetic bacterium Rhodobacter sphaeroides. Eur. J. Biochem. 269: 24642472.
86. Therisod, H.,, A. C. Weissborn, and, E. P. Kennedy. 1986. An essential function for acyl carrier protein in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 72367240.
87. Valentine, P. J.,, B. P. Devore, and, F. Heffron. 1998. Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. Infect. Immun. 66: 33783383.
88. Van Golde, L. M. G.,, H. Schulman, and, E. P. Kennedy. 1973. Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc. Natl. Acad. Sci. USA 70: 13681372.
89. Vojnov, A. A.,, H. Slater,, M. A. Newman,, M. J. Daniels, and, J. M. Dow. 2001. Regulation of the synthesis of cyclic glucan in Xanthomonas campestris by a diffusible signal molecule. Arch. Microbiol. 176: 415420.
90. Wang, P.,, C. Ingram-Smith,, J. A. Hadley, and, K. J. Miller. 1999. Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic β-glucan biosynthesis. J. Bacteriol. 181: 45764583.
91. Wieruszeski, J.-M.,, A. Bohin,, J.-P. Bohin, and, G. Lippens. 2001. In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J. Magn. Reson. 151: 16.
92. Wood, J. M., 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63: 230262.
93. Yeats, C., and, A. Bateman. 2003. The BON domain: a putative membrane-binding domain. Trends Biochem. Sci. 28: 352355.
94. Yim, H. H.,, R. L. Brems, and, M. Villarejo. 1994. Molecular characterization of the promoter of osmY, an rpoS-dependent gene. J. Bacteriol. 176: 100107.
95. York, W. S., 1995. A conformational model for cyclic 2)-linked glucans based on NMR analysis of the β-glucans produced by Xanthomonas campestris. Carbohydr. Res. 278: 205225.
96. Young, G. M., and, V. L. Miller. 1997. Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol. Microbiol. 25: 319328.


Generic image for table

Occurrences of OPG genes in various representative genomes

Citation: Jean-Pierre B, Jean-Marie L. 2007. Osmoregulation in the Periplasm, p 325-341. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error