Chapter 21 : Periplasmic Expression of Antibody Fragments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Periplasmic Expression of Antibody Fragments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap21-2.gif


This chapter focuses on the biology and practical techniques that can help in the expression of antibody fragments in . The periplasm is often preferred for expression of soluble antibody fragments and some of the factors for this choice are discussed. The periplasm is the site of expression for only ~1/10 of the soluble proteins of and does not contain any DNA or RNA that can interfere with purification. Therefore combination of periplasmic expression with carefully considered harvest and extraction regimes can result in a very useful concentration and partial purification/enrichment of the periplasmic protein of interest. An important factor for enabling useful levels of protein expression is good selection or design of the expression plasmid. The key areas considered here are: (i) plasmid copy number/ origin of replication, (ii) constitutive versus inducible promoter, (iii) resistance/selection marker, and (iv) design of the coding region. The promoter along with depletion of phosphate has also been used to good effect for the production of antibody fragments. A notional advantage of periplasmic expression over extracellular expression is the ability to concentrate the product simply by harvesting the cells by centrifugation or filtration and avoiding vortex-type protein damage. The chapter describes various designs of antibody fragments along with the engineered adaptations and improvements to both the fragment and the host. The endoplasmic reticulum of eukaryotes is the natural site for the folding and assembly of antibodies.

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic representation of full-length IgG1 (human 71 isotype). Native IgG consists of two heavy-chain and two light-chain polypeptides. Each heavy chain has four domains: one variable (Vh) and three constant (C1-hinge-C2-C3). Each light chain has two domains: one variable (V) and one constant (C). The two heavy chains are covalently linked by disulfide bonds between hinges and each light chain is attached to a heavy chain by a disulfide bond. In native human IgG carbohydrate is attached to each heavy chain at Asn297 of the C2 domains.

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alfthan, K.,, K. Takkinen,, D. Sizmann,, H. Söderlund, and, T. T.T eeri. 1995. Properties of a single-chain antibody containing different linker peptides. Protein Eng. 8: 725731.
2. Andersson, H., and, G. Von Heijne. 1991. A 30-residue-long “export initiation domain” adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 97519754.
3. Arie, J. P.,, N. Sassoon, and, J. M. Betton. 2001. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39: 199210.
4. Arndt, K. M.,, K. M. Müller, and, A. Plückthun. 1998. Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry 37: 1291812926.
5. Arndt, K. M.,, K. Müller, and, A. Plückthun. 2001. Helix-stabilized Fv (hsFv) antibody fragments: substituting the constant domains of a Fab fragment for a heterodimeric coiled-coil domain. J. Mol. Biol. 312: 221228.
6. Atwell, J. L.,, K.A. Breheney,, L. J. Lawrence,, A. J. McCoy,, A. A. Kortt, and, P. J. Hudson. 1999. scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between Vh and Vl domains dictates precisely the transition between dia-bodies and triabodies. Protein Eng. 12: 597604.
7. Baneyx, F., and, J. L. Palumbo. 2003. Improving heterologous protein folding via molecular chaperone and foldase co-expression. Methods Mol. Biol. 205: 171197.
8. Bardwell, J. C. A., 1994. Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14: 199205.
9. Barth, S.,, M. Huhn,, B. Matthey,, A. Klimka,, E. A. Galinski, and, A. Engbert. 2000. Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66: 15721579.
10. Bass, S., and, J. R. Swartz. 1994. Method of controlling polypeptide production in bacterial cells. U.S. patent 5,304,472.
11. Beckmann, C.,, B. Haase,, K. N. Timmis, and, M. Tesar. 1998. Multifunctional g3p-peptide tag for current phage display systems. J. Immunol. Methods 212: 131138.
12. Behrens, S.,, R. Maier,, H. De Cock,, F. X. Schmid, and, C. A. Gross. 2001. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20: 285294.
13. Belin, P.,, J. Dassa,, P. Drevet,, E. Lajeunesse,, A. Savatier,, J. C. Boulain, and, A. Menez. 2004. Toxicity based selection of Escherichia coli mutants for functional recombinant protein production: application to an antibody fragment. Protein Eng. Des. Sel. 17: 491500.
14. Bessette, P. H.,, F. Åslund,, J. Beckwith, and, G. Georgiou. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96: 1370313708.
15. Bessette, P. H.,, J. Qiu,, J. C. A. Bardwell,, J. R. Swartz, and, G. Georgiou. 2001. Effects of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli.J. Bacteriol. 183: 980988.
16. Better, M.,, S. L. Bernhard,, S. P. Lei,, D. M. Fishwild,, J. A. Lane,, S. F. Carroll, and, A. H. Hor-witz. 1993. Potent anti-CD5 ricin A chain im-munoconjugates from bacterially produced Fab′ and F(ab′;) 2. Proc. Natl. Acad. Sci. USA 90: 457461.
17. Better, M.,, C. P. Chang,, R. R. Robinson, and, H. Horwitz. 1988. Escherichia coli secretion of an active chimeric antibody fragment. Science 240: 10411043.
18. Bird, R. E.,, K. D. Hardman,, J. W. Jacobson,, S. Johnson,, B. M. Kaufman,, S. M. Lee,, T. Lee,, S. H. Pope,, G. S. Riordan, and, M. Whitlow. 1988. Single-chain antibody-binding sites. Science 242: 423426.
19. Bitto, E., and, D. B. McKay. 2003. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic on integral outer membrane proteins. J. Biol. Chem. 278: 4931649322.
