Chapter 2 : Thermal Environments and Biodiversity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Thermal Environments and Biodiversity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap02-2.gif


This chapter summarizes some of the thermal environments on Earth and describes the taxonomic, genetic, metabolic, and ecological diversity of these environments. Biogeology/biogeochemistry is especially of interest in thermal environments, where mineralization is active and the role of prokaryotes in mineralization is being examined. Water is readily available in circumneutral, freshwater hot springs, but there are thermal environments having low water potentials; e.g., in intraterrestrial environments because of high surface area-to-water ratios or in solar heated soils and sediments because of evaporation and high salinity. The authors believe that many environments that are classified as mesobiotic from their bulk temperature measurements contain temporary thermal microniches, created by localized biodegradation of organic material. Measuring the genetic diversity of 16S rRNA and functional genes, which has been an avenue for discovery of many enzymes for biotechnological applications and the isolation of novel microorganisms, provides only limited information about their in situ abundance and activity. In general, analysis of multiple approaches applied in single environments combined with that of similar approaches in different environments has enhanced the robustness of our understanding of the various high-temperature environments and the biodiversity they harbor. Considering how the initial discovery of life in shallow and deep-sea vents expanded our notion of global biodiversity, future approaches and discoveries, perhaps also in extraterrestrial thermal environments, will likely reveal additional information relevant to many fields of basic and applied science.

Citation: Burgess E, Wagner I, Wiegel J. 2007. Thermal Environments and Biodiversity, p 13-29. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Thermophilic archaea: aerobic/microaerophilic/facultative aerobic archaea (◯) and anaerobic/facultative aerobic archaea (∎). A, and : optimal growth at pH 0.7, 60°C ( ). B, : optimal growth at 106°C, pH 5.5 ( ). C, : optimal growth at pH 9, 85°C ( ).

Citation: Burgess E, Wagner I, Wiegel J. 2007. Thermal Environments and Biodiversity, p 13-29. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Thermophilic bacteria: aerobic/microaerophilic/facultative aerobic bacteria (◯) and anaerobic/facultative aerobic bacteria (∎). D, : optimal growth at pH 3.5–4.0, 50–53°C ( ). E, : optimal growth at 85°C, pH 6.8 ( ). F, : optimal growth at pH25°C 10.1, 55–56°C ( ).

Citation: Burgess E, Wagner I, Wiegel J. 2007. Thermal Environments and Biodiversity, p 13-29. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alain, K.,, M. Olagnon,, D. Desbruyeres,, A. Page,, G. Barbier,, S. K. Juniper,, J. Querellou, and, M.-A. Cambon-Bonavita. 2002. Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol. Ecol. 42: 463476.
2. Albuquerque, L.,, F. A. Rainey,, A. P. Chung,, A. Sunna,, M. F. Nobre,, R. Grote,, G. Antranikian, and, M. S. da Costa. 2000. Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of Sao Miguel in the Azores. Int. J. Syst. Evol. Microbiol. 50: 451457.
3. Amend, J. P.,, and E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol. Rev. 25: 175243.
4. Andrews, K. T.,, and B. K. Patel. 1996. Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int. J. Syst. Bacteriol. 46: 265269.
5. Baas-Becking, L., G. M. 1934. Geobiologie of Inleiding Tot de Miliekunde. Van Stockkum & Zoon, The Hague, Netherlands.
6. Baker, B. J.,, D. P. Moser,, B. J. MacGregor,, S. Fishbain,, M. Wagner,, N. K. Fry,, B. Jackson,, N. Speolstra,, S. Loos,, K. Takai,, B. S. Lollar,, J. Fredrickson,, D. Balkwill,, T. C. Onstott,, C. F. Wimpee, and, D. A. Stahl. 2003. Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ. Microbiol. 5: 267277.
7. Baker, G. C.,, and D. A. Cowan. 2004. 16S rDNA primers and the unbiased assessment of thermophile diversity. Biochem. Soc. Trans. 32: 218220.
8. Barns, S. M.,, R. E. Fundyga,, M. W. Jefferies, and, N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 16091613.
9. Baross, J. A. 1998. Do the geological and geochemical records of the early Earth support the prediction from global phylogenetic models of a thermophilic cenancestor? p. 3–18. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
10. Baumgartner, M.,, A. Yapi,, R. Grobner-Ferreira, and, K. O. Stetter. 2003. Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs. Extremophiles 7: 267274.
