Chapter 20 : Practical Applications for Periplasmic Protein Accumulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Practical Applications for Periplasmic Protein Accumulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap20-2.gif


The biotechnology industry has exploited the unique properties of the periplasm to produce industrially relevant products. For efficient periplasmic protein accumulation to occur, events in the cytoplasm related to translation initiation and protein folding of the mature domain need to be coordinated. In this chapter the authors demonstrate that nucleotide changes in the translation initiation region of the gene profoundly influenced periplasmic protein accumulation. There are many documented examples of cytoplasmic proteins having positive effects on periplasmic protein accumulation of endogenous or recombinant proteins. A possible molecular explanation is that the cytoplasmic resident protein is preventing the preprotein from negative pathways, such as premature folding and inclusion body formation, and keeping the protein in an unfolded state and allowing efficient export. There are three possible fates for newly secreted proteins upon release into the periplasmic space. First, proteins can misfold and aggregate forming insoluble inclusion bodies. Second, proteins can be proteolyzed by endogenous periplasmic and membrane proteases where the protease domain of membrane proteases is located in the periplasm. Lastly, proteins can successfully fold into the correct conformation and exist as soluble, biologically active proteins. The lack of an identified chaperone system in the periplasm has been hindering the advancement of recombinant periplasmic protein accumulation. The combination of over-expression of periplasmic components participating in protein-folding pathways and the inclusion of chemical additives has been reported and shown to have positive benefits.

Citation: Joly J, Laird M. 2007. Practical Applications for Periplasmic Protein Accumulation, p 345-360. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Conceptual model of protein secretion in spigot represents the transcriptional induction of the recombinant gene and the funnels represent the major processes that are involved in periplas-mic protein accumulation. Each major process has several subprocesses that can be limiting, resulting in decreased yield of the intended protein. In this example there is a limitation in the cytoplasmic membrane secretion step, which could manifest as an increase in precursor protein accumulation.

Citation: Joly J, Laird M. 2007. Practical Applications for Periplasmic Protein Accumulation, p 345-360. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Possible fates of proteins after secretion into the periplasm. Proteins have three potential fates in the periplasm: (i) aggregation and inclusion body formation, (ii) proteolysis, and (iii) folding to their proper conformation.

Citation: Joly J, Laird M. 2007. Practical Applications for Periplasmic Protein Accumulation, p 345-360. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Baker, D.,, A. K. Schiau, and, D.A. Agard. 1993. The role of pro regions in protein folding. Curr. Opin. Cell. Biol. 5: 966970.
2. Baneyx, F., and, G. Georgiou. 1990. In vivo degradation of secreted fusion proteins by the Escherichia coli outer membrane protease OmpT. J. Bacteriol. 172: 491494.
3. Baneyx, F., and, G. Georgiou. 1991. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular weight substrates in vivo. J. Bacteriol. 173: 26962703.
4. Barrett, C. M. L.,, N. Ray,, J. D. Thomas,, C. Robinson, and, A. Bolhuis. 2003. Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. Biochem. Biophys. Res. Commun. 304: 279284.
5. Barth, S.,, M. Huhn,, B. Matthey,, A. Klimka,, E. A. Galinski, and, A. Engert. 2000. Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66: 15721579.
6. Bass, S.,, Q. Gu, and, A. Christen. 1996. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J. Bacteriol. 178: 11541161.
7. Beck, R., and, H. Burtscher. 1994. Expression of human alkaline phosphatase in Escherichia coli. Protein Exp. Purif. 5: 192197.
8. Berges, H.,, E. Joseph-Liauzun, and, O. Fayet. 1996. Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli. Appl. Environ. Microbiol. 62: 5560.
9. Berkmen, M.,, D. Boyd, and, J. Beckwith. 2005. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J. Biol. Chem. 280: 1138711394.
10. Berks, B.C.,, T. Palmer, and, F. Sargent. 2000. The Tat protein export pathway. Mol. Microbiol. 35: 260274.
11. Berks, B. C.,, T. Palmer, and, F. Sargent. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47: 187254.
12. Bernadac, A.,, M. Gavioli,, J. C. Lazzaroni,, S. Raina, and, R. Lloubes. 1998. Escherichia coli tol-pal mutants form outer membrane vesicles. J. Bacteriol. 180: 48724878.