20. Björnsson, A.,, S. Mottagui-Tabar, and, L. A. Isaksson. 1996. Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J. 15: 16961704.
21. Blank, K.,, P. Lindner,, B. Diefenbach, and, A. Plückthun. 2002. Self-immobilizing recombinant antibody fragments for immunoaffinity chromatography: generic, parallel, and scalable protein purification. Protein Expr. Purific. 24: 313322.
22. Boldicke, T.,, F. Struck,, F. Schaper,, W. Tegge,, H. Solbeck,, B. Villbrandt,, P. Lankenau, and, M. Bocher. 2000. A new peptide-affinity tag for the detection and affinity purification of recombinant proteins with a monoclonal antibody. J. Immunol. Methods 240: 165183.
23. Bothmann, H., and, A. Plückthun. 1998. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16: 376380.
24. Bothmann, H., and, A. Plückthun. 2000. The periplasmic Escherichia coli peptidyl-prolyl cis/transisomerase FkpA. J. Biol. Chem. 275: 1710017105.
25. Bowden, G. A., and, G. Georgiou. 1988. The effect of sugars on β-lactamase aggregation in Escherichia coli. Biotechnol. Prog. 4: 97101.
26. Brizzard, B. L.,, R. G. Chubet, and, D. L. Vizard. 1994. Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. Biotechniques 16: 730735.
27. Carter, P.,, R. F. Kelley,, M. L. Rodrigues,, B. Snedecor,, M. Covarrubias,, M. D. Velligan,, W. L. T. Wong,, A. M. Rowland,, C. E. Kotts,, M. E. Carver,, M. Yang,, J. H. Bourell,, H. M. Shepard, and, D. Henner. 1992. High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Biotechnology 10: 163167.
28. Carter, P., and, J. A. Wells. 1987. Engineering enzyme specificity by “substrate-assisted catalysis.” Science 237: 394399.
29. Casali, N., 2003. Escherichia coli host strains. Methods Mol. Biol. 235: 2748.
30. Casey, J. L.,, A. M. Coley,, L. M. Tilley, and, M. Foley. 2000. Green fluorescent antibodies: novel in vitro tools. Protein Eng. 13: 445452.
31. Chang, A. C.Y., and, S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J. Bacteriol. 134: 11411156.
32. Chao, Y. P.,, C. J. Chiang, and, W. B. Hung. 2002b. Stringent regulation and high level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Biotechnol. Prog. 18: 394400.
33. Chao, Y. P.,, W. S. Law,, P. T. Chen, and, W. B. Hung. 2002a. High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system. Appl. Microb. Biotechnol. 58: 446453.
34. Chapman, A. P.,, P. Antoniw,, M. Spitali,, S. West,, S. Stephens, and, D. J. King. 1999. Therapeutic antibody fragments with prolonged in vivo halflives. Nat. Biotechnol. 17: 780783.
35. Chen, C.,, B. Snedecor,, J. C. Nishihara,, J. C. Joly,, N. McFarland,, D. C. Andersen,, J. E. Battersby, and, K. M. Champion. 2004. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degPprcspr) host strain. Biotechnol. Bioeng. 85: 463474.
36. Chen, R., and, U. Henning. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19: 12871294.
37. Chong, S.,, F. B. Mersha,, D. G. Comb,, M. E. Scott,, D. Landry,, C. A. Vence,, F. B. Perler,, J. Benner,, R. B. Kucera,, C. A. Hirvonen,, J. J. Pelletier,, H. Paulus, and, M. Q. Xu. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag dereived from a protein splicing element. Gene 192: 271281.
38. Chong, S.,, G. E. Montello,, A. Zhang,, E. J. Cantor,, W. Liao,, M. Q. Xu, and, J. Benner. 1998. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26: 51095115.
39. Chou, D. K.,, R. Krishnamurthy,, T. W. Randolph,, J. F. Carpenter, and, M. C. Manning. 2005. Effect of Tween 20 and Tween 80 on the stability of albutropin during agitation.J. Pharm. Sci. 94: 13681381.
40. Chou, M. M., and, D. A. Kendall. 1990. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. J. Biol. Chem. 265: 28732880.
41. Collins-Racie, L. A.,, J. M. McColgan,, K. L. Grant,, E. A. Diblasio-Smith,, J. M. McCoy, and, E. R. Lavallie. 1995. Production of recombinant bovine enterokinase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. Biotechnology 13: 982987.
42. Corisdeo, S., and, B. Wang. 2004. Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expr. Purific. 34: 270279.
43. Cristóbal, S.,, J. W. De Gier,, H. Nielsen, and, G. Von Heijne. 1999. Competition between Sec and TAT dependent protein translocation in Es-cherichia coli. EMBO J. 18: 29822990.
44. Dartigalongue, C.,, D. Missiakas, and, S. Raina. 2001. Characterization of the Escherichia coli <J E regulon. J. Biol. Chem. 276: 2086620875.
45. Dartigalongue, C., and, S. Raina. 1998. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J. 17: 39683980.
46. de Boer, H. A.,, L. J. Comstock, and, M. Vasser. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80: 2125.
47. Dennis, M. S.,, M. Zhang,, Y. G. Meng,, M. Kad-khodayan,, D. Kirchhofer,, D. Combs, and, L. A. Damico. 2002. Albumin binding as a general strategy for improving the pharmacokinetics of proteins.J. Biol. Chem. 277: 3503535043.
48. di Guan, C.,, P. Li,, P. D. Riggs, and, H. Inouye. 1988. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67: 2130.