11. Beijerinck, M. W. 1913. De infusies en de ontdekking der backterien, Jaarboek van de Koninklijke Adakemie van Wetenschappen. Muller, Amsterdam, Netherlands.
12. Blank, C. E.,, S. L. Cady, and, N. R. Pace. 2002. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl. Environ. Microbiol. 68: 51235135.
13. Blochl, E.,, R. Rachel,, S. Burggraf,, D. Hafenbradl,, H. W. Jannasch, and, K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature for life to 113°C. Extremophiles 1: 1421.
14. Brock, T. D. 1970. High temperature systems. Annu. Rev. Ecol. Syst. 1: 191220.
15. Brock, T. D.,, and H. Freeze. 1969. Thermus aquaticus gen. n. and sp. n. a non-sporulating extreme thermophile. J. Bacteriol. 98: 289297.
16. Byrer, D. E.,, F. A. Rainey, and, J. Wiegel. 2000. Novel strains of Moorella thermoacetica from unusually heat-resistant spores. Arch. Microbiol. 174: 334339.
17. Carreto, L.,, E. Moore,, M. F. Nobre,, R. Wait,, R. W. Riley,, R. J. Sharp, and, M. S. da Costa. 1996. Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int. J. Syst. Bacteriol. 46: 460465.
18. Cary, S. C.,, T. Shank, and, J. Stein. 1998. Worms bask in extreme temperatures. Nature 391: 545546.
19. Cavanaugh, C. M.,, S. L. Gardiner,, M. L. Jones,, H. W. Jannasch, and, J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340342.
20. Cavicchioli, R.,, and T. Thomas. 2000. Extremophiles, p. 317–337. In J. Lederberg (ed.), Encyclopedia of Microbiology, 2nd ed, vol. 2. Academic Press, San Diego, CA.
21. Cayol, J. L.,, S. Ducerf,, B. K. Patel,, J. L. Garcia,, P. Thomas, and, B. Ollivier. 2000. Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J. Syst. Evol. Microbiol. 50: 559564.
22. Chevaldonne, P.,, C. R. Fisher,, J. J. Childress,, D. Desbruyeres,, D. Jollivet,, F. Zal, and, A. Toulmond. 2000. Thermotolerance and the ‘Pompeii worms’. Mar. Ecol. Prog. Ser. 208: 293295.
23. Chrisostomos, S.,, B. K. C. Patel,, P. P. Dwivedi, and, S. E. Denman. 1996. Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int. J. Syst. Bacteriol. 46: 497501.
24. Cole, J. R.,, B. Chai,, R. J. Farris,, Q. Wang,, S. A. Kulam,, D. M. McGarrell,, G. M. Garrity, and, J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294D296.
25. Combie, J.,, and K. Runnion. 1996. Looking for diversity of Yellowstone extremophiles. J. Ind. Microbiol. 17: 214218.
26. Corliss, J. B.,, J. Dymond,, L. I. Gordon,, J. M. Edmond,, R. P. von Herzen,, R. D. Ballard,, K. Green,, D. Williams,, R. D. Bainbridge,, K. Crane, and, T. H. van Andel. 1979. Submarine thermal springs on the Galapagos Rift. Science 203: 10731083.
27. Cottrell, M. T.,, and S. C. Cary. 1999. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 65: 11271132.
28. Des Marais, D. J.,, and M. R. Walter. 1999. Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu. Rev. Ecol. Syst. 30: 397420.
29. Desbruyeres, D.,, and L. Laubier. 1980. Alvinella pompejana gen. sp. nov., aberrant Ampharetidae from East Pacific Rise hydro-thermal vents. Oceanol. Acta 3: 267274.
30. Dirmeier, R.,, M. Keller,, D. Hafenbradl,, F. J. Braun,, R. Rachel,, S. Burggraf, and, K. O. Stetter. 1998. Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2: 109114.
31. Donahoe-Christiansen, J.,, S. D’Imperio,, C. R. Jackson,, W. P. Inskeep, and, T. R. McDermott. 2004. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl. Environ. Microbiol. 70: 18651868.
