Chapter 1 : Extremophiles and the Origin of Life

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Extremophiles and the Origin of Life, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap01-2.gif


During the past 2 decades, the description of a diverse assortment of prokaryotic species that thrive under extreme environments that used to be considered inhospitable has broadened our understanding of the range of conditions under which life can persist. With the exception of heat-loving prokaryotes, however, the phylogenetic distribution of other extremophiles in molecular cladograms does not provide clues to their possible antiquity. Furthermore, given the huge gap existing in current descriptions of the evolutionary transition between the prebiotic synthesis of biochemical compounds and the last common ancestor (LCA) of all extant living beings, it is probably naïve to attempt to describe the origin of life and the nature of the first living systems from molecular phylogenies. It is unlikely that data on how life originated will be provided by the geological record. The remarkable coincidence between the monomeric constituents of living organisms and those synthesized in laboratory simulations of the prebiotic environment is too striking to be fortuitous, but at the same time the hiatus between the primitive soup and the RNA world, i.e., the evolutionary stage prior to the development of proteins and DNA genomes during which early life forms largely based on ribozymes may have existed, is discouragingly enormous. The diversity of environmental conditions under which prokaryotes can thrive should be understood as evidence of their adaptability and not as evidence that the origin of life took place under extreme conditions.

Citation: Islas S, Velasco A, Becerra A, Delaye L, Lazcano A. 2007. Extremophiles and the Origin of Life, p 3-10. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Anantharaman, V.,, E. V. Koonin, and, L. Aravind. 2002. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30: 14271464.
2. Bada, J. L., and A. Lazcano. The origin of life. In M. Ruse (ed.), The Harvard Companion to Evolution, in press. Harvard University Press, Cambridge, MA.
3. Bada, J. L.,, and A. Lazcano. 2002. Some like it hot, but not bio-molecules. Science 296: 19821983.
4. Brasier, M.,, O. R. Green,, A. P. Jephcoat,, A. K. Kleppe,, M. J. van Kranendonk,, J. F. Lindsay,, A. Steele, and, N. V. Grassineau. 2002. Questioning the evidence for Earth’s earliest fossils. Nature 416: 7679.
5. Brochier, C.,, and H. Philippe. 2002. A non-hyperthermophilic ancestor for Bacteria. Nature 417: 244.
6. Byerly, G. R.,, D. R. Lowe,, J. L. Wooden and, X. Xie. 2002. An Archean impact layer from the Pilbara and Kaapvaal clatons. Science 297: 13251327.
7. Canfield, D. E. 2006. Gas with an ancient history. Nature 440: 426427.
8. Castresana, J. 2001. Comparative genomics and bioenergetics. Biochim. Biophys. Acta 1506: 147162.
9. Cavicchioli, R. 2002. Extremophiles and the search for extraterrestrial life. Astrobiology 2: 281292.
10. Cleaves, H. J.,, and J. H. Chalmers. 2004. Extremophiles may be irrelevant to the origin of life. Astrobiology 4: 19.
11. Cody, G. D.,, N. Z. Boctor,, T. R. Filley,, R. M. Haze,, J. H. Scott,, A. Sharma, and, H. S. Yoder, Jr. 2000. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289: 13371340.
12. Corliss, J. B.,, J. A. Baross, and, S. E. Hoffman. 1981. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanologica Acta 4(Suppl.) : 5969.
13. Delaye, L.,, A. Becerra, and, A. Lazcano. 2002. The nature of the last common ancestor, p. 34–47. In L. Ribas de Pouplana (ed.), The Genetic Code and the Origin of Life. Landes Bioscience, Georgetown, TX.
14. Delaye, L.,, A. Becerra, and, A. Lazcano. 2005. The last common ancestor: what’s in a name? Origins Life Evol. Biosph. 35: 537554.
15. Delaye, L.,, and A. Lazcano. 2000. RNA-binding peptides as molecular fossils, p. 285–288. In J. Chela-Flores,, G. Lemerchand,, and J. Oró (ed.), Origins from the Big-Bang to Biology: Proceedings of the First Ibero-American School of Astrobiology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
16. Di Giulio, M. 2000. The universal ancestor lived in a thermophilic or hyperthermophilic environment. J. Theor. Biol. 203: 203213.
17. Di Giulio, M. 2003. The universal ancestor and the ancestor of bacteria were hyperthermophiles. J. Mol. Evol. 57: 721730.
18. Di Giulio, M. 2005a. A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code. Gene 346: 16.
19. Di Giulio, M. 2005b. The ocean abysses witnessed the origin of the genetic code. Gene 346: 712.
20. Dworkin, J. P.,, A. Lazcano,, and S. L. Miller. 2002. The roads to and from the RNA world. J. Theor. Biol. 222: 127134.
21. Ehrenfreund, P.,, W. Irvine,, L. Becker,, J. Blank,, J. Brucato,, L. Colangeli,, S. Derenne,, D. Despois,, A. Dutrey,, H. Fraaije,, A. Lazcano,, T. Owen,, and F. Robert. 2002. Astrophysical and astro-chemical insights into the origin of life. Reports Prog. Phys. 65: 14271487.