49. Dooley, H.,, S. D. Grant,, W. J. Harris, and, A. J. Porter. 1998. Stabilization of antibody fragments in adverse environments. Biotechnol. Appl. Biochem. 28: 7783.
50. Dougherty, W. G.,, J. C. Carrington,, S. M. Cary, and, T. D. Parks. 1988. Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO J. 7: 12811287.
51. Ducancel, F.,, D. Gillet,, A. Carrier,, E. Lajeunesse,, A. Menez, and, J. C. Boulain. 1993. Recombinant colorimetric antibodies: construction and characterization of a bifunctional F(ab) 2/alkaline phosphate conjugate produced in Escherichia coli. Biotechnology 11: 601605.
52. Duong, F., and, W. Wickner. 1997. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of the preprotein translocase holoenzyme. EMBO J. 16: 27562768.
53. Durany, O.,, P. Bassett,, A. M. E. Weiss,, R. M. Cra-nenburgh,, P. Ferrer,, J. Lopez-Santin,, C. De Mas, and, J. A. J. Hanak. 2005. Production of fuculose-1-phosphate aldolase using operator-repressor titration for plasmid maintenance in high cell density Escherichia coli fermentations. Biotechnol. Bioeng. 91: 460467.
54. Evan, G. I.,, G. K. Lewis,, G. Ramsay, and, J. M. Bishop. 1985. Isolations of monoclonal antibodies specific for human -myc proto-oncogene product. Mol. Cell. Biol. 5: 36103616.
55. Ewert, S.,, C. Cambillau,, K. Conrath, and, A. Plückthun. 2002. Biophysical properties of camelidVhh domains compared to those of human Vh3 domains. Biochemistry 41: 36283636.
56. Fiedler, M., and, A. Skerra. 2001. proAB complementation of an auxotrophic E. coli strain improves plasmid stability and expression yield during fermenter production of a recombinant antibody fragment. Gene 274: 111118.
57. Fong, R. B.,, Z. Ding,, A. S. Hoffman, and, P. S. Stayton. 2002. Affinity separation using an Fv antibody fragment-“smart” polymer conjugate. Biotechnol. Bioeng. 79: 271276.
58. Forsberg, G.,, M. Forsgren,, M. Jaki,, M. Norin,, C. Sterky,, A. Enhorning,, K. Larsson,, M. Ericsson, and, P. Bjork. 1997. Identification of framework residues in a secreted recombinant antibody fragment that control production level and localization in Escherichia coli.J. Biol. Chem. 272: 1243012436.
59. Freund, C.,, A. Ross,, B. Guth,, A. Plückthun, and, T. A. Holak. 1993. Characterization of the linker peptide of the single-chain Fv fragment of an antibody by NMR spectroscopy. FEBS Lett. 320: 97100.
60. Garnett, M. C., 2001. Targeted drug conjugates: principles and progress. Adv. Drug Delivery Rev. 53: 171216.
61. Gavilondo, J.V., and, J. W. Larrick. 2000. Antibody engineering at the millennium. Biotechniques 29: 128145.
62. Glennie, M. J, and P. W. M. Johnson., 2000. Clinical trials of antibody therapy. Immunology Today 21: 403410.
63. Glennie, M.J.,, H. M. McBride,, A. T. Worth, and, G. T. Stevenson. 1987. Preparation and performance of bispecific F(ab ’7)2 antibody containing thioether-linked Fab ’7 fragments. J. Immunol. 139: 23672375.
64. Glockshuber, R.,, M. Malia,, I. Pfitzinger, and, A. Plückthun. 1990. A comparison of strategies to stabilize immunoglobulin Fv fragments. Biochemistry 29: 13621367.
65. Gold, L., 1988. Posttranslational regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57: 199233.
66. Goldman, E.,, A. H. Rosenberg,, G. Zubay, and, F. W. Studier. 1995. Consecutive low-usage leucine codons block translation only when near the 5′ end of a message in Escherichia coli.J. Mol. Biol. 245: 467473.
67. Grant, S. D.,, P. M. Cupit,, D. Learmonth,, F. R. Byrne,, B. M. Graham,, A. J. R. Porter, and, W.J. Harris. 1995. Expression of monovalent and bivalent antibody fragments in Escherichia coli.J. Hematother. 4: 383388.
68. Greenfield, L.,, T. Boone, and, G. Wilcox. 1978. DNA sequence of the araBAD promoter in Escherichia coli B/r. Proc. Natl. Acad. Sci. USA 75: 47244728.
69. Griep, R. A.,, C.Van Twisk,, J. M.Van Der Wolf, and, A. Schots. 1999. Fluobodies: green fluorescent single-chain Fv fusion proteins. J. Immunol. Methods 230: 121130.
70. Guzman, L. M.,, D. Belin,, M. J. Carson, and, J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 41214130.
71. Halaby, D. M.,, A. Poupon, and, J. P. Mornon. 1999. The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng. 12: 563571.
72. Hallewell, R.A., and, S. Emtage. 1980. Plasmid vectors containing the tryptophan operon promoter suitable for efficient regulated expression of foreign genes. Gene 9: 2747.
73. Hara, S., and, M. Yamakawa. 1996. Production in Escherichia coli of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 220: 664669.
74. Harrison, J. S.,, A. Gill, and, M. Hoare. 1998. Stability of a single-chain Fv antibody fragment when exposed to a high shear environment combined with air-liquid interfaces. Biotechnol. Bioeng. 59: 517519.
75. Harrison, S. T. L.,, J. S. Dennis, and, H. A. Cahse. 1991. Combined chemical and mechanical processes for the disruption of bacteria. Bioseparation 2: 95105.