13. Bessette, P. H.,, F. Åslund,, J. Beckwith, and, G. Georgiou. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96: 1370313708.
14. Bessette, P. H.,, J. Qiu,, J. C. A. Bardwell,, J. R. Swartz, and, G. Georgiou. 2001. Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J. Bacteriol. 183: 980988.
15. Binet, R.,, S. Letoffe,, J. M. Ghigo,, P. Delepelaire, and, C. Wandersman. 1997. Protein secretion by gram-negative bacterial ABC exporters—a review. Gene 192: 711.
16. Blackwell, J. R., and, R. Horgan. 1991. A novel strategy for the production of a highly expressed recombinant protein in an active form. FEBS Lett. 295: 1012.
17. Blight, M. A., and, I. B. Holland. 1994. Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator. Trends Biotechnol. 12: 450455.
18. Bothmann, H., and, A. Plückthun. 1998. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotech-nol. 16: 376380.
19. Bothmann, H., and, A. Plückthun. 2000. The periplasmic Escherichia coli peptidylprolyl cis, transisomerase FkpA. J. Biol. Chem. 275: 1710017105.
20. Braun, V.,, J. Frenz,, K. Hantke, and, K. Schaller. 1980. Penetration of colicin M into cells of Escherichia coli. J. Bacteriol. 142: 162168.
21. Braun, V., and, C. Herrmann. 1993. Evolutionary relationship of uptake systems for biopolymers in Escherichia eoli: cross-complementation between the TonB-ExbB-ExbD and the TolA-TolQ-TolR proteins. Mol. Microbiol. 8: 261268.
22. Buchner, J.,, I. Pastan, and, U. Brinkmann. 1992. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Bioehem. 205: 263270.
23. Carmel, G.,, D. Hellstern,, D. Henning, and, J. W. Coulton. 1990. Insertion mutagenesis of the gene encoding the ferrichrome-iron receptor of Escherichia eoli K-12.J. Bacteriol. 172: 18611869.
24. Carter, P.,, R. F. Kelley,, M. L. Rodrigues,, B. Snedecor,, M. Covarrubias,, M. D. Velligan,, W. L. Wong,, A. M. Rowland,, C. E. Kotts,, M. E. Carver,, M. Yang,, J. H. Bourell,, H. M. Shepard, and, D. Henner. 1992. High level E. coli expression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163167.
25. Chang, C. N.,, M. Rey,, B. Bochner,, H. Heyneker, and, G. Gray. 1987. High-level secretion of human growth hormone by Escherichia coli. Gene 55: 189196.
26. Chang, J.Y., and, J. R. Swartz. 1993. Single-step solubilization and folding of IGF-I aggregates from Escherichia coli, p., 178188. In J. L. Cleland (ed.), Protein Folding: In Vivo and In Vitro. American Chemical Society, Washington, D.C.
27. Chen, C.,, B. Snedecor,, J. C. Nishihara,, J. C. Joly,, N. McFarland,, D. C. Andersen,, J. E. Battersby, and, K. M. Champion. 2004. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol. Bioeng. 85: 463474.
28. Chen, R., and, U. Henning. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19: 12871294.
29. Clark, E. D. B., 2001. Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12: 202207.
30. Connolly, L.,, A. De Las Penas,, B. M. Alba, and, C. A. Gross. 1997. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev. 11: 20122021.
31. Cooksey, B. A.,, G. C. Sampey,, J. L. Pierre,, X. Zhang,, J. D. Karwoski,, G. H. Choi, and, M. W. Laird. 2004. Production of biologically active Bacillus anthracis edema factor in Escherichia coli. Biotechnol. Prog. 20: 16511659.
32. Dabora, R. L., and, C. L. Cooney. 1990. Intracellular lytic enzyme systems and their use for disruption of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 43: 1130.
33. Danese, P. N., and, T. J. Silhavy. 1997. The σ E and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev. 11: 11831193.
34. Danese, P. N.,, W. B. Snyder,, C. L. Cosma,, L. J. B. Davis, and, T. J. Silhavy. 1995. The cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev. 9: 387398.
35. Dartigalongue, C., and, S. Raina. 1998. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J. 17: 39683980.
36. De Cock, H.,, U. Schäfer,, M. Potgeter,, R. Demel,, M. Müller, and, J. Tommassen. 1999. Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. Eur. J. Biochem. 259: 96103.