22. Ferris, J. P.,, P. D. Joshi,, E. H. Edelson,, and J. G. Lawless. 1978. HCN: a plausible source of purines, pyrimidines, and amino acids on the primitive Earth. J. Mol. Evol. 11: 293311.
23. Ferris, J. P.,, R. A. Sanchez,, and L. E. Orgel. 1968. Studies in prebiotic synthesis. III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 33: 693704.
24. Forterre, P. 1996. A hot topic: the origin of hyperthermophiles. Cell 85: 789792.
25. Forterre, P.,, N. Benachenhou-Lahfa,, F. Confalonieri,, M. Duguet,, C. Elie,, and B. Labedan. 1993. The nature of the last universal ancestor and the root of the tree of life. BioSystems 28: 1532.
26. Forterre, P.,, C. Bouthier de la Tour,, H. Philippe,, and M. Duguet. 2000. Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet. 16: 152154.
27. Fox, S. W.,, and K. Dose. 1977. Molecular Evolution and the Origin of Life. Dekker, New York, NY.
28. Franchi, M.,, E. L. Morassi Bonzi,, P. L. Orioli,, C. Vettori,, and E. Gallori. 1999. Clay–nucleic acid complexes: characteristics and implications for the preservation of genetic material in primeval habitats. Origins Life Evol. Biosph. 29: 297315.
29. Frick, L.,, J. P. Mac Neela,, and R. Wolfenden. 1987. Transition state stabilization by deaminases: rates of nonenzymatic hydrolysis of adenosine and cytidine. Bioorg. Chem. 15: 100108.
30. Galtier, N.,, N. Tourasse,, and M. Gouy. 1999. A nonhyperthermophilic common ancestor to extant life forms. Science 283: 220221.
31. García-Ruiz, J. M.,, S. T. Hyde,, A. M. Carnerup,, A. G. Christy,, M. J. Van Kranendonk,, and N. J. Welham. 2003. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302: 11941197.
32. Garrett, E. R.,, and J. Tsau. 1972. Solvolyses of cytosine and cyti-dine. J. Pharm. Sci. 61: 10521061.
33. Glansdorff, N. 2000. About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol. Microbiol. 38: 177185.
34. Gogarten-Boekels, M.,, E. Hilario,, and J. P. Gogarten. 1994. The effects of heavy meteorite bombardment on the early evolution of life—a new look at the molecular record. Origins Life Evol. Biosph. 25: 7883.
35. Grogan, D. W. 1998. Hyperthermophiles and the problem of DNA instability. Mol. Microbiol. 28: 10431049.
36. Harvey, R. B. 1924. Enzymes of thermal algae. Science 60: 481482.
37. Holm, N. G. (ed.). 1992. Marine Hydrothermal Systems and the Origin of Life. Kluwer Academic Publishers, Dordrecht, The Netherlands.
38. Huber, C.,, and G. Wächtershäuser. 1997. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276: 245247.
39. Huber, C.,, and G. Wächtershäuser. 1998. Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces and implications for the origin of life. Science 281: 670672.
40. Islas, S.,, A. M. Velasco,, A. Becerra,, L. Delaye,, and A. Lazcano. 2003. Hyperthermophily and the origin and earliest evolution of life. Int. Microbiol. 6: 8794.
41. Joyce, G. F. 2002. The antiquity of RNA-based evolution. Nature 418: 214221.
42. Kasting, J. F. 1993a. Earth’s early atmosphere. Science 259: 920926.
43. Kasting, J. F. 1993b. Early evolution of the atmosphere and ocean, p. 149–176. In J. M. Greenberg,, C. X. Mendoza-Gomez, and, J. Pirronello (ed.), The Chemistry of Life’s Origin. Kluwer Academic Publishers, Dordrecht, The Netherlands.
44. Kasting, J. F.,, D. P. Whitmore, and, R. T. Reynolds. 1993. Habitable zones around main sequence stars. Icarus 101: 108128.
45. Klenk, H. P.,, P. Palm, and, W. Zillig. 1994. DNA-dependent RNA polymerases as phylogenetic marker molecules. Syst. Appl. Microbiol. 16: 638647.
46. Larralde, R.,, M. P. Robertson, and, S. L. Miller. 1995. Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc. Natl. Acad. Sci. USA 92: 81588160.
47. Lazcano, A.,, G. E. Fox, and, J. Oró. 1992. Life before DNA: the origin and early evolution of early Archean cells, p. 237–295. In R. P. Mortlock (ed.), The Evolution of Metabolic Function. CRC Press, Boca Raton, FL.
48. Levy, M.,, and S. L. Miller. 1998. The stability of the RNA bases: implications for the origin of life. Proc. Natl. Acad. Sci. USA 95: 79337938.
49. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709715.