32. Dykhuizen, D. E. 1998. Santa Rosalia revisited: why are there so many species of bacteria? Antonie Leeuwenhoek 73: 2533.
33. Engle, M.,, Y. Li,, C. R. Woese, and, J. Wiegel. 1995. Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int. J. Syst. Bacteriol. 45: 454461.
34. Engle, M.,, Y. Li,, F. Rainey,, S. DeBlois,, V. Mai,, A. Reichert,, F. Mayer,, P. Messner, and, J. Wiegel. 1996. Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkali-tolerant, and proteolytic obligate anaerobe. Int. J. Syst. Bacteriol. 46: 10251033.
35. Fishbain, S.,, J. G. Dillon,, H. L. Gough, and, D. A. Stahl. 2003. Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl. Environ. Microbiol. 69: 36633667.
36. Fontaine, F. E.,, W. H. Peterson,, E. McCoy,, M. J. Johnson, and, G. J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43: 701715.
37. Forterre, P. 1998. Were our ancestors actually hyperthermophiles? Viewpoint of a devil’s advocate, p. 137–146. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, London, United Kingdom.
38. Frankel, R. B., and D. A. Bazylinski. 2003. Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 54: 95114.
39. Fuchs, T.,, H. Huber,, K. Teiner,, S. Burggraf, and, K. O. Stetter. 1996. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany. Syst. Appl. Microbiol. 18: 560566.
40. Gevers, D.,, F. M. Cohan,, J. G. Lawrence,, B. G. Spratt,, T. Coenye,, E. J. Feil,, E. Stackebrandt,, Y. Van de Peer,, P. Vandamme,, F. L. Thompson, and, J. Swigs. 2005. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3: 733739.
41. Ghosh, D.,, B. Bal,, V. K. Kashyap, and, S. Pal. 2003. Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl. Environ. Microbiol. 69: 43324336.
42. Gold, T. 1992. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89: 60456049.
43. Grassia, G. S.,, K. M. McLean,, P. Glenat,, J. Bauld, and, A. J. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21: 4758.
44. Hanada, S.,, A. Hiraishi,, K. Shimada, and, K. Matsuura. 1995. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int. J. Syst. Bacteriol. 45: 676681.
45. Hanada, S.,, S. Takaichi,, K. Matsuura, and, K. Nakamura. 2002. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int. J. Syst. Evol. Microbiol. 52: 187193.
46. Harmsen, H., J. M.,, D. Prieur, and, C. Jeanthon. 1997. Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63: 28762883.
47. Hedenquist, J. W. 1991. Boiling and dilution in the shallow portion of the Waiotapu geothermal system, New Zealand. Geochim. Cosmochim. Acta 55: 27532765.
48. Huber, R.,, S. Burggraf,, T. Mayer,, S. M. Barns,, P. Rossnagei, and, K. O. Stetter. 1995. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376: 5758.
49. Huber, R.,, P. Rossnagel,, C. R. Woese,, R. Rachel,, T. A. Langworthy, and, K. O. Stetter. 1996. Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst. Appl. Microbiol. 19: 4049.
50. Huber, R.,, M. Sacher,, A. Vollman,, H. Huber, and, D. Rose. 2000. Respiration of arsenate and selenate by hyperthermophilic Archaea. Syst. Appl. Microbiol. 23: 305314.
51. Huber, R.,, T. Wilharm,, D. Huber,, A. Trincone,, S. Burggraf,, H. Konig,, R. Rachel,, I. Rockinger,, H. Fricke, and, K. O. Stetter. 1992. Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxiding bacteria. Syst. Appl. Microbiol. 15: 340351.
52. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3: reviews0003.1reviews0003.8.
53. Hugenholtz, P.,, C. Pitulle,, K. L. Hershberger, and, N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366376.
54. Jackson, C. R.,, H. W. Langner,, J. Donahoe-Christiansen,, W. P. Inskeep, and, T. R. McDermott. 2001. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 3: 532542.
55. Jolivet, E.,, E. Corre,, S. L’Haridon,, P. Forterre, and, D. Prieur. 2004. Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8: 219227.
56. Jolivet, E.,, S. L’Haridon,, E. Corre,, P. Forterre, and, D. Prieur. 2003. Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int. J. Syst. Evol. Microbiol. 53: 847851.