37. DeLisa, M. P.,, P. Samuelson,, T. Palmer, and, G. Georgiou. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J. Biol. Chem. 277: 2982529381.
38. DeLisa, M. P.,, D. Tullman, and, G. Georgiou. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. USA 100: 61156120.
39. Derman, A. I., and, J. Beckwith. 1991. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J. Bacteriol. 173: 77197722.
40. Derman, A. I.,, W. A. Prinz,, D. Belin, and, J. Beckwith. 1993. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262: 17441747.
41. Dracheva, S.,, R. E. Palermo,, G. D. Powers, and, D. S. Waugh. 1995. Expression of soluble human interleukin-2 receptor alpha-chain in Escherichia coli. Protein Expr. Purif. 6: 737747.
42. Duguay, A. R., and, T. J. Silhavy. 2004. Quality control in the bacterial periplasm. Biochim. Biophys. Acta 1694: 121134.
43. Ejima, D.,, M. Watanabe,, Y. Sato,, M. Date,, N. Yamada, and, Y. Takahara. 1999. High yield refolding and purification process for recombinant human interleukin-6 expressed in Escherichia coli. Biotechnol. Bioeng. 62: 301310.
44. Fahey, R. C.,, W. C. Brown,, W. B. Adams, and, M. B. Worsham. 1978. Occurrence of glutathione in bacteria. J. Bacteriol. 133: 11261129.
45. Frech, C., and, F. X. Schmid. 1995. DsbA-mediated disulfide bond formation and catalyzed prolyl isomerization in oxidative protein folding. J. Biol. Chem. 270: 53675374.
46. Fuh, G.,, M. G. Mulkerrin,, S. Bass,, N. McFarland,, M. Brochier,, J. H. Bourell,, D. R. Light, and, J. A. Wells. 1990. The human growth hormone receptor. J. Biol. Chem. 265: 31113115.
47. Gerritse, G.,, R. Ure,, F. Bizoullier, and, W. J. Quax. 1998. The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas aclaligenes as a bottleneck for lipase production. J. Biotechnol. 64: 2338.
48. Grodberg, J., and, J.J. Dunn. 1988. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170: 12451253.
49. Hancock, R. E. W., 1984. Alterations in outer membrane permeability. Annu. Rev. Microbiol. 38: 237264.
50. Hancock, R.W., and, V. Braun. 1976. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and phi80 to Escherichia coli. J. Bacteriol. 125: 409415.
51. Hara, H.,, N. Abe,, M. Nakakouji,, Y. Nishimura, and, K. Horiuchi. 1996. Overproduction of penicillin-binding protein 7 suppresses thermosensitive growth defect at low osmolarity due to an spr mutation of Escherichia coli. Microb. Drug Resist. 2: 6372.
52. Hara, H.,, Y. Nishimura,, J. I. Kato,, H. Suzuki,, H. Nagasawa,, A. Suzuki, and, Y. Hirota. 1989. Genetic analyses of processing involving C-ter-minal cleavage in penicillin-binding protein 3 of Escherichia coli. J. Bacteriol. 171: 58825889.
53. Hara, H.,, Y. Yamamoto,, A. Higashitani,, H. Suzuki, and, Y. Nishimura. 1991. Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. J. Bacteriol. 173: 47994813.
54. Hartl, F. U.,, S. Lecker,, E. Scheibel,, J. P. Hendrick, and, W. Wickner. 1990. The binding of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli membrane. Cell 63: 269279.
55. Hayhurst, A., and, W. J. Harris. 1999. Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Exp. Purif. 15: 336343.
56. Hiniker, A., and, J. C. A. Bardwell. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279: 12961297.
57. Hobot, J. A.,, E. Carlemalm,, W. Villiger, and, E. Kellenberger. 1984. Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J. Bacteriol. 160: 143152.
58. Horne, S. M., and, K. D. Young. 1995. Escherichia coli and other species of the Enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Arch. Microbiol. 163: 357365.
59. Humphreys, D. P., 2003. Production of antibodies and antibody fragments in Escherichia coli and a comparison of their functions, uses and modification. Curr. Opin. Drug Discov. Devel. 6: 188196.