50. Maden, B., E. H. 1995. No soup for starters? Autotrophy and origins of metabolism. Trends Biochem. Sci. 20: 337341.
51. Marguet, E.,, and P. Forterre. 1994. DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Res. 22: 16811686.
52. Miller, S. L. 1953. A production of amino acids under possible primitive Earth conditions. Science 117: 528.
53. Miller, S. L.,, and J. L. Bada. 1988. Submarine hot springs and the origin of life. Nature 334: 609611.
54. Miller, S. L.,, and A. Lazcano. 1995. The origin of life—did it occur at high temperatures? J. Mol. Evol. 41: 689692.
55. Miller, S. L.,, and A. Lazcano. 2002. Formation of the building blocks of life, p. 78–112. In J. W. Schopf (ed.), Life’s Origin: The Beginnings of Biological Evolution. California University Press, Berkeley, CA.
56. Oró, J. 1960. Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun. 2: 407412.
57. Oró, J. 1961. Comets and the formation of biochemical compounds on the primitive earth. Nature 190: 442443.
58. Pace, N. R. 1991. Origin of life—facing up the physical setting. Cell 65: 531533.
59. Robertson, M. P.,, and S. L. Miller. 1995. An efficient prebiotic synthesis of cytosine and uracil. Nature 375: 772774.
60. Schoenberg, R.,, B. S. Kamber,, K. D. Collerson, and, S. Moorbath. 2002. Tungsten isotope evidence from 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418: 403405.
61. Schopf, J. W. 1993. Microfossils of the early Archaean Apex chert: new evidence for the antiquity of life. Science 260: 640646.
62. Scotland, R. W. 1992. Character coding, p. 14–43. In P. L. Florey,, C. J. Humphries,, I. L. Kitching,, R. W. Scotland,, D. J. Siebert, and, D. M. Williams (ed.), Cladistics: A Practical Course in Systematics. Clarendon Press, Oxford, United Kingdom.
63. Shapiro, R. 1995. The prebiotic role of adenine: a critical analysis. Origins Life Evol. Biosph. 25: 8398.
64. Shapiro, R.,, and R. S. Klein. 1966. The deamination of cytidine and cytosine by acidic buffer solutions: mutagenic implications. Biochemistry 5: 23582362.
65. Shen, Y.,, R. Buick, and, D. E. Canfield. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 7781.
66. Sleep, N. H.,, K. J. Zahnle,, J. F. Kastings, and, H. J. Morowitz. 1989. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342: 139142.
67. Sleep, N. H.,, K. J. Zahnle, and, P. S. Neuhoff. 2001. Initiation of clement surface conditions on the earliest Earth. Proc. Natl. Acad. Sci. USA 98: 36663672.
68. Sowerby, S. J.,, C.-M. Mörth, and, N. G. Holm. 2001. Effect of temperature on the adsorption of adenine. Astrobiology 1: 481488.
69. Stetter, K. O. 1994. The lesson of archaebacteria, p. 114–122. In S. Bengtson (ed.), Early Life on Earth: Nobel Symposium No. 84. Columbia University Press, New York, NY.
70. Strasak, M.,, and F. Sersen. 1991. An unusual reaction of adenine and adenosine on montmorillonite: a new way of prebiotic synthesis of some purine nucleotides? Naturwissenschaften 78: 121122.
71. Sulston, J.,, and G. Ferry. 2000. The Common Thread. Corgi Books, London, United Kingdom.
72. Tehei, M.,, B. Franzetti,, M.-C. Maurel,, J. Vergne, Hountondji, and, G. Zaccai. 2002. The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6: 427430.
73. Tian, F.,, O. Toon,, A. Pavlov, and, H. De Sterck. 2005. A hydrogen-rich early Earth atmosphere. Science 308: 10141015.
74. Tice, M. M.,, and D. R. Lowe. 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431: 549552.
75. Ueno, Y.,, K. Yamada,, N. Yoshida,, S. Maruyama, and, Y. Isozaki. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archean era. Nature 440: 516519.
76. van Zullen, M.,, A. Lepland, and, G. Arrhenius. 2002. Reassessing the evidence for the earliest traces of life. Nature 418: 627630.
77. Wächtershäuser, G. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52: 452484.
78. Wächtershäuser, G. 1990. The case for the chemoautotrophic origins of life in an iron-sulfur world. Origins Life Evol. Biosph. 20: 173182.
79. Wetherill, G. W. 1990. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18: 205256.
80. White, R. H. 1984. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature 310: 430432.
81. Wiegel, J.,, and W. W. M. Adams (ed.) 1998. Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, London, United Kingdom.
82. Wilde, S.,, A. J. W. Valley,, W. H. Peck, and, C. M. Graham. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409: 175178.
83. Woese, C. R. 2002. On the evolution of cells. Proc. Natl. Acad. Sci. USA 99: 87428747.
84. Yayanos, A. A.,, A. S. Dietz, and, R. van Boxtel. 1981. Obligate barophilic bacterium from the Mariana Trench. Proc. Natl. Acad. Sci. USA 78: 52125215.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error