76. Haught, C.,, G. D. Davis,, R. Subramanian,, K. W. Jackson, and, R. G. Harrison. 1998. Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol. Bioeng. 57: 5561.
77. Hayhurst, A., 2000. Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulinconstant domain. Protein Expr. Purific. 18: 110.
78. Hayhurst, A., and, W. J. Harris. 1999. Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purific. 15: 336343.
79. Hennecke, G.,, J. Nolte,, R. Volkmer-Engert,, J. Schneider-Mergener, and, S. Behrens. 2005. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J. Biol. Chem. 280: 2354023548.
80. Hexham, J. M.,, V. King,, D. Dudas,, P. Graff,, M. Mahnke,, Y. K. Wang,, J. F. Goetschy,, D. Plattner,, M. Zurini,, F. Bitsch,, P. Lake, and, M. E. Digan. 2001. Optimization of the anti-(human CD3) immunotoxin DT389-scFv(UCHT1) N-terminal sequence to yield a homogeneous protein. Biotechnol. Appl. Biochem. 34: 183187.
81. Hikita, C., and, S. Mizushima. 1992. Effects of total hydrophobicity and length of the hydrophobic domain of a signal peptide on the in vitro translocation efficiency. J. Biol. Chem. 267: 48824888.
82. Hochuli, E.,, W. Bannwarth,, H. Dobeli,, R. Gentz, and, D. Stuber. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biotechnology 6: 13211325.
83. Holliger, P.,, M. Wing,, J. D. Pound,, H. Bohlen, and, G. Winter. 1997. Retargeting serum immunoglobulins with bispecific diabodies. Nat. Biotechnol. 15: 632636.
84. Hu, S. Z.,, L. Shively,, A. Raubitschek,, M. Sherman,, L. E.Williams,, J.Y.C. Wong,, J. E. Shively, and, A. M. Wu. 1996. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56: 30553061.
85. Humphreys, D. P., 2003. Production of antibodies and antibody fragments in Escherichia coli and a comparison of their functions, uses and modification. Curr. Opin. Drug Discov. Devel. 6: 188196.
86. Humphreys, D. P.,, B. Carrington,, L. C. Bowering,, R. Ganesh,, M. Sehdev,, B. J. Smith,, L. M. King,, D. G. Reeks,, A. Lawson, and, A. G. Popplewell. 2002. A plasmid system for optimization of Fab′ production in Escherichia coli:im-portance of balance of heavy chain and light chain synthesis. Protein Expr. Purific. 26: 309320.
87. Humphreys, D. P.,, A. P. Chapman,, D. G. Reeks,, V. Lang, and, P. E. Stephens. 1997. Formation of dimeric Fabs in Escherichia coli: effect of hinge size and isotype, presence of interchain disulphide bond, Fab′ expression levels, tail piece sequences and growth conditions. J. Immunol. Methods 209: 193202.
88. Humphreys, D. P., and, D. J. Glover. 2001. Thera-peutic antibody production technologies: molecules, applications, expression and purification. Curr. Opin. Drug Discov. Devel. 4: 172185.
89. Humphreys, D. P.,, L. M. King,, S. M. West,, A. P. Chapman,, M. Sehdev,, M. W. Redden,, D. J. Glover,, B. J. Smith, and, P. E. Stephens. 2000. Improved efficiency of site-specific copper(II) ion-catalysed protein cleavage effected by mutagenesis of cleavage site. Protein Eng. 3: 201206.
90. Humphreys, D. P.,, O. M. Vetterlein,, A. P. Chapman,, D. J. King,, P. Antoniw,, A. J. Suitters,, D. G. Reeks,, T. A.H. Parton,, L. M. King,, B. J. Smith,, V. Lang, and, P. E. Stephens. 1998. F(ab′;) 2 molecules made from E. coli produced Fab′ with hinge sequences conferring increased serum permanence times in an animal model. J. Immunol. Methods 217: 110.
91. Humphreys, D. P.,, N. Weir,, A. Mountain, and, P. A. Lund. 1995. Human protein disulfide iso-merase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J. Biol. Chem. 270: 2821028215.
92. Humphreys, D. P.,, N. Weir,, A. Lawson,, A. Mountain, and, P. A. Lund. 1996. Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab′ fragment expressed in Escherichia coli. FEBS Lett. 380: 194197.
93. Huston, J. S.,, D. Levinson,, M. Mudgett-Hunter,, M. S.T ai,, J. Novotny,, M. N. Margolies,, R.J. Ridge,, R. E. Bruccoleri,, E. Haber,, R. Crea, and, H. Oppermann. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 58795883.
94. Ill, C. R.,, J. N. Gonzales,, E. K. Houtz,, J. R. Ludwig,, E. D. Melcher,, J. E. Hale,, R. Pourmand,, V. M. Keivens,, L. Myers,, K. Beidler,, P. Stuart,, S. Cheng, and, R. Radhakrishnan. 1997. Design and construction of a hybrid immunoglobulin domain with properties of both heavy and light chain variable regions. Protein Eng. 10: 949957.
95. Jäger, M., and, A. Plückthun. 1997. The rate-limiting steps for the folding of an antibody scFv fragment. FEBS. 418: 106110.
96. Joly, J. C.,, W. S. Leung, and, J. R. Swartz. 1998. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc. Natl. Acad. Sci. USA 95: 27732777.
97. Jones, C. H.,, P. N. Danese,, J. S. Pinkner,, T. J. Silhavy, and, S. J. Hultgren. 1997. The chaperoneassisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J. 16: 63946406.