60. Humphreys, D. P.,, M. Sehdev,, A. P. Chapman,, R. Ganesh,, B. J. Smith,, L. M. King,, D. J. Glover,, D. G. Reeks, and, P. E. Stephens. 2000. High-level periplasmic expression in Escherichia coli using a eukaryotic signal peptide: importance of codon usage at the 5′ end of the coding sequence. Protein Exp. Purif. 20: 252264.
61. Humphreys, D. P.,, N. Weir,, A. Lawson,, A. Mountain, and, P. A. Lund. 1996. Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab′ fragment expressed in Escherichia coli. FEBS Lett. 380: 194197.
62. Hwang, C.,, A. J. Sinskey, and, H. F. Lodish. 1992. Oxidized redox state of glutathione. Science 257: 14961502.
63. Irvin, R.T.,, A. K C hatterjee,, K. E. Sanderson, and, J. W. Costerton. 1975. Comparison of the cell envelope structure of a lipopolysaccharide-defective (heptose-deficient) strain and a smooth strain of Salmonella typhimurium.J. Bacteriol. 124: 930941.
64. Jeong, K. J., and, S. Y. Lee. 2000. Secretory production of human leptin in Escherichia coli. Biotechnol. Bioeng. 67: 398407.
65. Jeong, K. J., and, S. Y. Lee. 2001. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Exp. Purif. 23: 311318.
66. Joly, J. C, W. S. Leung, and J. R. Swartz., 1998. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-1 accumulation. Proc. Natl. Acad. Sci. USA 95: 27732777.
67. Kadokura, H.,, F. Katzen, and, J. Beckwith. 2003. protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72: 111135.
68. Kloser, A.,, M. Laird,, M. Deng, and, R. Misra. 1998. Modulations in lipid A and phospholipid biosynthesis pathways influence outer membrane protein assembly in Escherichia coli K-12. Mol. Microbiol. 27: 10031008.
69. Kolmar, H.,, P. R.H. Waller, and, R.T. Sauer. 1996. The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J. Bacteriol. 178: 59255929.
70. Kumamoto, C. A., 1991. Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Mol. Microbiol. 5: 1922.
71. Kumamoto, C. A., and, O. Francetic. 1993. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. J. Bacteriol. 175: 21842188.
72. Laird, M. W.,, K. Cope,, R. Atkinson,, M. Donahoe,, K. Johnson, and, M. Melick. 2004a. Keratinocyte growth factor-2 production in an ompT-deficient Escherichia coli K-12 mutant. Biotechnol. Prog. 20: 4450.
73. Laird, M. W.,, G. C. Sampey,, K. Johnson,, D. Zukauskas,, J. Pierre,, J. S. Hong,, B. A. Cooksey,, Y. Li,, O. Galperina,, J. D. Karwoski, and, R. N. Burke. 2005. Optimization of BLyS production and purification from Escherichia coli. Protein Exp. Purif. 39: 237246.
74. Laird, M. W.,, D. Zukauskas,, K. Johnson,, G. C. Sampey,, H. Olsen,, J. D. Karwoski,, B. A. Cooksey,, G. H. Choi,, J. Askins,, A. Tsai,, J. Pierre, and, W. Gwinn. 2004b. Production and purification of Bacillus anthracis protective antigen from Escherichia coli. Protein Exp. Purif. 38: 145152.
75. Lazar, S. W., and, R. Kolter. 1996. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178: 17701773.
76. Le Calvez, H.,, J. M. Green, and, D. Baty. 1996. Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate Pe1B signal sequence. Gene 170: 5155.
77. Levengood-Freyermuth, S. K.,, E. M. Click, and, R. E. Webster. 1993. Role of the carboxyl-terminal domain of TolA in protein import and integrity of the outer membrane. J. Bacteriol. 175: 222228.
78. Leung, W. S., and, J. R. Swartz. 2001. Process for bacterial production of polypeptides. U.S. Patent 6,258,560 B1.
79. Levy, R.,, R. Weiss,, G. Chen,, B. L. Iverson, and, G. Georgiou. 2001. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Exp. Purif. 23: 338347.
80. Link, A. J.,, D. Phillips, and, G. M. Church. 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179: 62286237.
81. Liu, J., and, C. T. Walsh. 1990. Peptidyl-prolyl cistrans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc. Natl. Acad. Sci. USA 87: 40284032.