57. Jones, M. L. 1981. Riftia pachyptila Jones: observations on the Vestimentiferan Worm from the Galápagos Rift. Science 213: 333336.
58. Jorgensen, B. B.,, M. F. Isaksen, and, H. W. Jannasch. 1992. Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent sediments. Science 258: 17561757.
59. Kampfer, P.,, and R. Rossello-Mora. 2004. The species concept for prokaryotic microorganisms – an obstacle for describing diversity? Poiesis Prax. 4: 6272.
60. Kanokratana, P.,, S. Chanapan,, K. Pootanakit, and, L. Eurwilaichitr. 2004. Diversity and abundance of Bacteria and Archaea in the Bor Khlueng Hot Spring in Thailand. J. Basic Microbiol. 44: 430444.
61. Karpov, G. A.,, and S. I. Naboko. 1990. Metal contents of recent thermal waters, mineral precipitates and hydrothermal alteration in active geothermal fields, Kamchatka. J. Geochem. Explor. 36: 5771.
62. Kashefi, K.,, and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301: 934.
63. Kashefi, K.,, J. M. Tor,, K. P. Nevin, and, D. R. Lovley. 2001. Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl. Environ. Microbiol. 67: 32753279.
64. Kelley, D. S.,, J. A. Baross, and, J. R. Delaney. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30: 385491.
65. Kelley, D. S.,, J. A. Karson,, G. L. Fruh-Green,, D. R. Yoerger,, T. M. Shank,, D. A. Butterfield,, J. M. Hayes,, M. O. Schrenk,, E. J. Olson,, G. Proskurowski,, M. Jakuba,, A. Bradley,, B. Larson,, K. Ludwig,, D. Glickson,, K. Buckman,, A. S. Bradley,, W. J. Brazelton,, K. Roe,, M. J. Elend,, A. Delacour,, S. M. Bernasconi,, M. D. Lilley,, J. A. Baross,, R. E. Summons, and, S. P. Sylva. 2005. A serpentinite-hosted ecosystem: the Lost City of hydrothermal field. Science 307: 14281434.
66. Kieft, T. L.,, J. K. Fredrickson,, T. C. Onstott,, Y. A. Gorby,, H. M. Kostandarithes,, T. J. Bailey,, E. K. Kennedy,, S. W. Li,, A. E. Ply-male,, C. M. Spadoni, and, M. S. Gray. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65: 12141221.
67. Kimble, L. K.,, L. Mandelco,, C. R. Woese, and, M. T. Madigan. 1995. Heliobacterium modesticaldum sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch. Microbiol. 163: 259267.
68. Kimura, H.,, M. Sugihara,, H. Yamamoto,, B. K. Patel,, K. Kato, and, S. Hanada. 2005. Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9: 407414.
69. Klaushofer, H.,, and E. Parkkinen. 1965. Zur Frage der Bedeutung aerober und anaerober thermophiler Sporgenbildner als Infekionsurasache in Rubenzucker-fabriken. I. Clostridium thermohydrosulfuricum eine neue Art eines saccharoseabbauenden, thermophilen, schwefelwasserstoffbilder Clostridiums. Zeitschrift fur Zuckerindustrien Boehmen 15: 445449.
70. Kletzin, A.,, T. Urich,, F. Muller,, T. M. Bandeiras, and, C. M. Gomes. 2004. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic Archaea. J. Bioenerg. Biomembr. 36: 7791.
71. Konhauser, K. O.,, B. Jones,, V. R. Phoenix,, G. Ferris, and, R. W. Renaut. 2004. The microbial role in hot spring silification. Ambio 33: 552558.
72. Korn-Wendisch, F.,, F. Rainey,, R. M. Kroppenstedt,, A. Kempf,, A. Majazza,, H. J. Kutzner, and, E. Stackebrandt. 1995. Thermocrispum gen. nov., a new genus of the order Actinomycetales, and description of Thermocrispum municipale sp. nov. and Thermocrispum agreste sp. nov. Int. J. Syst. Bacteriol. 45: 6777.
73. L’Haridon, S.,, A.-L. Reysenbach,, P. Glenat,, D. Prieur, and, C. Jean-thon. 1995. Hot subterranean biosphere in a continental oil reservoir. Nature 377: 223224.