98. Jurado, P.,, D. Ritz,, J. Beckwith,, V. De Lorenzo, and, L. A. Fernandez. 2002. Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J. Mol. Biol. 320: 110.
99. Kajava, A. V.,, S. N. Zolov,, A. E. Kalinin, and, M. A. Nesmeyanova. 2000. The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of gram-negative bacteria. J. Bacteriol. 182: 21632169.
100. Kane, J. F., 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Biol. 6: 494500.
101. King, D. J.,, A. Turner,, A. P. H. Farnsworth,, J. R. Adair,, R. J. Owens,, B. Pedley,, D. Baldock,, K. A. Proudfoot,, A. D. G. Lawson,, N. R. A. Beeley,, K. Millar,, T. A. Millican,, B. A. Boyce,, P. Antoniw,, A. Mountain,, R. H. J. Begent,, D. Shochat, and, G. T. Yarranton. 1994. Improved tumour targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54: 61766185.
102. Kipriyanov, S. M.,, G. Moldenhauer,, A. C. R. Martin,, O. A. Kupruyanova, and, M. Little. 1997. Two amino acid mutations in an anti-human CD3 single chain Fv antibody fragment that affect the yield of bacterial secretion but not the affinity. Protein Eng. 10: 445453.
103. Kitai, K.,, T. Kudo,, S. Nakamura,, T. Masegi,, Y. Ichikawa, and, K. Horikoshi. 1988. Extracellular production of human immunoglobulin G Fc region (hIg-Fc) by Escherichia coli. Appl. Microbiol. Biotechnol. 28: 5256.
104. Kleerebezem, M.,, M. Heutink, and, J. Tom-massen. 1995. Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidylprolyl cis/trans isomerase. Mol. Microbiol. 18: 313320.
105. Klein, B. K.,, J. O. Polazzi,, C. S. Devine,, S. H. Rangwala, and, P. O. Olins. 1992. Effects of signal peptide changes on the secretion of bovine somatotropin (bST) from Escherichia coli. Protein Eng. 5: 511517.
106. Knappik, A.,, C. Krebber, and, A. Plückthun. 1993. The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology 11: 7783.
107. Knappik, A., and, A. Plückthun. 1994. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antobody fragments. Biotechniques 17: 754761.
108. König, T., and, A. Skerra. 1998. Use of an albumin-binding domain for the selective immobilisation of recombinant capture antibody fragments on ELISA plates.J. Immunol. Methods 218: 7383.
109. Kostelny, S. A.,, M. S. Cole, and, J. Y.T so. 1992. Formation of a bispecific antibody by the use of leucine zippers.J. Immunol. 148: 15471553.
110. Kurokawa, Y.,, H. Yanagi, and, T. Yura. 2001. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J. Biol. Chem. 276: 1439314399.
111. Laforet, G.A., and, D.A. Kendall. 1991. Functional limits of conformation, hydrophobicity, and steric constraints in prokaryotic signal peptide cleavage regions. J. Biol. Chem. 266: 13261334.
112. Lauwereys, M.,, M. A. Ghahroudi,, A. Desmyter,, J. Kinne,, W. Holzer,, E. De Genst,, L. Wyns, and, S. Muyldermans. 1998. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17: 35123520.
113. Lazar, S. W., and, R. Kolter. 1996. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178: 17701773.
114. Le Calvez, H.,, J. Green, and, D. Baty. 1996. Increased efficiency of alkaline phosphatase production levels in Escherichia coli using a degenerate PelB signal sequence. Gene 170: 5155.
115. Li, P.,, J. Beckwith, and, H. Inouye. 1988. Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 76857689.
116. Lichty, J. J.,, J. L. Malecki,, H. D. Agnew,, D. J. Michelson-Horowitz, and, S. Tan. 2005. Comparison of affinity tags for protein purification. Protein Expr. Purific. 41: 98105.
117. Lo, K. M.,, A. Roy,, S. F. Foley,, J. T. Coll, and, S. D. Gillies. 1992. Expression and secretion of an assembled tetrameric CH2-deleted antibody in E. coli. Hum. Antibodies Hybridomas 3: 123128.
118. Lu, D.,, X. Jimenez,, H. Zhang,, P. Bohlen,, L. Witte, and, Z. Zhu. 2002. Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J. Immunol. Methods 267: 213226.
119. MacBeath, G., and, P. Kast. 1998. UGA read-through artifacts—when popular gene expression systems need a pATCH. Biotechniques 24: 789794.
120. Makrides, S. C., 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512538.
121. Mavrangelos, C.,, M. Thiel,, P. J. Adamson,, D. J. Millard,, S. Nobbs,, H. Zola, and, I. C. Nicholson. 2001. Increased yield and activity of soluble single-chain antibody fragments by combining high-level expression and the Skp chaperonin. Protein Expr. Purific. 23: 289295.
122. McKenzie, K. R.,, E. Adams,, W. J. Britton,, R.J. Garsia, and, A. Basten. 1991. Sequence and im-munogenicity of the 70-kDa heat shock protein of Mycobacterium leprae.J. Immunol. 147: 312319.
123. Meerman, H. J., and, G. Georgiou. 1994. Construction and characterization of a set of E. coli strain deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnology 12: 11071110.
124. Melton, R. G., 1996. Preparation and purification of antibody-enzyme conjugates for therapeutic applications. Adv. Drug Deliv. Rev. 22: 289301.