82. Luirink, J.,, S. High,, H. Wood,, A. Giner,, D. Tollervey, and, B. Dobberstein. 1992. Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature 359: 741743.
83. Lundrigan, M. D.,, J. H. Lancaster, and, C. F. Earhart. 1983. UC-1, a new bacteriophage that uses the tonA polypeptide as its receptor. J. Virol. 45: 700707.
84. Malamy, M. H., and, B. L. Horecker. 1964. Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistry 3: 18891893.
85. Meerman, H. J., and, G. Georgiou. 1994. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology 12: 11071110.
86. Metcalf, W. W.,, W. Jiang, and, B. L. Wanner. 1994. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers. Gene 138: 17.
87. Miller, J. D.,, H. D. Bernstein, and, P. Walter. 1994. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367: 657659.
88. Misra, R.,, M. Castillokeller, and, M. Deng. 2000. Overexpression of protease-deficient DegP S210A rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J. Bacteriol. 182: 48824888.
89. Missiakas, D., and, S. Raina. 1997. Protein folding in the bacterial periplasm. J. Bacteriol. 179: 24652471.
90. Mori, T.,, K. R. Gustafson,, L. K. Pannell,, R. H. Shoemaker,, L. Wu,, J. B. McMahon, and, M. R. Boyd. 1998. Recombinant production of cyano-virin-N, a potent human immunodeficiency virus-inactivating protein derived from a cultured cyanobacterium. Protein Exp. Purif. 12: 151158.
91. Nakae, T., and, H. Nikaido. 1975. Outer membrane as a diffusion barrier in Salmonella typhimurium. Penetration of oligo- and polysaccharides into isolated outer membrane vesicles and cells with degraded peptidoglycan layer. J. Biol. Chem. 250: 73597365.
92. Neu, H. C., and, L. A. Heppel. 1964. The release of ribonuclease into the medium when Escherichia coli cells are converted to spheroplasts. J. Biol. Chem. 239: 38933900.
93. Neu, H. C., and, L. A. Heppel. 1965. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240: 36853692.
94. Nikaido, H., and, M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 132.
95. Owens, R. A., and, P. E. Hartman. 1986. Export of glutathione by some widely used Salmonella typhimurium and Escherichia coli strains. J. Bacteriol. 168: 109114.
96. Parker, C. T.,, A. W. Kloser,, C. A. Schnaitman,, M. A. Stein,, S. Gottesman, and, B. W. Gibson. 1992. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J. Bacteriol. 174: 25252538.
97. Perez-Perez, J.,, G. Márquez,, J. L. Barbero, and, J. Gutierrez. 1994. Increasing the efficiency of protein export in Escherichia coli. Bio/Technology 12: 178180.
98. Perez-Perez, J.,, C. Martinez-Caja,, J. L. Barbero, and, J. Gutierrez. 1995. DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte-colony stimulating factor in Escherichia coli. Biochem. Biophys. Res. Commun. 210: 524529.
99. Phillips, G.J., and, T. J. Silhavy. 1990. Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Nature 344: 882884.
100. Phillips, G. J., and, T. J. Silhavy. 1992. The E. coliffh gene is necessary for viability and efficient protein export. Nature 359: 744746.
101. Pittman, M. S.,, H. C. Robinson, and, R. K. Poole. 2005. A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J. Biol. Chem. 280: 3225432261.
102. Pogliano, J.,, A. S. Lynch,, D. Belin,, E. C. C. Lin, and, J. Beckwith. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 11: 11691182.
103. Posfai, G.,, V. Kolisnychenko,, Z. Bereczki, and, F. R. Blattner. 1999. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 27: 44094415.
104. Prinz, W. A.,, F. Åslund,, A. Holmgren, and, J. Beckwith. 1997. The role of the thioredoxn and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272: 1566115667.
105. Pritchard, M. P.,, R. Ossetian,, D. N. Li,, C. J. Henderson,, B. Burchell,, C. R. Wolf, and, T. Friedberg. 1997. A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1. Arch. Biochem. Biophys. 345: 342354.
106. Pugsley, A. P., 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57: 50108.
107. Pugsley, A. P.,, O. Francetic,, K. Hardie,, O. M. Possot,, N. Sauvonnet, and, A. Seydel. 1997. Pullulanase: model protein substrate for the general secretory pathway of gram-negative bacteria. Folia Microbiol. 42: 184192.