74. Lake, J. A. 1988. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184186.
75. Lake, J. A.,, R. Jain,, J. E. Moore, and, M. C. Rivera. 1998. Hyper-thermophilic and mesophilic origins of the eukaryotic genome, p. 147–161. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
76. Langner, H. W.,, C. R. Jackson,, T. R. McDermott, and, W. P. Inskeep. 2001. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 35: 33023309.
77. Lauerer, G.,, J. K. Kristjansson,, T. A. Langworthy,, H. Konig, and, K. O. Stetter. 1986. Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst. Appl. Microbiol. 8: 100105.
78. Lee, Y. E.,, M. K. Jain,, C. Lee,, S. E. Lowe, and, J. G. Zeikus. 1993. Taxonomic distinction of saccharolytic thermophilic anaerobes; description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 43: 4151.
79. Li, Y.,, M. Engle,, L. Mandelco, and, J. Wiegel. 1994. Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int. J. Syst. Bacteriol. 44: 111118.
80. Li, Y.,, L. Mandelco, and, J. Wiegel. 1993. Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol. 43: 450460.
81. Liu, S.-Y.,, F. A. Rainey,, H. W. Morgan,, F. Mayer, and, J. Wiegel. 1996. Thermoanaerobacterium aotearoense, sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Bacteriol. 46: 388396.
82. Lomolino, M. V. 2000. A call for a new paradigm of island bio-geography. Global Ecol. Biogeogr. 9: 16.
83. Love, A. C.,, B. K. Patel,, P. D. Nichols, and, E. Stackebrandt. 1993. Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin in Australia. Syst. Appl. Bacteriol. 16: 244251.
84. Lowe, S. E.,, M. K. Jain, and, J. G. Zeikus. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57: 451509.
85. Magurran, A. E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, NJ.
86. Marteinsson, V. T.,, J. L. Birrien,, A. L. Reysenbach,, M. Vernet,, D. Marie,, A. Gambacorta,, P. Messner,, U. B. Sleytr, and, D. Prieur. 1999. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 49: 351359.
87. Mesbah, N. M.,, and J. Wiegel. Isolation, cultivation and characterization of alkalithermophiles. In Methods in Microbiology. (Ed. A. Oren and, F. A. Rainey) Academic Press / Elsevier. pp. 451 468.
88. Mesbah, N. M.,, and J. Wiegel. 2005. Halophilic thermophiles: a novel group of extremophiles, p. 91–118. In T. Satyanarayana and, B. N. Johri (ed.), Microbial Diversity: Current Perspectives and Potential Applications. I.K. Interntational Pvt. Ltd., New Delhi, India.
89. Miller, S. L.,, and A. Lazcano. 1998. Facing up to chemical realities: life did not begin at the growth temperatures of hyperthermophiles, p. 127–133. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
90. Moreno, Y.,, M. A. Ferrrus,, A. Vanoostende,, M. Hernandez,, R. Montes, and, J. Hernandez. 2002. Comparison of 23S polymerase chain reaction–restriction fragment length polymorphism and amplified fragment length polymorphism techniques as typing systems for thermophilic campylobacters. FEMS Microbiol. Lett. 211: 97103.
91. Moussard, H.,, G. Henneke,, D. Moreira,, V. Jouffe,, P. Lopez-Garcia, and, C. Jeanthon. 2006. Thermophilic lifestyle for an uncultured Archaeon from hydrothermal vents: evidence from environmental genomics. Appl. Environ. Microbiol. 72: 22682271.
92. Nakagawa, S.,, K. Takai,, K. Horikoshi, and, Y. Sako. 2004a. Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 54: 329335.
93. Nakagawa, T.,, S. Hanada,, A. Maruyama,, K. Marumo,, T. Urabe, and, M. Fukuii. 2002. Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu–Pb–Zn mine (Toyoha, Japan). FEMS Microbiol. Ecol. 41: 199209.
94. Nakagawa, T.,, S. Nakagawa,, F. Inagaki,, K. Takai, and, K. Horikoshi. 2004b. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol. Lett. 232: 145152.
95. Norris, T.,, J. M. Wraith,, R. W. Castenholz, and, T. R. McDermott. 2002. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68: 63006309.
96. Nubel, U.,, M. M. Bateson,, V. Vandieken,, A. Wieland,, M. Kuhl, and, D. M. Ward. 2002. Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl. Environ. Microbiol. 68: 45934603.