125. Meyer, D. E., and, A. Chilkoti. 1999. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol. 17: 11121115.
126. Missiakas, D.,, J. M. Betton, and, S. Raina. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21: 871884.
127. Mogensen, J. E., and, D. E. Otzen. 2005. Interactions between folding factors and bacteral outer membrane proteins. Mol. Microbiol. 57: 326346.
128. Mondigler, M., and, M. Ehrmann. 1996. Site-specific proteolysis of the Escherichia coli SecA protein in vivo.J. Bacteriol. 178: 29862988.
129. Morgan-Kiss, R. M.,, C. Wadler, and, J. E. Cronan, Jr., 2002. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl. Acad. Sci. USA 99: 73737377.
130. Mori, H., and, K. Ito. 2001. The Sec protein-trans-location pathway. Trends Microbiol. 9: 494500.
131. Mukherjee, K. J.,, D. C. D. Rowe,, N. A. Watkins, and, D. K. Summers. 2004. Studies of single-chain antibody expression in quiescent Escherichia coli. Appl. Environ. Microbiol. 70: 30053012.
132. Müller, K. M.,, K. M. Arndt,, W. Strittmatter, and, A. Plückthun. 1998. The first constant domain (C(H)1 and (C(L)) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett. 422: 259264.
133. Munro, S., and, H. R. Pelham. 1986. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291300.
134. Nagai, K., and, H. C.T hogersen. 1984. Generation of β-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. Nature 309: 810812.
135. Neu, H. C., and, L. A. Heppel. 1965. The release of enzymes from Escherichia coli by osmotic shock and during formation of spheroplasts. J. Biol. Chem. 240: 36853692.
136. Nieba, L.,, A. Honegger,, C. Krebber, and, A. Plückthun. 1997. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10: 435444.
137. Nielsen, H.,, J. Engelbrecht,, S. Brunak, and, G. Von Heijne. 1997. Identification of prokaryotic and eu-karyotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 16.
138. Nilsson, B.,, T. Moks,, B. Jansson,, L. Abrahmsen,, A. Elmblad,, E. Holmgren,, C. Henrichson,, T. A. Jones, and, M. Uhlen. 1987. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1: 107113.
139. Nordstrom, K., and, B. E. Uhlin. 1992. Runaway-replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria. Biotechnology 10: 661666.
140. Oliver, D. B., and, J. Beckwith. 1982. Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30: 311319.
141. Ong, E.,, N. R. Gilkes,, R. A. J. Warren,, R. C. Miller, Jr., and, D. G. Kilburn. 1989. Enzyme immobilization using the cellulose-binding domain of a cellulomonas fimi exoglucanase. Biotechnology 7: 604607.
142. Ostermeier, M.,, K. De Sutter, and, G. Georgiou. 1996. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J. Biol. Chem. 271: 1061610622.
143. Pack, P.,, K. Müller,, R. Zahn, and, A. Plückthun. 1995. Tetravalent miniantibodies with high avidity assembling in Escherichia coli.J. Mol. Biol. 246: 2834.
144. Pack, P., and, A. Plückthun. 1992. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31: 15791584.
145. Padlan, E. A., 1994. Anatomy of the antibody molecule. Mol. Immunol. 31: 169217.
146. Park, S. J.,, G. Georgiou, and, S.Y. Lee. 1999. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain. Biotechnol. Prog. 15: 164167.
147. Pérez-Pérez, J.,, J. L. Barbero,, G. Márquez, and, J. Gutierrez. 1996. Different PrlA proteins increase the efficiency of periplasmic production of human interleukin-6 in Escherichia coli.J. Biotechnol. 49: 245247.
148. Pérez-Pérez, J.,, G. Márquez,, J. L. Barbero, and, J. Gutierrez. 1994. Increasing the efficiency of protein export in Escherichia coli. Biotechnology 12: 178180.
149. Persson, M.,, M. G. Bergstrand,, L. Bulow, and, K. Mosbach. 1988. Enzyme purification by genetically attached polycysteine and polyphenylalanine affinity tails. Anal. Chem. 172: 330337.
150. Pogliano, J.,, A. S. Lynch,, D. Belin,, E. C. C. Lin, and, J. Beckwith. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 11: 11691182.
151. Poole, E. S.,, C. M. Brown, and, W. P.T ate. 1995. The identity of the base following the stop codon determines the efficiency of an in vivo translational termination in Escherichia coli. EMBO J. 14: 151158.
152. Prinz, W. A.,, F. Åslund,, A. Holmgren, and, J. Beckwith. 1997. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.J. Biol. Chem. 272: 1566115667.
153. Puziss, J. W.,, R. J. Harvery, and, P. J. Bassford. 1992. Alterations in the hydrophilic segment of the maltose-binding protein (MBP) signal peptide that affect either export or translation of MBP. J. Bacteriol. 174: 64886497.
154. Raffa, R. G., and, T. L. Raivio. 2002. A third envelope stress signal transduction pathway in Escherichia coli. Mol. Microbiol. 45: 15991611.
155. Ramm, K., and, A. Plückthun. 2000. The periplas-mic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA.J. Biol. Chem. 275: 1710617113.
156. Reilly, D., and, D. G.Y ansura. 2004. Methods and composition for increasing antibody production. WO 2004 042017.
157. Richarme, G., and, T. D. Caldas. 1997. Chaperone properties of the bacterial periplasmic substrate-binding proteins. J. Biol. Chem. 272: 1560715612.
158. Richter, S. A.,, K. Stubenrauch,, H. Lilie, and, R. Rudolph. 2001. Polyionic fusion peptides function as specific dimerization motifs. Protein Eng. 14: 775783.
