Chapter 22 : Mating in the Smut Fungi: From to to the Downstream Cascades

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mating in the Smut Fungi: From to to the Downstream Cascades, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap22-2.gif


Smut fungi induce disease only in their dikaryotic stage, which is generated by mating. Mating is regulated by two loci, which harbor conserved genes. In the locus these genes specify pheromones and receptors, while in the two transcription factors are encoded. This chapter focuses on the signaling cascades, which coordinate cyclic AMP (cAMP) and mitogen-activated protein kinase (MAPK) signaling in response to pheromone, as well as the transcriptional cascade triggered by the products of the locus. The first part of this chapter highlights variations in the organization of the mating-type loci in , , and , their consequences for mating, and finally evolutionary implication. The chapter reviews the signaling pathway underlying pheromone perception as well as the regulatory cascade triggered by the homeodomain heterodimer. Pheromone perception in smut fungi elicits the formation of conjugation hyphae. The connection between mating and cell cycle in may also provide an explanation for the observation that the pheromone-induced formation of conjugation tubes is independent. One of the driving forces for many of the studies described in this chapter has been the assumption that finding the complete set of targets for the bE/bW heterodimer will explain sexual development and its connection to pathogenesis.

Citation: Kahmann R, Schirawski J. 2007. Mating in the Smut Fungi: From to to the Downstream Cascades, p 377-387. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch22
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 22.1
Figure 22.1

Genetic organization of the mating-type loci in smut fungi. Genes are indicated by arrows with the arrow denoting direction of transcription. Related genes are denoted by the same pattern, and respective gene functions are explained in the lower part of the figure. Asterisks (*) indicate that the relative order and orientation of these genes have not been determined. In and the - and -specific sequences reside on different chromosomes, while they are linked in by spacer regions (which are not drawn to scale and whose length is indicated). The black bars on top of the figure indicate the region of the locus (that expands to different lengths in the different loci, indicated by a broken line) from the gene to the gene and the region of the locus, which covers the two homeodomain protein genes, and . Sequence information was obtained from the following accession numbers: AF043940, AM118080, AACP01000083, AACP01000013, AJ884588, AJ884583, AJ884590, AJ884585, AJ884589, AJ884584, U37796, M84182, AF184070, AF184069, and Z18531.

Citation: Kahmann R, Schirawski J. 2007. Mating in the Smut Fungi: From to to the Downstream Cascades, p 377-387. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 22.2
Figure 22.2

Pheromone-triggered signaling cascades in . Lipopeptide pheromones Mfa1/2 bind to their cognate seven-transmembrane receptors present on either (Pra1) or (Pra2) cells. The left section displays the MAPK module consisting of Kpp4/Ubc4, Fuz7/Ubc5, and Kpp2/Ubc3 and includes Ras2 and Ubc2 as likely upstream components funneling into the MAPK module. The right-hand side depicts the known components of the cAMP signaling cascade. PKA signaling and MAPK signaling converge on Prf1. Phosphorylation of Prf1 by Adr1 and Kpp2/Ubc3 is indicated by black and gray circles, respectively, and the genes activated by the different forms are indicated. The transcriptional regulation of is shown in the lower left section, with triangles denoting binding sites for Rop1 (RRS), black bars denoting binding sites for Prf1 (PRE), and an open bar denoting the upstream activating sequence (UAS). Broken lines depict hypothetical interactions. Details are described in the text.