97. Onstott, T. C.,, D. P. Moser,, S. M. Pfiffner,, J. K. Fredrickson,, F. J. Brockman,, T. J. Phelps,, D. C. White,, A. Peacock,, D. Balkwill,, R. Hoover,, L. R. Krumholz,, M. Borscik,, T. L. Kieft, and, R. Wilson. 2003. Indigenous and contaminant microbes in ultradeep mines. Environ. Microbiol. 5: 11681191.
98. Onyenwoke, R. U.,, J. A. Brill,, K. Farahi, and, J. Wiegel. 2004. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch ( Firmicutes). Arch. Microbiol. 182: 182192.
99. Orphan, V. J.,, S. K. Goffredi, and, E. F. DeLong. 2003. Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol. J. 20: 295311.
100. Papke, R. T.,, N. B. Ramsing,, M. M. Bateson, and, D. M. Ward. 2003. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5: 650659.
101. Papke, R. T.,, and D. M. Ward. 2004. The importance of physical isolation to microbial diversification. FEMS Microbiol. Ecol. 48: 293303.
102. Pearson, A.,, Z. Huang,, A. E. Ingalls,, C. S. Romanek,, J. Wiegel,, K. H. Freeman,, R. H. Smittenberg, and, C. L. Zhang. 2004. Non-marine crenarchaeol in Nevada hot springs. Appl. Environ. Microbiol. 70: 52295237.
103. Pedersen, K. 2000. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185: 916.
104. Petursdottir, S. K.,, G. O. Hreggvidsson,, M. S. Da Costa, and, J. K. Kristjansson. 2000. Genetic diversity analysis of Rhodothermus reflects geographical origin of the isolates. Extremophiles 4: 267274.
105. Phoenix, V. R.,, K. O. Konhauser,, D. G. Adams, and, S. H. Bottrell. 2001. Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29: 823826.
106. Pierson, B. K.,, and R. W. Castenholz. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100: 524.
107. Pledger, R. J.,, B. C. Crump, and, J. A. Baross. 1994. A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol. Ecol. 14: 233242.
108. Popa, R.,, and B. K. Kinkle. 2004. Isolation of Thiomonas thermosulfatus strain 51, a species capable of coupling biogenic pyritization with chemiosmotic energy transduction. Geomicrobiol. J. 21: 297309.
109. Prangishvili, D.,, and R. A. Garrett. 2004. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem. Soc. Trans. 32: 204208.
110. Rainey, F.,, R. Tanner, and, J. Wiegel. 2006. Clostridiaceae. In The Prokaryotes. Springer Verlag, New York. Heidelberg., pp. 4: 654678.
111. Ramsing, N. B.,, M. J. Ferris, and, D. M. Ward. 2000. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl. Environ. Microbiol. 66: 10381049.
112. Reysenbach, A. L.,, K. Longnecker, and, J. Kirshtein. 2000. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66: 37983806.
113. Reysenbach, A. L.,, and E. Shock. 1994. Phylogenetic analysis of the hyperthermophile pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. 60: 21132119.
114. Reysenbach, A.,, and E. L. Shock. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296: 10771082.
115. Rivkina, E. M.,, E. I. Friedmann,, C. P. McKay, and, D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66: 32303233.
116. Russel, M. J.,, D. E. Daia, and, A. J. Hall. 1998. The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean, p. 77–1126. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, London, United Kingdom.
117. Russell, N. J. 1990. Cold adaptation of microorganisms. Philos. Trans. R. Soc. Lond. B. 326: 595608, discussion 608611.
118. Sako, Y.,, T. Nunoura, and, A. Uchida. 2001. Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97°C. Int. J. Syst. Evol. Microbiol. 51: 303309.
119. Santos, S. R.,, and H. Ochman. 2004. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ. Microbiol. 6: 754759.
120. Schleper, C.,, G. Puehler,, I. Holz,, A. Gambacorta,, D. Janekovic,, U. Santarius,, H. P. Klenk, and, W. Zillig. 1995. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177: 70507059.
121. Schloss, P. D.,, and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 15011506.
122. Schwartzman, D. W. 1998. Life was thermophilic for the first two-thirds of Earth history, p. 33–43. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
123. Segerer, A. H.,, A. Trincone,, M. Gahrtz, and, K. O. Stetter. 1991. Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol. 41: 495501.