108. Qiu, J.,, J. R. Swartz, and, G. Georgiou. 1998. Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Env. Microbiol. 64: 48914896.
109. Raivio, T. L., and, T. J. Silhavy. 2001. Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol. 55: 591624.
110. Rathore, D.,, S. K. Nayak, and, J. K. Batra. 1996. Expression of ribonucleolytic toxin restrictocin in Escherichia coli: purification and characterization. FEBS Lett. 392: 259262.
111. Ribes, V.,, K. Romisch,, A. Giner,, B. Dobberstein, and, D. Tollervey. E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell 63: 591600.
112. Richarme, G., and, T. D. Caldas. 1997. Chaperone properties of the bacterial periplasmic substrate-binding proteins. J. Biol. Chem. 272: 1560715612.
113. Rietsch, A., and, J. Beckwith. 1998. The genetics of disulfide bond metabolism. Annu. Rev. Genet. 32: 163184.
114. Rinas, U., and, F. Hoffmann. 2004. Selective leakage of host-cell proteins during high-cell density cultivation of recombinant and non-recombinant Escherichia coli. Biotechnol. Prog. 20: 679687.
115. Rudolph, R., and, S. Fischer. 1990. Process for obtaining renatured proteins. U.S. Patent 4,933,434.
116. Sandee, D.,, S. Tungpradabkul,, Y. Kurokawa,, K. Fukui, and, M. Takagi. 2005. Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv in Escherichia coli. Biotechnol. Bioeng. 91: 418424.
117. Schäffner, J.,, J. Winter,, R. Rudolph, and, E. Schwarz. 2001. Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl. Env. Microbiol. 67: 39944000.
118. Schnaitman, C. A., and, J. D. Klena. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57: 655682.
119. Scholz, C.,, P. Schaarschmidt,, A. M. Engel,, H. Andreas,, U. Schmitt,, E. Faatz,, J. Balbach, and, F. X. Schmid. 2005. Functional solubilization of aggregation-prone HIV envelope proteins by covalent fusion with chaperone modules. J. Mol. Biol. 345: 12291241.
120. Seluanov, A., and, E. Bibi. 1997. FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J. Biol. Chem. 272: 20532055.
121. Silber, K. R., and, R. T. Sauer. 1994. Deletion of the prc (tsp) gene provides evidence for additional tail-specific proteolytic activity in Escherichia coli K-12. Mol. Gen. Genet. 242: 237240.
122. Simmons, L. C.,, D. Reilly,, L. Klimkowski,, T. S. Raju,, G. Meng,, P. Sims,, K. Hong,, R. L. Shields,, L. A. Damico,, P. Rancatore, and, D. G. Yansura. 2002. Expression of full-length im-munoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263: 133147.
123. Simmons, L. C., and, D. G. Yansura. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629634.
124. Spiess, C.,, A. Beil, and, M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97: 339347.
125. Squires, C.,, D. Retallack,, L. Chew,, T. Ramseier,, J. C. Schneider, and, H. Talbot. 2004. Heterologous protein production in P.fluorescens. Bioproc. Int. 2: 5459.
126. Strauch, K., and, J. Beckwith. 1988. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc. Natl. Acad. Sci. USA 85: 15761580.
127. Studier, F. W.,, A. H. Rosenberg,, J. J. Dunn, and, J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 6069.
128. Sugimura, K., and, T. Nishihara. 1988. Purification, characterization, and primary structure of Es-cherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J. Bacteriol. 170: 56255632.
129. Suzuki, H.,, W. Hashimoto, and, H. Kumagai. 1999. Glutathione metabolism in Escherichia coli. J. Mol. Catal. B: Enzymat. 6: 175184.
130. Talmadge, K., and, W. Gilbert. 1982. Cellular location affects protein stability in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 18301833.
131. Taura, T.,, T. Baba,, Y. Akiyama, and, K. Ito. 1993. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J. Bacteriol. 175: 77717775.
132. Thome, B. M., and, M. Müller. 1991. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol. Microbiol. 5: 28152817.
133. Tong, W.-Y.,, S.-J.Y ao,, Z.-Q. Zhu, and, J. Yu. 2001. An improved procedure for production of epidermal growth factor from recombinant E. coli. Appl. Microbiol. Biotechnol. 57: 674679.