Citation: Kahmann R, Schirawski J. 2007. Mating in the Smut Fungi: From to to the Downstream Cascades, p 377-387. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agrios, G. N. 2005. The smuts, p. 582–593. In G. N. Agrios (ed.), Plant Pathology, 5th ed. Elsevier Academic Press, Burlington, MA.
2. Anderson, C. M.,, D. A. Willits,, P. J. Kosted,, E. J. Ford,, A. D. Martinez-Espinoza, and J. E. Sherwood. 1999. Molecular analysis of the pheromone and pheromone receptor genes of Ustilago hordei. Gene 240: 8997.
3. Andrews, D. L.,, J. D. Egan,, M. E. Mayorga, and, S. E. Gold. 2000. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol. Plant-Microbe Interact. 13: 781786.
4. Bakkeren, G., and, J. W. Kronstad. 1993. Conservation of the b mating-type gene complex among bipolar and tetra-polar smut fungi. Plant Cell 5: 123136.
5. Bakkeren, G., and, J. W. Kronstad. 1994. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc. Natl. Acad. Sci. USA 91: 70857089.
6. Bakkeren, G., and, J. W. Kronstad. 1996. The pheromone cell signaling components of the Ustilago a mating-type loci determine intercompatibility between species. Genetics 143: 16011613.
7. Bakkeren, G.,, G. Jiang,, R. L. Warren,, Y. Butterfield,, H. Shin,, R. Chiu,, R. Linning,, J. Schein,, N. Lee,, G. Hu,, D. M. Kupfer,, Y. Tang,, B. A. Roe,, S. Jones,, M. Marra, and, J. W. Kronstad. 2006. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Fungal Genet. Biol. 43: 655666.
8. Banuett, F., and, I. Herskowitz. 1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122: 29652976.
9. Bohlmann, R.,, F. Schauwecker,, C. Basse, and, R. Kahmann. 1994. Genetic regulation of mating and dimorphism in Ustilago maydis, p. 239–245. In M. J. Daniels (ed.), Advances in Molecular Genetics of Plant–Microbe Interactions, vol. 3. Kluwer, Dordrecht, The Netherlands.
10. Bölker, M.,, M. Urban, and, R. Kahmann. 1992. The a mating type locus of U. maydis specifies cell signaling components. Cell 68: 441450.
11. Bortfeld, M.,, K. Auffarth,, R. Kahmann, and, C. W. Basse. 2004. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. Plant Cell 16: 22332248.
12. Brachmann, A.,, G. Weinzierl,, J. Kämper, and R. Kahmann. 2001. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 42: 10471063.
13. Brachmann, A.,, J. Schirawski,, P. Müller, and R. Kahmann. 2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22: 21992210.
14. Brefort, T.,, P. Müller, and R. Kahmann. 2005. The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Eukaryot. Cell 4: 379391.
15. Caldwell, G. A.,, F. Naider, and, J. M. Becker. 1995. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol. Rev. 59: 406422.
16. Castillo-Lluva, S., and, J. Pérez-Martín. 2005. The induction of the mating program in the phytopathogen Ustilago maydis is controlled by a G1 cyclin. Plant Cell 17: 35443560.
17. Castillo-Lluva, S.,, T. Garcia-Muse, and J. Pérez-Martín. 2004. A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis. J. Cell Sci. 117: 41434156.
18. Feldbrügge, M.,, J. Kämper, G. Steinberg, and, R. Kahmann. 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7: 666672.
19. Flor-Parra, I.,, M. Vranes,, J. Kämper, and J. Pérez-Martín. 11 August 2006. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18: 23692387. [Epub ahead of print.]
20. Garcia-Muse, T.,, G. Steinberg, and, J. Pérez-Martín. 2003. Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot. Cell 2: 494500.
21. Garcia-Pedrajas, M. D., and, S. E. Gold. 2004. Kernel knowledge: smut of corn. Adv. Appl. Microbiol. 56: 263290.
22. Garrido, E., and, J. Pérez-Martín. 2003. The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol. Microbiol. 47: 729743.
23. Garrido, E.,, U. Voss,, P. Müller, S. Castillo-Lluva,, R. Kahmann, and J. Pérez-Martín. 2004. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev. 18: 31173130.
24. Gillissen, B.,, J. Bergemann,, C. Sandmann,, B. Schroeer,, M. Bölker, and R. Kahmann. 1992. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68: 647657.
25. Gold, S.,, G. Duncan,, K. Barrett, and, J. Kronstad. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8: 28052816.
26. Hartmann, H. A.,, J. Krüger, F. Lottspeich, and, R. Kahmann. 1999. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11: 12931306.
27. Hartmann, H. A.,, R. Kahmann, and, M. Bölker. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15: 16321641.
28. Inada, K.,, Y. Morimoto,, T. Arima,, Y. Murata, and, T. Kamada. 2001. The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157: 133140.
29. Kahmann, R., and, J. Kämper. 2004. Ustilago maydis: how its biology relates to pathogenic development. New Phytol. 164: 3142.
30. Kamada, T. 2002. Molecular genetics of sexual development in the mushroom Coprinus cinereus. Bioessays 24: 449459.
31. Kämper,, J., M. Reichmann,, T. Romeis,, M. Bölker, and R. Kahmann. 1995. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81: 7383.