124. Shin, K. S.,, Y. K. Shin,, J. H. Yoon, and, Y. H. Park. 2001. Candida thermophila sp. nov., a novel thermophilic yeast isolated from soil. Int. J. Syst. Evol. Microbiol. 51: 21672170.
125. Sievert, S. M.,, T. Brinkhoff,, G. Muyzer,, W. Ziebis, and, J. Kuever. 1999. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol. 65: 38343842.
126. Sievert, S. M.,, J. Kuever, and, G. Muyzer. 2000a. Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol. 66: 31023109.
127. Sievert, S. M.,, W. Ziebis,, J. Kuever, and, K. Sahm. 2000b. Relative abundance of Archaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. Microbiology 146: 12871293.
128. Singleton, D. R.,, M. A. Furlong,, S. L. Rathbun, and, W. B. Whitman. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol. 67: 43744376.
129. Skirnisdottir, S.,, G. O. Hreggvidsson,, S. Hjorleifsdottir,, V. Marteinsson,, S. Petursdottir,, O. Holst, and, J. K. Kristjansson. 2000. Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66: 28352841.
130. Slobodkin, A.,, B. Campbell,, S. C. Cary,, E. A. Bonch-Osmolovskaya, and, C. Jeanthon. 2001. Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise). FEMS Microbiol. Ecol. 36: 235243.
131. Slobodkin, A.,, D. G. Zavarzina,, T. G. Sokolova, and, E. A. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes. Microbiology 68: 522542.
132. Sokolova, T. G.,, N. A. Kostrikina,, N. A. Chernyh,, T. V. Kolganova,, T. P. Tourova, and, E. A. Bonch-Osmolovskaya. 2005. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int. J. Syst. Evol. Microbiol. 55: 20692073.
133. Sokolova, T., J Hanel,, R. U. Onyenwoke,, A. L. Reysenbach,, A. Banta,, R. Geyer,, J. M. Gonzalez,, W. B. Wjitman and J. Wiegel. 2007. Novel chemolithoautortropic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens, gen. nov., sp. nov. and thermolithobacter carboxydivorans sp. nov. Extremophiles 11: 145157.
134. Stackebrandt, E.,, W. Frederiksen,, G. M. Garrity,, P. A. Grimont,, P. Kampfer,, M. C. Maiden,, X. Nesme,, R. Rossello-Mora,, J. Swings,, H. G. Truper,, L. Vauterin,, A. C. Ward, and, W. B. Whitman. 2002. Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 10431047.
135. Stetter, K. O. 1989. Extremely thermophilic chemolithoautotrophic Archaebacteria, p. 167–173. In H. G. Schlegel and, B. Bowen (ed.), Autotrophic Bacteria. Springer-Verlag, New York, NY.
136. Stetter, K. O. 1996. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18: 149158.
137. Summit, M.,, B. Scott,, K. Nielson,, E. Mathur, and, J. A. Baross. 1998. Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2: 339345.
138. Svetlichny, V. A.,, T. G. Sokolova,, M. Gerhardt,, M. Ringpfeil,, N. A. Kostrikina, and, G. A. Zavarzin. 1991. Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst. Appl. Microbiol. 14: 254260.
139. Szewzyk, U.,, R. Szewzyk, and, T.-A. Stenstrom. 1994. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden. Proc. Natl. Acad. Sci. USA 91: 18101813.
140. Takahata, Y.,, M. Nishijima,, T. Hoaki, and, T. Maruyama. 2000. Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl. Environ. Microbiol. 66: 7379.
141. Takai, K.,, H. Hirayama,, T. Nakagawa,, Y. Suzuki,, K. H. Nealson, and, K. Horikoshi. 2005. Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int. J. Syst. Evol. Microbiol. 55(Pt 1): 183189.
142. Tansey, M. R.,, and T. D. Brock. 1972. The upper temperature limit for eukaryotic organisms. Proc. Natl. Acad. Sci. USA 69: 24262428.
143. Torsvik, V.,, L. Ovreas, and, T. F. Thingstad. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296: 10641066.
144. Wachtershauser, G. 1998. The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron-sulfur world, p. 47–57. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
145. Ward, D. M. 1998. A natural species concept for prokaryotes. Curr. Opin. Microbiol. 1: 271277.
146. Ward, D. M.,, M. J. Ferris,, S. C. Nold, and, M. M. Bateson. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62: 13531370.