159. Riechmann, L., and, S. Muyldermans. 1999. Single domain antibodies: comparison of camel VH and camelised human VH domains. J. Immunol. Methods 231: 2538.
160. Ringquist, S.,, S. Shinedling,, D. Barrick,, L. Green,, J. Binkley,, G. D. Stormo, and, L. Gold. 1992. Translation initiation in Escherichia coli:sequences within the ribosome-binding site. Mol. Mi-crobiol. 6: 12191229.
161. Rizzitello, A. E.,, J. R. Harper, and, T. J. Silhavy. 2001. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli.J. Bacteriol. 183: 679680.
162. Robinson, C., and, A. Bolhuis. 2001. Protein targeting by the twin-arginine translocation pathway. Nat. Rev. Mol. Cell Biol. 2: 350356.
163. Rodrigues, M. L.,, M. R. Shalaby,, W. Werther,, L. Presta, and, P. Carter. 1992. Engineering a humanized bispecific F(ab′;) 2 fragment for improved binding to T cells. IntlJ. Cancer Suppl. 7: 4550.
164. Rodrigues, M. L.,, B. Snedecor,, C. Chen,, W. L. T. Wong,, S. Garg,, G. S. Blank,, D. Maneval, and, P. Carter. 1993. Engineering Fab′ fragments for efficient F(ab′;)2 formation in Escherichia coli and for improved in vivo stability. J. Immunol. 151: 69546961.
165. Röthlishberger, D.,, A. Honegger, and, A. Pluck-thun. 2005. Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J. Mol. Biol. 347: 773789.
166. Sandee, D.,, S. Tungpradabkul,, Y. Kurokawa,, K. Fukui, and, M. Takagi. 2005. Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv in Escherichia coli. Biotechnol. Bioeng. 91: 418424.
167. Saul, F. A.,, J. P. Arie,, B. Vulliez-Le Normand,, R. Kahn,, J. M. Betton, and, G. A. Bentley. 2004. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptdyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335: 595608.
168. Schäfer, U.,, K. Beck, and, M. Müller. 1999. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274: 2456724575.
169. Schäffner, J.,, J. Winter,, R. Rudolph, and, E. Schwarz. 2001. Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl. Environ. Microbiol. 67: 39944000.
170. Schmid, F. X., 2002. Prolyl isomerases. Adv. Protein Chem. 59: 243282.
171. Schmidt, T. G. M., and, A. Skerra. 1993. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng. 6: 109122.
172. Schmidt, T.G. M., and, A. Skerra. 1994. One-step affinity purifiaction of bacterially produced proteins by means of the “Strep tag” and immunobilized recombinant core streptavidin. J. Chromatogr. 676: 337345.
173. Schmiedl, A.,, F. Breitling, and, S. Dubel. 2000b. Expression of a bispecific dsFv-dsFv′ antibody fragment in Escherichia coli. Protein Eng. 13: 725734.
174. Schmiedl, A.,, F. Breitling,, C. H. Winter,, I. Queitsch, and, S. Dubel. 2000a. Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli.J. Immunol. Meth. 242: 101114.
175. Shine, J., and, L. Dalgarno. 1974. The 3’ terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonesense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71: 13421346.
176. Simmons, L.,, L. Klimowski,, D. E. Reilly, and, D. G. Yansura. 2002b. Prokaryotically produced antibodies and uses thereof.WO 02/061090.
177. Simmons, L. C.,, D. Reilly,, L. Klimowski,, T. S. Raju,, G. Meng,, P. Sims,, K. Hong,, R. L. Shields,, L. A. Damico,, P. Rancatore, and, D. G. Yansura. 2002a. Expression of full-length im-munoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263: 133147.
178. Simmons, L. C., and, D. G.Yansura. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14: 629634.
179. Sjöström, M.,, S. Wold,, A. Wieslander, and, L. Ril-fors. 1987. Signal peptide amino acid sequences in Escherichia coli contain information related to final protein localization. A multivariate data analysis. EMBOJ. 6: 823831.
180. Skerra, A., 1994. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Genes 151: 131135.
181. Skerra, A., and, A. Plückthun. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 10381041.
182. Skerra, A., and, A. Plückthun. 1991. Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and cis-prolines. Protein Eng. 4: 971979.
183. Sletta, H.,, A. Nedal,, T. E.V. Aune,, H. Hellebust,, S. Hakvag,, R. Aune,, T. E. Ellingsen,, S. Valla, and, T. Brautaset. 2004. Broad-host-range plasmid pJB658 can be used for industrial-level production of a secreted host-toxic single-chain antibody fragment in Escherichia coli. Appl. Environ. Microbiol. 70: 70337039.
184. Sone, M.,, Y. Akiyama, and, K. Ito. 1997. Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds. J. Biol. Chem. 272: 1034910352.
185. Spiess, C.,, A. Beil, and, M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shcok protein. Cell 97: 339347.
186. Stemmer, W. P. C.,, S. K. Morris,, C. R. Kautzer, and, B. S.W ilson. 1993. Increased antibody expression from Escherichia coli through wobble-base library mutagenesis by enzymatic inverse PCR. Gene 123: 17.
187. Stofko-Hahn, R. E.,, D. W. Carr, and, J. D. Scott. 1992. A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett. 302: 274278.
188. Studier, F.W., 1991. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219: 3744.
189. Studier, F. W.,, A. H. Rosenberg,, J. J. Dunn, and, J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 6089.
190. Sydor, J. R.,, M. Mariano,, S. Sideris, and, S. Nock. 2002. Establishment of intein-mediated protein ligation under denaturing conditions: C-terminal labeling of a single-chain antibody for biochip screening. Bioconjug. Chem. 13: 707712.