134. Traurig, M., and, R. Misra. 1999. Identification of bacteriophage K20 binding regions of OmpF and lipopolysaccharide in Escherichia coli K-12. FEMS Microbiol. Lett. 181: 101108.
135. Ulbrandt, N. D.,, J. A. Newitt, and, H. D. Bernstein. 1997. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88: 187196.
136. Von Heijne, G., 1990. The signal peptide. J. Membr. Biol. 115: 195201.
137. Wadensten, H.,, A. Ekebacke,, B. Hammarberg,, E. Holmgren,, C. Kalderen,, M. Tally,, T. Moks,, Uhlen, M., S. Josephson, and, M. Hartmanis. 1991. Purification and characterization of recombinant human insulin-like growth factor II (IGF-II) expressed as a secreted fusion protein in Escherichia coli. Biotechnol. Appl. Biochem. 13: 412421
138. Waller, P. R. H., and, R. T. Sauer. 1996. Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J. Bacteriol. 178: 11461153.
139. Walton, T. A., and, M. C. Sousa. 2004. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15: 367374.
140. Watanabe, M., and, G. Blobel. 1989a. SecB functions as a cytosolic signal recognition factor for protein export in E. coli. Cell 58: 695705.
141. Watanabe, M., and, G. Blobel. 1989b. Binding of a soluble factor of Escherichia coli to preproteins does not require ATP and appears to be the first step in protein export. Proc. Natl. Acad. Sci. USA 86: 22482252.
142. Webster, R. E., 1991. The tol gene products and the import of macromolecules into Escherichia coli. Mol. Microbiol. 5: 10051011.
143. Weidel, W., and, E. Kellenberger. 1955. The E. coli B-receptor for the phage T5. II. Electron microscopic studies. Biochim. Biophys. Acta 17: 19.
144. Weiss, J. B.,, P. H. Ray, and, P. J. Bassford, Jr., 1988. Purified SecB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc. Natl. Acad. Sci. USA 85: 89788982.
145. Wild, J.,, E. Altman,, T. Yura, and, C. A. Gross. 1992. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 6: 11651172.
146. Wild, J.,, P. Rossmeissl,, W. A. Walter, and, C. A. Gross. 1996. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli.J. Bacteriol. 178: 36083613.
147. Winter, J.,, H. Lilie, and, R. Rudolph. 2002. Renaturation of human proinsulin—a study on refolding and conversion to insulin. Anal. Biochem. 310: 148155.
148. Wulfing, C., and, A. Plückthun. 1994. Protein folding in the periplasm of Escherichia coli. Mol. Microbiol. 12: 685692.
149. Wunderlich, M., and, R. Glockshuber. 1993. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J. Biol. Chem. 268: 2454724550.
150. Xiong, X.,, J. N. Deeter, and, R. Misra. 1996. Assembly-defective OmpC mutants of Escherichia coli K-12.J. Bacteriol. 178: 12131215.
151. Xue, X.,, Z. Wang,, Z. Yan,, J. Shi,, W. Han, and, Y. Zhang. 2005. Production and purification of recombinant human BLyS mutant from inclusion bodies. Protein Exp. Purif. 42: 194199.
152. Young, K., and, L. L. Silver. 1993. Leakage of periplasmic enzymes from envAl strains of Escherichia coli. J. Bacteriol. 173: 36093614.
153. Young, R., and, U. Blasi. 1995. Holins: form and function in bacteriophage lysis. FEMS Microbiol. Rev. 17: 191205.
154. Zhan, X.,, J. Gao,, C. Jain,, M. J. Cieslewicz,, J. R. Swartz, and, G. Georgiou. 2004. Genetic analysis of disulfide bond isomerization in Escherichia coli: expression of DsbC is modulated by RNase Edependent mRNA processing. J. Bacteriol. 186: 654660.
155. Zhan, X.,, M. Schwaller,, H. F. Gilbert, and, G. Georgiou. 1999. Facilitating the formation of disulfide bonds in the Escherichia coli periplasm via coexpression of yeast protein disulfide isomerase. Biotechnol. Prog. 15: 10331038.
156. Zhu, Z.,, G. Zapata,, R. Shalaby,, B. Snedecor,, H. Chen, and, P. Carter. 1996. High level secretion of a humanized bispecific diabody from E. coli. Bio/Technology 14: 192196.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error