147. Waring, G. A. 1965. Thermal springs of the United States and other countries of the world. A summary. Geological Survey Professional paper 492 (revised by R. R. Blankenship and, R. Bentall), US Government Printing Office, Washington, D.C.
148. Westall, F. 2005. Early life on earth and analogies to Mars, p. 45–64. In T. Tokano (ed.), Water on Mars and Life, vol. 4. Springer-Verlag, Berlin, Germany.
149. Whitaker, R. J.,, D. W. Grogan, and, J. W. Taylor. 2003. Geographic barriers isolate endemic populations or hyperthermophilic Archaea. Science 301: 976978.
150. White, R. H. 1984. Hydrolytic stability of biomolecules at high temperatures. Nature 310: 430432.
151. Wiegel, J. 1981. Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol. 31: 88.
152. Wiegel, J. 1986. Methods for isolation and study of thermophiles, p. 17–37. In T. D. Brock (ed.), Thermophiles: General, Molecular, and Applied Microbiology. John Wiley & Sons, Inc., Hoboken, NJ.
153. Wiegel, J. 1990. Temperature spans for growth: a hypothesis and discussion. FEMS Microbiol. Rev. 75: 155170.
154. Wiegel, J. 1992. The obligately anaerobic thermophilic bacteria, p. 105–184. In J. K. Kristjansson (ed.), Thermophilic Bacteria. CRC Press LLC, Boca Raton, FL.
155. Wiegel, J. 1998a. Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2: 257267.
156. Wiegel, J. 1998b. Lateral gene exchange, an evolutionary mechanism for extending the upper or lower temperature limits for growth of microorganisms? A hypothesis, p. 177–185. In J. Wiegel and, M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
157. Wiegel, J.,, and M. W. W. Adams (ed.). 1998. Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, Inc., Philadelphia, PA.
158. Wiegel, J.,, M. Braun, and, G. Gottschalk. 1981. Clostridium thermoautotrophicum specius novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5: 255260.
159. Wiegel, J.,, J. Hanel, and, K. Ayres. 2003. Chemolithoautotrophic thermophilic iron(III)-reducer, p. 235–251. In L. G. Ljungdahl,, M. W. W. Adams,, L. Barton,, G. Ferry, and, M. Johnson (ed.), Biology and Physiology of Anaerobic Bacteria. Springer-Verlag, New York, NY.
160. Wiegel, J.,, and L. G. Ljungdahl. 1986. The importance of thermophilic bacteria in biotechnology. Crit. Rev. Biotechnol. 3: 39107.
161. Wiegert, R. G.,, and P. C. Fraleigh. 1972. Ecology of Yellowstone thermal effluent systems: net primary production and species diversity of a succesional blue-green algal mat. Limnol. Oceanogr. 17: 215228.
162. Wilson, E. O. 1992. The Diversity of Life. Belknap Press of Harvard University Press, Cambridge, MA.
163. Wintzingerode, F. v.,, U. B. Gobel, and, E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213229.
164. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221271.
165. Zeikus, J. G.,, and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109: 707713.
166. Zhang, C. L.,, A. Pearson,, Y.-L. Li,, G. Mills, and, J. Wiegel. 2006. Thermophilic temperature optimum for crenarchaeol synthesis and its implications for archaeal evolution. Appl. Environ. Microbiol. 72: 44194422.
167. Zhao, W.,, C. S. Romanek,, G. Mills,, J. Wiegel, and, C. L. Zhang. 2005. Geochemistry and microbiology of hot springs in Kamchatka, Russia. Geol. J. China Univ. 11: 217223.
168. Zillig, W.,, K. O. Stetter,, S. Wunderl,, W. Schulz,, H. Priess, and, I. Scholz. 1980. The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch. Mikrobiol. 125: 259269.


Generic image for table
Table 1.

Comparison of richness of restriction enzyme phylotypes (types) from clone libraries of environmental 16S rRNA genes from a small selection of thermal environments

Citation: Burgess E, Wagner I, Wiegel J. 2007. Thermal Environments and Biodiversity, p 13-29. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error