191. Tan, N. S.,, B. Ho, and, J. L. Ding. 2002. Engineering of a novel secretion signal for cross-host recombinant protein expression. Protein Eng. 15: 337345.
192. Thies, M. J. W.,, J. Mayer,, J. G. Augustine,, C. A. Frederick,, H. Lilie, and, J. Buchner. 1999. Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization. J. Mol. Biol. 293: 6779.
193. Todorovska, A.,, R. C. Roovers,, O. Dolezul,, A. A. Kortt,, H. R. Hoogenboom, and, P. J. Hudson. 2001. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods 248: 4766.
194. Torriani, A., 1990. From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. Bioessays 12: 371376.
195. Trepod, C. M., and, J. E. Mott. 2002. A spontaneous runaway vector for production-scale expression of bovine somatotropin from Escherichia coli. Appl. Microb. Biotechnol. 58: 8488.
196. Tziatios, C.,, D. Schubert,, M. Lotz,, D. Gundogan,, H. Betz,, H. Schägger,, W. Haase,, F. Duong, and, I. Collinson. 2004. The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules.J. Mol. Biol. 340: 513524.
197. Vaara, M., 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56: 395411.
198. van Dijl, J. M.,, A. De Jong,, H. Smith,, S. Bron, and, G. Venema. 1991. Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol. Gen. Genet. 227: 4048.
199. Völkel, T.,, T. Korn,, M. Bach,, R. Müller, and, R. E. Kontermann. 2001. Optimized linker sequences for the expression of monomeric and dimeric bispecific single-chain diabodies. Protein Eng. 14: 815823.
200. von Heijne, G., 1990. The signal peptide. J. Membr. Biol. 115: 195201.
201. Voss, S., and, A. Skerra. 1997. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 10: 975982.
202. Wada, K. N.,, Y. Wada,, H. Doi,, F. Ishibashi,, T. Go-jobori, and, T. Ikemura. 1991. Codon usage tabulated from the GenBank genetic sequence data. NucleicAcids Res. 19: 19811986.
203. Walker, P. A.,, L. E. C. Leong,, P. W. P. Ng,, S. H. Tan,, S. Waller,, D. Murphy, and, A. G. Porter. 1994. Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Biotechnology 12: 601605.
204. Weir, A. N. C., and, N. A. Bailey. 1997. Process for obtaining antibodies utilizing heat treatment. U.S. patent 5,665,866.
205. Wels, W.,, I. M. Harwerth,, M. Zwickl,, N. Hardman,, B. Groner, and, N. E. Hynes. 1992. Construction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB-2 receptor. Biotechnology 10: 11281132.
206. Wenthzel, A. M. K.,, M. Stancek, and, L. A. Isaksson. 1998. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett. 421: 237242.
207. Wood, C. R.,, M. A. Boss,, T. P. Patel, and, J. S. Emtage. 1984. The influence of messenger RNA secondary structure on expression of an immunoglobulin heavy chain in Escherichia coli. Nucleic Acids Res. 12: 39373950.
208. Wörn, A., and, A. Plückthun. 2001. Stability engineering of an antibody single-chain Fv fragments. J. Mol. Biol. 305: 9891010.
209. Yi, K. S.,, J. Chung,, K. H. Park,, K. Kim,, S.Y. Im,, C.Y. Choi,, M.J. Im, and, U. H. Kim. 2004. Expression system for enhanced green fluorescence protein conjugated recombinant antibody fragment. Hybrid. Hybridomics 23: 279286.
210. Zapata, G.,, J. B. B. Ridgway,, J. Morden,, G. Osaka,, W. L. T. Wong,, G. L. Bennett, and, P. Carter. 1995. Engineering linear F(ab′;) 2 fragments for efficient production in Escherichia coli and enhanced antiproliferative activity. Protein Eng. 8: 10571062.
211. Zhang, Y.,, D. R. Olsen,, K. B. Nguyen,, P. S. Olson,, E. T. Rhodes, and, D. Mascarenhas. 1998. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr. Purific. 12: 159165.
212. Zhang, Z.,, Z. H. Li,, F. Wang,, M. Fang,, C. C. Yin,, Z. Y. Zhou,, Q. Ling, and, H. L. Huang. 2002. Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr. P->urific. 26: 218228.
213. Zhang, Z.,, L. P. Song,, M. Fang,, F. Wang,, D. He,, R. Zhao,, J. Liu,, Z. Y. Zhou,, C. C.Y in,, Q. Lin, and, H. L. Huang. 2003. Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA. Biotechniques 35: 10321042.
214. Zhu, Z.,, L. G. Presta,, G. Zapata, and, P. Carter. 1997. Remodeling domain interfaces to enhance heterodimer formation. Protein Sci. 6: 781788.
215. Zhu, Z.,, G. Zapata,, R. Shalaby,, B. Snedcor,, H. Chen, and, P. Carter. 1996. High level secretion of a humanized bispecific diabody from Es-cherichia coli. Biotechnology 14: 192196.


Generic image for table

Antibody fragments produced in

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21
Generic image for table

Protein sequences of useful signal peptides

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21
Generic image for table

Examples of translational fusion partners for periplasmic proteins

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21
Generic image for table

Examples of fusion partners and cleavage regimes for periplasmic expression of antibody fragments

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21
Generic image for table

Comparison of periplasmic extraction methods

Citation: Humphreys D. 2007. Periplasmic Expression of Antibody Fragments, p 361-388. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error