32. Kämper, J.,, R. Kahmann,, M. Bölker, L.-J. Ma,, T. Brefort,, B. J. Saville,, F. Banuett,, J. W. Kronstad,, S. E. Gold,, O. Müller, M. H. Perlin,, H. A. B. Wösten, R. deVries,, J. Ruiz-Herrera,, C. G. Reynaga-Peña, K. Snetselaar,, M. McCann,, J. Pérez-Martín, M. Feldbrügge, C. W. Basse,, G. Steinberg,, J. I. Ibeas,, W. Holloman,, P. Guzman,, M. Farman,, J. E. Stajich,, R. Sentandreu,, J. M. González-Prietro,, J. C. Kennell,, L. Molina,, J. Schirawski,, A. Mendoza-Mendoza,, D. Greilinger,, K. Münch, N. Rössel, M. Scherer,, M. Vranes,, O. Ladendorf,, V. Vincon,, U. Fuchs,, B. Sandrock,, S. Meng,, E. C. H. Ho,, M. J. Cahill,, K. J. Boyce,, J. Klose,, S. J. Klosterman,, H. J. Deelstra,, L. Ortiz-Castellanos,, W. Li,, P. Sanchez-Alonso,, P. H. Schreier,, I. Häuser-Hahn,, M. Vaupel,, E. Koopmann,, G. Friedrich,, H. Voss,, T. Schlüter, D. Platt,, C. Swimmer,, A. Gnirke,, F. Chen,, V. Vysotskaia,, G. Mannhaupt,, U. Güldener, M. Münsterkötter, D. Haase,, M. Oesterheld,, H.-W. Mewes,, E. W. Mauceli,, D. DeCaprio,, C. M. Wade,, J. Butler,, S. Young,, D. D. Jaffe,, S. Calvo,, C. Nusbaum,, J. Galagan, and, B. Birren. 2006. Living in pretend harmony: insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97101.
33. Kosted, P. J.,, S. A. Gerhardt,, C. M. Anderson,, A. Stierle, and, J. E. Sherwood. 2000. Structural requirements for activity of the pheromones of Ustilago hordei. Fungal Genet. Biol. 29: 107117.
34. Kronstad, J. W., and, S. A. Leong. 1990. The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev. 4: 13841395.
35. Laity, C.,, L. Giasson,, R. Campbell, and, J. Kronstad. 1995. Heterozygosity at the b mating-type locus attenuates fusion in Ustilago maydis. Curr. Genet. 27: 451459.
36. Lee, N., and, J. W. Kronstad. 2002. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell 1: 954966.
37. Lee, N.,, C. A. D’Souza, and J. W. Kronstad. 2003. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu. Rev. Phytopathol. 41: 399427.
38. Lee, N.,, G. Bakkeren,, K. Wong,, J. E. Sherwood, and, J. W. Kronstad. 1999. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc. Natl. Acad. Sci. USA. 96: 1502615031.
39. Mayorga, M. E., and, S. E. Gold. 1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34: 485497.
40. Mayorga, M. E., and, S. E. Gold. 2001. The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol. Microbiol. 41: 13651379.
41. Müller, P.,, J. D. Katzenberger,, G. Loubradou, and, R. Kahmann. 2003. Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot. Cell 2: 609617.
42. Pérez-Martín, J.,, S. Castillo-Lluva,, C. Sgarlata,, I. Flor-Parra,, N. Mielnichuk,, J. Torreblanca, and, N. Carbo. 2006. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol. Genet. Genomics 276: 211229.
43. Romeis, T.,, A. Brachmann,, R. Kahmann, and, J. Kämper. 2000. Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol. Microbiol. 37: 5466.
44. Schauwecker, F.,, G. Wanner, and, R. Kahmann. 1995. Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. Biol. Chem. Hoppe-Seyler 376: 617625.
45. Scherer, M.,, K. Heimel,, V. Starke, and, J. Kämper. 2006. The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18: 23882401.
46. Schirawski, J.,, B. Heinze,, M. Wagenknecht, and, R. Kahmann. 2005. Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot. Cell 4: 13171327.
47. Schirawski, J.,, H. U. Böhnert, G. Steinberg,, K. Snetselaar,, L. Adamikowa, and, R. Kahmann. 2005. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17: 35323543.
48. Schulz, B.,, F. Banuett,, M. Dahl,, R. Schlesinger,, W. Schäfer, T. Martín, I. Herskowitz, and, R. Kahmann. 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60: 295306.
49. Smith, D. G.,, M. D. Garcia-Pedrajas,, W. Hong,, Z. Yu,, S. E. Gold, and, M. H. Perlin. 2004. An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukaryot. Cell 3: 180189.
50. Snetselaar, K. M. 1993. Microscopic observation of Ustilago maydis mating interactions. Exp. Mycol. 17: 345355.
51. Snetselaar,, K. M., and C. W. Mims. 1994. Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 98: 347355.
52. Snetselaar, K. M.,, M. Bölker, and R. Kahmann. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20: 299312.
53. Spellig, T.,, M. Bölker, F. Lottspeich,, R. W. Frank, and, R. Kahmann. 1994. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 13: 16201627.
54. Steinberg, G.,, R. Wedlich-Söldner, M. Brill, and, I. Schulz. 2001. Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J. Cell Sci. 114: 609622.
55. Steinberg, G.,, M. Schliwa,, C. Lehmler,, M. Bölker, R. Kahmann, and, J. R. McIntosh. 1998. Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J. Cell Sci. 111: 22352246.
56. Trueheart, J., and, I. Herskowitz. 1992. The a locus governs cytoduction in Ustilago maydis. J. Bacteriol. 174: 78317833.
57. Urban, M.,, R. Kahmann, and, M. Bölker. 1996. The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol. Gen. Genet. 250: 414420.
58. Urban, M.,, R. Kahmann, and, M. Bölker. 1996. Identification of the pheromone response element in Ustilago maydis. Mol. Gen. Genet. 251: 3137.
59. Wösten, H. A.,, R. Bohlmann,, C. Eckerskorn,, F. Lottspeich,, M. Bölker, and R. Kahmann. 1996. A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J. 15: 42744281.


Generic image for table
Table 22.1

Targets of regulation by the bE/bW heterodimer

Citation: Kahmann R, Schirawski J. 2007. Mating in the Smut Fungi: From to to the Downstream Cascades, p 377-387. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error